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A NEW FAMILY
OF TRIVARIATE PROPER QUASI–COPULAS

Manuel Úbeda-Flores

In this paper, we provide a new family of trivariate proper quasi-copulas. As an appli-
cation, we show that W 3 – the best-possible lower bound for the set of trivariate quasi-
copulas (and copulas) – is the limit member of this family, showing how the mass of W 3

is distributed on the plane x + y + z = 2 of [0, 1]3 in an easy manner, and providing the
generalization of this result to n dimensions.
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1. INTRODUCTION

Let n be a natural number such that n ≥ 2. An n-dimensional copula (briefly,
n-copula) is the restriction to [0, 1]n of a continuous n-variate distribution func-
tion whose univariate margins are uniform on [0, 1]. Equivalently, an n-copula is a
function C : [0, 1]n → [0, 1] which satisfies the following conditions:

(C1) boundary conditions: for any (u1, u2, . . . , un) in [0, 1]n it holds that C(u1, . . . ,
ui−1, 0, ui+1, . . ., un)=0 and C(1, . . ., 1, ui, 1, . . ., 1)= ui for all i∈{1, 2, . . ., n};

(C2) the n-increasing property: for every (a1, a2, . . . , an), (b1, b2, . . . , bn) ∈ [0, 1]n,
and each n-box B in [0, 1]n, i. e., B = [a1, b1]× [a2, b2]× · · · × [an, bn], we have
that VC(B) =

∑
sgn(c1, c2, . . . , cn) ·C(c1, c2, . . . , cn) ≥ 0 – VC(B) is defined as

the C-volume of B –, where the sum is taken over all the vertices (c1, c2, . . . , cn)
of B (i. e., each ck is equal to either ak or bk) and sgn(c1, c2, . . . , cn) is 1 if
ck = ak for an even number of k′s, and −1 if ck = ak for an odd number of
k′s.

The importance of copulas as a tool for statistical analysis and modeling stems
largely from the observation that the joint distributionH of a random vector (X1, X2,
. . ., Xn) with respective one-dimensional margins F1, F2, . . ., Fn can be expressed by

H(x1, x2, . . . , xn) = C(F1(x1), F2(x2), . . . , Fn(xn)), (x1, x2, . . . , xn) ∈ [−∞,∞]n,

where C is an n-copula that is uniquely determined on RangeF1×RangeF2 ×
· · ·×RangeFn. For a complete survey about copulas, see [14, 23, 24].
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Alsina et al. [1] introduced the notion of quasi-copula in order to show that a
certain class of operations on univariate distribution functions can, or cannot, be
derived from corresponding operations on random variables defined on the same
probability space (see also [19]). Cuculescu and Theodorescu [4] have given the
characterization of an n-dimensional quasi-copula (or n-quasi-copula) as a function
Q : [0, 1]n → [0, 1] which satisfies condition (C1) of n-copulas, but instead of condi-
tion (C2), the weaker conditions:

(Q1) monotonicity: Q is nondecreasing in each variable;

(Q2) Lipschitz condition: for any (u1, u2, . . . , un) and (v1, v2, . . . , vn) in [0, 1]n, it
holds that |Q(u1, u2, . . . , un)−Q(v1, v2, . . . , vn)| ≤∑n

i=1 |ui − vi|.

We will refer to VQ(B) – the Q-volume of B – as the mass accumulated by Q on B.
Every n-quasi-copula Q satisfies the inequalities

Wn(u1, u2, . . . , un) = max
(

0,
n∑

i=1

ui − n+ 1
)
≤ Q(u1, u2, . . . , un)

≤ min(u1, u2, . . . , un) = Mn(u1, u2, . . . , un)

for every (u1, u2, . . . , un) in [0, 1]n. While every n-copula is an n-quasi-copula, there
exist proper n-quasi-copulas, i. e., n-quasi-copulas which are not n-copulas. For any
n ≥ 2, Mn is an n-copula; but Wn is an n-copula if and only n = 2, and a proper
n-quasi-copula for n ≥ 3.

One of the most important applications of quasi-copulas in statistics is the fol-
lowing result ([15, 17, 21]): Every pointwise ordered set of copulas has a least upper
bound and greatest lower bound in the set of quasi-copulas. Of interest are sets of
copulas of random variables with a specific statistical property (see [10, 11, 17, 18]).
Furthermore, since quasi-copulas are a special type of binary aggregation opera-
tors satisfying the Lipschitz condition (Q2) (see [3]), these functions are becoming
popular in fuzzy set theory (for instance, see [2, 8, 9, 12]).

In the literature, we cannot find many families of proper n-quasi-copulas when
n ≥ 3 – for some examples (different from Wn), see [7, 16, 22]. Recently, the mass
distribution associated with a 3-quasi-copula and the differences with respect to the
bivariate case – we recall that the (positive) mass of W 2 is distributed uniformly in
[0, 1]2 on the segment which joins the points (0, 1) to (1, 0), and the (infinite positive
and infinite negative) mass of W 3 is distributed on the plane x+ y+ z = 2 of [0, 1]3

– have been studied in [7, 13]. Our purpose is to provide a new family of proper
3-quasi-copulas whose bivariate margins are 2-copulas – moreover, we construct the
least upper bound and the greatest lower bound in the set of quasi-copulas with
those margins. As an application, we prove that W 3 is the limit member of this new
family, showing how the mass of W 3 is distributed on the plane x + y + z = 2 of
[0, 1]3 in an easy manner. In the last section, we provide the generalization of this
problem to n dimensions.
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Fig. 1. Mass distribution of the trivariate function in Section 2 for m = 4.

2. A NEW FAMILY OF PROPER 3-QUASI-COPULAS

Let m be a natural number such that m ≥ 2. We divide [0, 1]3 into m3 3-boxes (or
cubes, in this case), namely:

Bi1i2i3 =
[
i1 − 1
m

,
i1
m

]
×

[
i2 − 1
m

,
i2
m

]
×

[
i3 − 1
m

,
i3
m

]
,

for all i1, i2, i3 = 1, 2, . . . ,m. Now, we distribute 1/m of (positive) mass uniformly on
each cube Bi1i2i3 such that i1 + i2 + i3 = 2m+1; −1/m of (negative) mass uniformly
on each cube Bi1i2i3 such that i1 + i2 + i3 = 2m+ 2; and 0 on the remaining cubes.
It can be easily computed that there are m(m+ 1)/2 cubes with positive mass, and
m(m − 1)/2 cubes with negative mass; and the sum of positive mass is (m + 1)/2,
and the sum of negative mass is −(m − 1)/2. Therefore, we have the amount of 1
of positive mass on [0, 1]3 (see Figure 1 for this construction in the case m = 4).

Note that if we project this construction on the planes x = 1, y = 1 and z = 1,
we obtain a construction (similar on the three planes) with 1/m of (positive) mass
distributed uniformly on each square of the form Ri1(m−i1+1), for i1 = 1, 2, . . . ,m,
where

Ri1i2 =
[
i1 − 1
m

,
i1
m

]
×

[
i2 − 1
m

,
i2
m

]
,

for all i1, i2 = 1, 2, . . . ,m; and 0 on [0, 1]2 \Ri1(m−i1+1).
If (u1, u2, u3) is a point in [0, 1]3, and Qm(u1, u2, u3) is the mass spread on [0, u1]×

[0, u2]× [0, u3], then Qm is a proper 3-quasi-copula – whose three bivariate margins
are 2-copulas –, as the following result shows.
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Theorem 2.1. For each natural number m ≥ 2, let Qm : [0, 1]3 → [0, 1] be the
function defined by

Qm(u1, u2, u3) (1)

=





0, (u1, u2, u3) ∈ B1,

m2

3∏

j=1

(
uj −

ij − 1
m

)
, (u1, u2, u3) ∈ B2,

m

3∑

k=1

3∏

j=1
j 6=k

(
uj −

ij − 1
m

)
−m2

3∏

j=1

(
uj −

ij − 1
m

)
, (u1, u2, u3) ∈ B3,

u1 + u2 + u3 − 2, otherwise,

where B1 = {Bi1i2i3 : i1 + i2 + i3 ≤ 2m}, B2 = {Bi1i2i3 : i1 + i2 + i3 = 2m + 1},
and B3 = {Bi1i2i3 : i1 + i2 + i3 = 2m+ 2}. Then, Qm is a proper 3-quasi-copula for
every m ≥ 2 whose three bivariate margins (which are the same) are the 2-copula
C

(2)
m given by

C(2)
m (v1, v2) =





0, (v1, v2) ∈ R1,

m

2∏

j=1

(
vj −

ij − 1
m

)
, (v1, v2) ∈ R2,

v1 + v2 − 1, otherwise,

(2)

where R1 = {Ri1i2 : i1 + i2 ≤ m} and R2 = {Ri1i2 : i1 + i2 = m+ 1}.

P r o o f . Suppose m is a fixed natural number such that m ≥ 2, and let (u1, u2, u3)
be a point in [0, 1]3. First, we show that Qm is well-defined. Let Bi1i2i3 ∈ B2 and
Bj1j2j3 ∈ B3 be two cubes in [0, 1]3 such that i2 = j2 and i3 = j3 (all the other cases
can be proved in a similar manner). Then we have that j1 = 1 + i1. Since

Qm(u1, u2, u3) = m2

(
u1 −

i1 − 1
m

) 3∏

k=2

(
uk −

jk − 1
m

)
,

(u1, u2, u3) ∈
[
i1 − 1
m

,
i1
m

]
×

[
j2 − 1
m

,
j2
m

]
×

[
j3 − 1
m

,
j3
m

]
,

in particular, we obtain that

Qm

(
i1
m
,u2, u3

)
= m2

(
i1
m
− i1 − 1

m

) 3∏

k=2

(
uk −

jk − 1
m

)
= m

3∏

k=2

(
uk −

jk − 1
m

)
;
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and since

Qm(u1, u2, u3) = m

3∑

k=1

3∏

j=1
j 6=k

(
uj −

ij − 1
m

)
−m2

3∏

j=1

(
uj −

ij − 1
m

)
,

(u1, u2, u3) ∈
3∏

k=1

[
jk − 1
m

,
jk
m

]
,

in particular, we obtain that

Qm

(
i1
m
,u2, u3

)
= Qm

(
j1 − 1
m

,u2, u3

)
= m

3∏

k=2

(
uk −

jk − 1
m

)
.

To prove the boundary conditions, suppose u2 = u3 = 1 (the cases u1 = u2 = 1
and u1 = u3 = 1 use similar arguments) in a cube Bi1i2i3 ∈ B3 (all the remaining
cases can be proved in a similar manner). Thus i2 = i3 = m, and hence i1 = 2.
Then, we obtain that

Qm(u1, 1, 1) = m

[
2
(
u1 −

1
m

)(
1− m− 1

m

)
+

(
1− m− 1

m

)2]

−m2

(
u1 −

1
m

)(
1− m− 1

m

)2

= u1.

In what follows, let (u′1, u2, u3) and (u1, u2, u3) be two points in a cube Bi1i2i3
such that u′1 > u1 (the case u′1 = u1 is trivial in the following). We now check that
Qm is nondecreasing in the first variable and satisfies the Lipschitz condition (Q2)
in the same variable (the cases for the other two variables can be proved in a similar
manner) and in each cube Bi1i2i3 . We consider two cases (the remaining cases are
trivial).

(i) Suppose Bi1i2i3 ∈ B2. Then we have

Qm(u′1, u2, u3)−Qm(u1, u2, u3) = m2(u′1 − u1)
3∏

j=2

(
uj −

ij − 1
m

)
.

It is trivial that Qm(u′1, u2, u3) − Qm(u1, u2, u3) ≥ 0. On the other hand,
we have that Qm(u′1, u2, u3) − Qm(u1, u2, u3) ≤ u′1 − u1 if, and only if, m2 ·∏3
j=2(uj − (ij − 1)/m) ≤ 1. Since 0 ≤ uj − (ij − 1)/m ≤ 1/m, for j = 2, 3, the

result follows.

(ii) Suppose now Bi1i2i3 ∈ B3. Then, we have that

Qm(u′1, u2, u3)−Qm(u1, u2, u3)

= m(u′1 − u1)
[ 3∑

j=2

(
uj −

ij − 1
m

)
−m

3∏

j=2

(
uj −

ij − 1
m

)]
.

Thus, Qm(u′1, u2, u3)−Qm(u1, u2, u3) ≥ 0 if, and only if,
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m

3∏

j=2

(
uj −

ij − 1
m

)
≤

3∑

j=2

(
uj −

ij − 1
m

)
. (3)

Suppose u2 − (i2 − 1)/m > 0 and u3 − (i3 − 1)/m > 0 (the cases with the equality
are trivial), then inequality (3) is equivalent to m ≤ ∑3

j=2(uj − (ij − 1)/m)−1.
Since u2 ∈ ((i2 − 1)/m, i2/m], we have that u2 ≤ i2/m = (i2 − 1)/m + 1/m, thus
u2 − (i2 − 1)/m ≤ 1/m (and similarly for u3); whence the result follows.

On the other hand, we have that Qm(u′1, u2, u3)−Qm(u1, u2, u3) ≤ u′1−u1 holds
if, and only if, m

∏3
j=2(uj − (ij − 1)/m) ≥ ∑3

j=2(uj − (ij − 1)/m) + 1/m. Since∏3
j=2(uj − (ij − 1)/m) ≥ 0, i. e., u2u3 − u2i3/m − u3i2/m + i2i3/m

2 ≥ 0, we have
that u2u3 − u2(i3 − 1)/m − u3(i2 − 1)/m + (i2 − 1)(i3 − 1)/m2 ≥ u2/m + u3/m −
i2/m

2 − i3/m2 + 1/m2; whence the result follows.
Thus, we have proved that Qm is a 3-quasi-copula. Now, since

VQm

([
1
m
,

2
m

]
×

[
m− 1
m

, 1
]
×

[
m− 1
m

, 1
])

= Qm

(
2
m
, 1, 1

)
−Qm

(
1
m
, 1, 1

)
−Qm

(
2
m
, 1,

m− 1
m

)

−Qm
(

2
m
,
m− 1
m

, 1
)

+Qm

(
2
m
,
m− 1
m

,
m− 1
m

)

+Qm

(
1
m
, 1,

m− 1
m

)
+Qm

(
1
m
,
m− 1
m

, 1
)

−Qm
(

1
m
,
m− 1
m

,
m− 1
m

)
=

2
m
− 3
m

= − 1
m
,

we conclude that Qm is a proper 3-quasi-copula.
Finally, since (as it is easy to check) the bivariate margins – or of higher dimension

– of any n-quasi-copula are quasi-copulas, the three bivariate margins of Qm – i. e.,
Qm(u1, u2, 1), Qm(u1, 1, u3) and Qm(1, u2, u3) – given by (2) are 2-copulas since the
mass (only positive) of C(2)

m is distributed uniformly on [0, 1]2, which completes the
proof. 2

From Theorem 2.1, we first note that the 2-copulas given by (2) are a special type
of orthogonal grid constructions of copulas studied in [6] with W 2 as background
copula, and Π2 – the copula of independent random variables, i. e., Π2(u, v) = uv
for all (u, v) in [0, 1]2 – as foreground copula.

We also observe that there does not exist a 3-copula whose three bivariate margins
are C(2)

m (u1, u2), C(2)
m (u1, u3) and C(2)

m (u2, u3) – this is related to the problem of the
compatibility of three 2-copulas (for more details, see [5, 20]). The following result
shows this fact.

Proposition 2.1. For any natural number m ≥ 2, there does not exist a 3-copula
whose three bivariate margins are the 2-copula C(2)

m given by (2).
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P r o o f . Suppose C is a 3-copula whose three bivariate margins are C(2)
m . Let B

be the 3-box given by B = [1/2, 1]3. Then we have that

VC(B) = C(1, 1, 1)− C
(

1
2
, 1, 1

)
− C

(
1,

1
2
, 1

)
− C

(
1, 1,

1
2

)
+ C

(
1
2
,

1
2
, 1

)

+C
(

1
2
, 1,

1
2

)
+ C

(
1,

1
2
,

1
2

)
− C

(
1
2
,

1
2
,

1
2

)

= 1− 3
2

+ 3 · C(2)
m

(
1
2
,

1
2

)
− C

(
1
2
,

1
2
,

1
2

)
.

If m is even, it is easy to check that VC(B) = −1/2 for every m ≥ 2; and if m is
odd, we have that VC(B) = (1 −m)/(2m) < 0 for every m ≥ 3. In both cases we
obtain a contradiction; therefore, C is not a 3-copula, which completes the proof.2

We also note that Qm is not the unique proper 3-quasi-copula whose three bivari-
ate margins are C(2)

m (for methods of constructing Lipschitz aggregation operators,
see [2]). In fact, for any natural number m ≥ 2, and given C(2)

m (u1, u2), C(2)
m (u1, u3)

and C(2)
m (u2, u3), (u1, u2, u3) ∈ [0, 1]3, we can construct an infinite number of proper

3-quasi-copulas whose three bivariate margins are C
(2)
m , as the following example

shows.

Example 2.1. For every (u1, u2, u3) in [0, 1]3, consider the function Q given by

Q(u1, u2, u3) = λ ·QU (u1, u2, u3) + (1− λ) ·QL(u1, u2, u3),

where
QU (u1, u2, u3) = min(C(2)

m (u1, u2), C(2)
m (u1, u3), C(2)

m (u2, u3))

and

QL(u1, u2, u3)
= max(0, C(2)

m (u1, u2) + u3 − 1, C(2)
m (u1, u3) + u2 − 1, C(2)

m (u2, u3) + u1 − 1),

with λ ∈ [0, 1]. QL and QU are two proper 3-quasi-copulas – whose three bivariate
margins are C(2)

m – which satisfy the inequalities QL(u1, u2, u3) ≤ Qm(u1, u2, u3) ≤
QU (u1, u2, u3) for every (u1, u2, u3) in [0, 1]3 (see [22]). Observe thatQL(u1, u2, u3) 6=
Qm(u1, u2, u3) 6= QU (u1, u2, u3) for some (u1, u2, u3) in [0, 1]3 and for every m ≥ 2.
For instance, if i is a real number such that 3i = 2m + 1, after some elementary
algebra we have that

Qm

(
i

m
,
i

m
,
i

m

)
=

1
m
<
m+ 2

3m
= QU

(
i

m
,
i

m
,
i

m

)

for any m ≥ 2. Moreover, if we suppose that i1 = 1 and i2 = i3 = m, then we have
that

QL

(
1

2m
, 1− 1

2m
, 1− 1

2m

)
= 0 <

1
8m

= Qm

(
1

2m
, 1− 1

2m
, 1− 1

2m

)

for every m ≥ 2.
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3. APPROXIMATION OF W 3

In this section we show that W 3 is the limit member of the family of the proper
3-quasi-copulas defined by (1).

Theorem 3.1. Let ε > 0. For m sufficiently large, there exists a proper 3-
quasi-copula Qm given by (1) such that |Qm(u1, u2, u3) −W 3(u1, u2, u3)| < ε for
all (u1, u2, u3) in [0, 1]3.

P r o o f . Let m be a natural number such that m ≥ 6/ε. We first prove that

Qm

(
i1
m
,
i2
m
,
i3
m

)
= W 3

(
i1
m
,
i2
m
,
i3
m

)
= max

(
0,
i1 + i2 + i3

m
− 2

)
,

for every i1, i2, i3 = 1, 2, . . . ,m. For that, we consider the following four cases:

(i) If i1 + i2 + i3 < 2m, then we have that

Qm

(
i1
m
,
i2
m
,
i3
m

)
= 0 and W 3

(
i1
m
,
i2
m
,
i3
m

)
= max

(
0,
i1 + i2 + i3

m
−2

)
= 0.

(ii) If i1 + i2 + i3 = 2m+ 1, then we have that

Qm

(
i1
m
,
i2
m
,
i3
m

)
= m2

3∏

j=1

(
ij
m
− ij − 1

m

)
=

1
m

and

W 3

(
i1
m
,
i2
m
,
i3
m

)
= max

(
0,

2m+ 1
m

− 2
)

=
1
m
.

(iii) If i1 + i2 + i3 = 2m+ 2, then we have that

Qm

(
i1
m
,
i2
m
,
i3
m

)
= 3m

(
1
m

)2

−m2

(
1
m

)3

=
2
m

and

W 3

(
i1
m
,
i2
m
,
i3
m

)
= max

(
0,

2m+ 2
m

− 2
)

=
2
m
.

(iv) If i1 + i2 + i3 > 2m+ 2, then we have that

Qm

(
i1
m
,
i2
m
,
i3
m

)
=
i1 + i2 + i3

m
− 2

and

W 3

(
i1
m
,
i2
m
,
i3
m

)
= max

(
0,
i1 + i2 + i3

m
− 2

)
=
i1 + i2 + i3

m
− 2.
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Now, let (u1, u2, u3) be a point in [0, 1]3. We have |u1−i1/m| < 1/m, |u2−i2/m| <
1/m, and |u3 − i3/m| < 1/m for some (i1, i2, i3). Then

|Qm(u1, u2, u3)−W 3(u1, u2, u3)| ≤
∣∣∣∣Qm(u1, u2, u3)−Qm

(
i1
m
,
i2
m
,
i3
m

)∣∣∣∣

+
∣∣∣∣Qm

(
i1
m
,
i2
m
,
i3
m

)
−W 3

(
i1
m
,
i2
m
,
i3
m

)∣∣∣∣

+
∣∣∣∣W 3

(
i1
m
,
i2
m
,
i3
m

)
−W 3(u1, u2, u3)

∣∣∣∣

≤ 2
∣∣∣∣u1 −

i1
m

∣∣∣∣ + 2
∣∣∣∣u2 −

i2
m

∣∣∣∣ + 2
∣∣∣∣u3 −

i3
m

∣∣∣∣ <
6
m
≤ ε,

which completes the proof. 2

As a consequence of Theorem 3.1, for m sufficiently large (m→∞), the mass of
W 3 is distributed on the plane x+ y + z = 2 of [0, 1]3 with subsets with arbitrarily
large W 3-volume and subsets with arbitrarily small W 3-volume (see also [13, 14]).

4. CONCLUSION

In this paper, we have defined a new family of proper 3-quasi-copulas for which
W 3 is the limit member of that family. Although our study is restricted to the
trivariate case – for the sake of simplicity –, similar results can be obtained in higher
dimensions – with a tedious algebra – by defining families of proper n-quasi-copulas
in a similar manner. Let m be a natural number such that m ≥ 2, and suppose
n ≥ 3. We divide [0, 1]n into mn n-boxes, namely:

Bi1i2...in =
[
i1 − 1
m

,
i1
m

]
×

[
i2 − 1
m

,
i2
m

]
× · · · ×

[
in − 1
m

,
in
m

]
,

for all i1, i2, . . . , in = 1, 2, . . . ,m. Now, we distribute 1/m of (positive) mass uni-
formly on each n-box Bi1i2...in such that i1+i2+· · ·+in = (n−1)m+1; −1/m of (neg-
ative) mass uniformly on each n-box Bi1i2...in such that i1+i2+· · ·+in = (n−1)m+2;
and 0 on the remaining n-boxes. For example, if n = 4, the number of 4-boxes
with positive mass is

∑m+1
i=2

(
i
2

)
, and the number of 4-boxes with negative mass

is
∑m+1
i=2

(
i
2

)
− m; then, the amount of positive and negative mass can be easily

computed. Therefore, Wn – whose (infinite positive and infinite negative) mass is
distributed on the set {(x1, x2, . . . , xn) ∈ [0, 1]n |x1 + x2 + · · ·+ xn = n− 1} – is the
member limit of this family of proper n-quasi-copulas.

Finally, we note that the family introduced in this paper (and its generaliza-
tion to n-dimensions) could be much interesting in applications, especially in the
construction of aggregation operators to fitting a data set.
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FEDER, under research project BFM2003-06522. The author wishes to thank Roger B.
Nelsen and the Department of Mathematical Sciences of the Lewis and Clark College (Port-
land, OR), where this work was carried out in part, and two anonymous referees for their
helpful comments.

(Received May 29, 2006.)

R E F E R E N C E S

[1] C. Alsina, R. B. Nelsen, and B. Schweizer: On the characterization of a class of binary
operations on distribution functions. Statist. Probab. Lett. 17 (1993), 85–89.

[2] G. Beliakov, T. Calvo, and J. Lázaro: Pointwise construction of Lipschitz aggregation
operators. In: Proc. Information and Management of Uncertainty in Knowledge-Based
Systems (IPMU) 2006, pp. 595–601.
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Systems (M. López-Dı́az, M. A. Gil, P. Grzegorzewski, O. Hryniewicz, and J. Lawry,
eds.), Advances in Soft Computing, Berlin 2004, pp. 205–211.
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Multivariate Archimedean quasi-copulas. In: Distributions with Given Marginals and
Statistical Modelling (C. Cuadras, J. Fortiana, and J. A. Rodŕıguez-Lallena, eds.),
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