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M–ESTIMATION IN NONLINEAR REGRESSION
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The longitudinal regression model Zj
i = m(θ0, Xi(T

j
i )) + εj

i , where Zj
i is the jth mea-

surement of the ith subject at random time T j
i , m is the regression function, Xi(T

j
i ) is

a predictable covariate process observed at time T j
i and εj

i is a noise, is studied in marked
point process framework. In this paper we introduce the assumptions which guarantee the
consistency and asymptotic normality of smooth M -estimator of unknown parameter θ0.
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1. INTRODUCTION

One branch of statistical methodology dealing with repeated measurements are longi-
tudinal studies. The distinguishing feature of a longitudinal data is that the outcome
of interest is measured repeatedly over time in the same subjects, with the general
objective of characterizing change in the outcome over time, and studying factors
which contribute to the mean level and to the change. We deal with longitudinal
studies where the number of subjects is generally large relative to the number of
time points. We consider parametric transitions model (see Diggle, Heagerty, Liang
and Zeger [5]), where the objective of the analysis is to characterize the conditional
mean of the current response given past outcomes, as a function of time, as well as
covariates, the interaction of time and these covariates.

We will not be speaking about the studies which either treat times of measure-
ments as fixed by the study design or, in an observational setting, assume that the
measurement times are unrelated to the interest, and from a statistical modeling
perspective can therefore be treated as if they had been fixed in advance. We will
consider an event that can occur at irregularly spaced intervals in time, known as
waiting times, such that no two events occur simultaneously. The sequence of events
is known as a point process. The number of events in given time intervals, the wait-
ing time between successive events, or, more generally, the intensity of occurrence of
events may be of interest. We will measure a variable at each time an event occurs,
yielding a marked point process. In this study we deal with regression model with
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repeated measurements in time of event occurrence, where the regression function
is known function with unknown parameters.

This paper is an applied work based on theory of marked point processes. We
have followed closely the approach of Scheike [23] and extended it for M -estimators.
Scheike derived a consistent and asymptotic normal estimator for the unknown pa-
rameter in nonlinear regression model for longitudinal data with counting process
measurement times. He used weighted least square method. The standard least
square method is unstable if outliers are present in the data. Outlying data can dis-
tort an parameter estimation. The M -estimators try to reduce the effect of outliers
by replacing the square function by another one.

The plan is as follows. Section 2 presents a model more precisely and the as-
sumptions are enumerated. Section 3 contains proofs of consistency and asymptotic
normality of rescaled M -estimator. Finally the properties of M -estimator are shown
for the case of unknown conditional variance of the noise.

2. NOTATION, MODEL, ASSUMPTIONS

2.1. Model specification

Let (Ω,A, P ) be a probability space. (In what follows all op(.) and Op(.) are un-
derstood with respect to this P .) We shall consider the nonlinear regression model

Zj
i = m(θ0, Xi(T

j
i )) + εj

i , i = 1, . . . , n, j = 1, . . . , N i
t , (1)

where Zj
i is the jth measurement on the ith subject at random time T j

i in the
interval of observation [0, t], m(θ0, .) is a known regression function depending on an
unknown d-dimensional parameter θ0, Xi(T

j
i ) a p-dimensional covariate process of

subject i at time T j
i and εj

i is noise. Let B denote the Borel σ-field on R. For A ∈ B,
define the counting process

N i
s(A) =

∑

j

I(Zj
i ∈ A)I(T j

i ≤ s)

and the associated marked point process P i(ds× dz)

P i([0, s]×A) = N i
s(A), s ≥ 0, A ∈ B.

Define further the history of the subjects, that is, the history of the marked point
processes, as

Fu = σ(N i
s(A) : s ≤ u, A ∈ B, i = 1, . . . , n) ∨ A.

The σ-algebra A is independent of the former one and represents knowledge prior
to time 0. We further need to define the σ-field FT j

i −
= σ((Zm

i , Tm
i ) : Tm

i <

T j
i ; T j

i ) ∨A that contains the information just prior to observation of a jump size.
Define further

N i
s = N i

s(R),

the counting process associated with the T j
i ’s. It is assumed that no two of the

counting processes N i
s jump at the same time. We assume that Xi(s) is predictable
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with respect to the history Fs and that N i
s has a random intensity λi

s > 0, that is,
λi

s ds is the probability of a jump in the time interval (s, s+ds]. Aalen’s (1975,1978)
multiplicative model λi

s = α(s)Y i(s) (with α(s) deterministic and Y i(s) predictable)
is often used in applications.

Finally, it is assumed that the noise terms have conditional mean and variance
given by

E (εj
i |FT j

i −
) = 0,

E ((εj
i )

2|FT j
i −

) = σ2(Xi(T
j
i )),

where σ2(.) is deterministic, continuous and bounded. The conditional distribution

of εj
i

σ(Xi(T
j
i ))

is denoted

FT j
i
(z) = P

(
εj

i

σ(Xi(T
j
i ))

≤ z
∣∣∣FT j

i −

)
,

therefore, the conditional distribution of Zk
i is

P (Zj
i ≤ z|FT j

i −
) = FT j

i

(
z −m(θ0, Xi(T

j
i ))

σ(Xi(T
j
i ))

)
.

The rescaled M -estimator of the parameter θ0 is defined as a minimizer of

Ln(θ, t) :=
1
n

n∑

i=1

Ni
t∑

j=1

ρ

(
Zj

i −m(θ, Xi(T
j
i ))

σ(Xi(T
j
i ))

)
(2)

=
1
n

n∑

i=1

t∫

0

∫
Hi(θ, s, z)P i(ds× dz),

where ρ(.) is a real continuous function and

Hi(θ, s, z) = ρ

(
z −m(θ, Xi(s))

σ(Xi(s))

)
.

In the case of differentiability of the respective functions, the estimator θ̂ will be
preferred, defined as a solution to the equations

∂

∂θk
Ln(θ, t) = 0, k = 1, . . . , d (3)

that is
n∑

i=1

Ni
t∑

j=1

ψ

(
Zj

i −m(θ, Xi(T
j
i ))

σ(Xi(T
j
i )))

)
·
(

∂

∂θk
m(θ, Xi(T

j
i ))

)
· 1
σ(Xi(T

j
i ))

= 0, k = 1, . . . , d,

where ψ(.) = ρ′(.). We make the natural assumption that

E

(
ψ

(
εj

i

σ(Xi(T
j
i ))

) ∣∣∣FT j
i −

, T j
i = s

)

∫
ψ

(
z −m(θ0, Xi(s))

σ(Xi(s))

)
dFs

(
z −m(θ0, Xi(s))

σ(Xi(s))

)
= 0. (4)
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Before giving the asymptotic results about the estimator of θ0, some further condi-
tions are stated.

2.2. Assumptions

To facilitate reading we divided the assumptions into several groups.

(A) Let m(θ, x) be three times differentiable in a neighborhood B(θ0,K) around
parameter θ0. Assume that ψ(.) is two times differentiable and ψ′′(.) is abso-
lutely continuous function. Assume further

E




t∫

0

∫ [
∂

∂θk
Hi(θ0, s, z)

]2

λi
sdFs

(
z −m(θ0, Xi(s))

σ(Xi(s))

)
ds


 < ∞,

E




t∫

0

∫ [
∂2

∂θk∂θl
Hi(θ0, s, z)

]2

λi
sdFs

(
z −m(θ0, Xi(s))

σ(Xi(s))

)
ds


 < ∞

for all k, l = 1, . . . d.

(B) Let us set

γ1(θ0, Xi(s)) :=
∫

ψ′
(

z −m(θ0, Xi(s))
σ(Xi(s))

)
dFs

(
z −m(θ0, Xi(s))

σ(Xi(s))

)
,

γ2(θ0, Xi(s)) :=
∫ [

ψ′
(

z −m(θ0, Xi(s))
σ(Xi(s))

)]2

dFs

(
z −m(θ0, Xi(s))

σ(Xi(s))

)
,

γ3(θ0, Xi(s)) :=
∫ [

ψ

(
z −m(θ0, Xi(s))

σ(Xi(s))

)]2

dFs

(
z −m(θ0, Xi(s))

σ(Xi(s))

)

and assume that

γ2(θ0, Xi(s)) < ∞,

γ3(θ0, Xi(s)) < ∞.

Further we assume that there exist non-negative definite symmetric matrices
ΣI , ΣU such that as n →∞


1

n

n∑

i=1

t∫

0

m′
k(θ0, Xi(s))·m′

l(θ0, Xi(s))·
λi

s

σ2(Xi(s))
·γ1(θ0, Xi(s))ds



d

k,l=1

p−−−−→
n→∞

ΣI , (5)


1

n

n∑

i=1

t∫

0

m′
k(θ0, Xi(s))·m′

l(θ0, Xi(s))·
λi

s

σ2(Xi(s))
·γ3(θ0, Xi(s))ds



d

k,l=1

p−−−−→
n→∞

ΣU (6)
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and

1
n2

n∑

i=1

t∫

0

[m′
k(θ0, Xi(s)) ·m′

l(θ0, Xi(s))]2 · λi
s ·

1
σ4(Xi(s))

· γ2(θ0, Xi(s)) ds

+
1
n2

n∑

i=1

t∫

0

[m′′
k,l(θ0, Xi(s))]2 · λi

s ·
1

σ2(Xi(s))
· γ3(θ0, Xi(s)) ds

p−−−−→
n→∞

0

for all k, l = 1, . . . , d.

(C) Let G be a such function that for θ ∈ B(θ0, r)

∣∣∣∣
∂3

∂θj∂θk∂θl
Hi(θ, t, z)

∣∣∣∣ ≤ G(t, z),

 1

n

n∑

i=1

t∫

0

∫
G(s, z) · λi

s · dFs

(
z −m(θ0, Xi(s))

σ(Xi(s))

)
ds


 = Op(1),


 1

n2

n∑

i=1

t∫

0

∫
G2(s, z) · λi

s · dFs

(
z −m(θ0, Xi(s))

σ(Xi(s))

)
ds


 p−−−−→

n→∞
0.

3. PROPERTIES OF M–ESTIMATION

3.1. Properties of M-estimation for known σ2(.)

Theorem 3.1. Assume that the assumptions (A), (B), (C) are satisfied. Then
there exists a consistent solution of (3) (a sequence of the solutions of the equa-
tions (3), {θ̂n}, such that ||θ̂n − θ0|| = op(1) as n → ∞) and provides a local
minimum of (2) with probability tending to one.

P r o o f . (The proof follows as in Theorem 1 of Scheike [23].) Write the system of
equations (3) as Un(θ, t) = 0 and make a Taylor expansion for θ ∈ B(θ0, r) around
true value θ0

Un(θ, t) = Un(θ0, t) + dθ−θ0Un(θ0, t) +
1
2
· d2

θ−θ0
Un(θ∗, t)

= Un(θ0, t) + (θ − θ0)T · In(θ0, t) +
1
2
· d2

θ−θ0
Un(θ∗, t)

where θ∗ ∈ line (θ, θ0) (line (θ, θ0) denotes the line segment between θ and θ0),

In(θ, t) :=
(

∂2

∂θk∂θl
Ln(θ0, t)

)d

k,l=1
and d2

θ−θ0
Un(θ∗, t) =

∑k1+ ...kd=2
k1≥0, ...kd≥0

1
k1!...kd!

∂2Un(θ∗,t)

∂θ
k1
1 ...∂θ

kd
d

(θ1 − θ01)k1 . . . (θd − θ0d)kd .
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To prove the proposition, the plan is to show that

Un(θ0, t)
p−−−−→

n→∞
0, (7)

In(θ0, t)
p−−−−→

n→∞
ΣI , (8)

∂2Un(θ,t)

∂θ
k1
1 ...∂θ

kd
d

= Op(1), k1 ≥ 0, . . . kd ≥ 0, k1 + . . . kd = 2 (9)

for all θ ∈ B(θ0, r). Then it follows that θ̂n provides a local minimum with probability
tending to one, and is a consistent solution of (3).

To show (7) we need to establish that the process Un(θ0, t) is a martingale. Note
that due to the assumption (4) you can write

Un(θ0, t)

= −


 1

n

n∑

i=1

Ni
t∑

j=1

ψ

(
Zj

i −m(θ0, Xi(T
j
i ))

σ(Xi(T
j
i ))

)
· 1
σ(Xi(T

j
i ))

·m′
k(θ0, Xi(T

j
i ))




d

k=1

= − 1
n




n∑

i=1

Ni
t∑

j=1

ψ

(
Zj

i −m(θ0, Xi(T
j
i ))

σ(Xi(T
j
i ))

)
· 1
σ(Xi(T

j
i ))

·m′
k(θ0, Xi(T

j
i ))

−
n∑

i=1

t∫

0

∫
ψ

(
z −m(θ0, Xi(s))

σ(Xi(s))

)
·m

′
k(θ0, Xi(s))
σ(Xi(s))

·λi
sdFs

(
z −m(θ0, Xi(s))

σ(Xi(s))

)
ds




d

k=1

.

According to martingale transform theorem (see Boel, Varaiya, Wong [4], p. 1010)
Un(θ0, t) is a martingale with E(Un(θ0, t)) = 0 (define further 0-martingale to be
a martingale with mean 0) with predictable quadratic variation process

1
n2

n∑

i=1

t∫

0

∫ (
∂

∂θk
Hi(θ0, s, z)

)
·
(

∂

∂θl
Hi(θ0, s, z)

)
·λi

s dFs

(
z−m(θ0, Xi(s))

σ(Xi(s))

)
ds

=
1
n2

n∑

i=1

t∫

0

∫
ψ2

(
z −m(θ0, Xi(s))

σ(Xi(s))

)
· m′

k(θ0, Xi(s)) ·m′
l(θ0, Xi(s))

σ2(Xi(s))

·λi
s dFs

(
z −m(θ0, Xi(s))

σ(Xi(s))

)
ds

=
1
n2

n∑

i=1

t∫

0

γ3(θ0, Xi(s)) ·
m′

k(θ0, Xi(s)) ·m′
l(θ0, Xi(s))

σ2(Xi(s))
· λi

s ds
p−−−−→

n→∞
0,

by assumption (B). Then Lenglart’s inequality, see Jacod and Shiryaev [9], p. 35,
gives that

sup
s≤t

|Un(θ0, s)| p−−−−→
n→∞

0 (10)
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and (7) follows.
To establish (8), write

In(θ0, t) =
1
n

n∑

i=1

(
M i

(
∂2

∂θk∂θl
Ln(θ0, s)

)

t

+

t∫

0

∫
∂2

∂θk∂θl
Ln(θ0, s) · λi

s dFs

(
z −m(θ0, Xi(s))

σ(Xi(s))

)
ds

)d

k,l=1

(11)

where

M i

(
∂2

∂θk∂θl
Ln(θ0, s)

)

t

=
∂2

∂θk∂θl
Ln(θ0, t)−

t∫

0

∫
∂2

∂θk∂θl
Ln(θ0, s) · λi

s dFs

(
z −m(θ0, Xi(s))

σ(Xi(s))

)
ds.

Note that the first term in (11) is a 0-martingale with a compensator that is equal
to

1
n

n∑

i=1

t∫

0

∫
ψ′

(
z −m(θ0, Xi(s))

σ(Xi(s))

)
· m′

k(θ0, Xi(s)) ·m′
l(θ0, Xi(s))

σ2(Xi(s))

·λi
s dFs

(
z −m(θ0, Xi(s))

σ(Xi(s))

)
ds

− 1
n

n∑

i=1

t∫

0

∫
ψ

(
z −m(θ0, Xi(s))

σ(Xi(s))

)
· m′′

kl(θ0, Xi(s))
σ(Xi(s))

· λi
s dFs

(
z −m(θ0, Xi(s))

σ(Xi(s))

)
ds

and quadratic predictable variation process that is given as

1
n2

n∑

i=1

t∫

0

∫ [
ψ′

(
z −m(θ0, Xi(s))

σ(Xi(s))

)]2

· [m′
k(θ0, Xi(s)) ·m′

l(θ0, Xi(s))]2

σ4(Xi(s))

·λi
s dFs

(
z −m(θ0, Xi(s))

σ(Xi(s))

)
ds

+
1
n2

n∑

i=1

t∫

0

∫ [
ψ

(
z −m(θ0, Xi(s))

σ(Xi(s))

)]2

· [m′′
kl(θ0, Xi(s))]2

σ2(Xi(s))

·λi
s dFs

(
z −m(θ0, Xi(s))

σ(Xi(s))

)
ds

=
1
n2

n∑

i=1

t∫

0

γ2(θ0, Xi(s)) ·
1

σ4(Xi(s))
· [m′

k(θ0, Xi(s)) ·m′
l(θ0, Xi(s))]2 · λi

s ds

+
1
n2

n∑

i=1

t∫

0

γ3(θ0, Xi(s)) ·
1

σ2(Xi(s))
· [m′′

kl(θ0, Xi(s))]2 · λi
s ds

p−−−−→
n→∞

0
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by assumption (B). So by Lenglarts’s inequality the first term of (11) converges in
probability to zero. The second term is equal to

 1

n

n∑

i=1

t∫

0

γ1(θ0, Xi(s))·
1

σ2(Xi(s))
·m′

k(θ0, Xi(s))·m′
l(θ0, Xi(s))·λi

s ds




d

k,l=1

p−−−−→
n→∞

ΣI .

Finally we will show (9), i. e. for all θ ∈ B(θ0,K), k1 ≥ 0, . . . , kd ≥ 0, k1 + . . . +
kd = 2

∂2Un(θ, t)
∂θk1

1 . . . ∂θkd

d

= Op(1).

The assumption (C) gives that

∣∣∣∣
∂2Unl(θ, t)

∂θjθk

∣∣∣∣ :=
∣∣∣∣
∂3Ln(θ, t)
∂θjθkθl

∣∣∣∣ ≤
1
n

n∑

i=1

t∫

0

∫
G(s, z)P i(ds× dz).

Now, again as above, one gets:

1
n

n∑

i=1

t∫

0

∫
G(s, z)P i(ds× dz)− 1

n

n∑

i=1

t∫

0

∫
G(s, z)λi

s dFs

(
z −m(θ0, Xi(s))

σ(Xi(s))

)
ds

is a 0-martingale with predictable quadratic variation process that is equal to

1
n2

n∑

i=1

t∫

0

∫
G2(s, z)λi

s dFs

(
z −m(θ0, Xi(s))

σ(Xi(s))

)
ds

and according to assumption (C) converges in probability to zero. Lenglart’s in-
equality gives that

sup
u≤t

1
n

n∑

i=1

∣∣∣∣∣∣

u∫

0

∫
G(s, z)P i(ds×dz)−

u∫

0

∫
G(s, z)λi

s dFs

(
z−m(θ0, Xi(s))

σ(Xi(s))

)
ds

∣∣∣∣∣∣
p−−−−→

n→∞
0

and together with assumption (C) 1
n

n∑
i=1

t∫
0

∫
G(s, z)λi

s dFs

(
z−m(θ0,Xi(s))

σ(Xi(s))

)
ds = Op(1)

we get (9). ¤

The next theorem gives asymptotic normality for a consistent solution of the
equations (3).

Theorem 3.2. Under the assumptions (A), (B), (C) and with θ̂n consistent solu-
tion of (3), it holds that

√
n (θ̂n − θ0)

D−−−−→
n→∞

N(0, Σ),
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where Σ = Σ−1
I ΣUΣ−1

I .

Further Σ̂U :=

(
1
n

n∑
i=1

Ni
t∑

j=1

ψ2
(

Zj
i−m(bθn,Xi(T

j
i ))

σ(Xi(T
j
i ))

)
· m′

k(bθn,Xi(T
j
i ))·m′

l(
bθn,Xi(T

j
i ))

σ2(Xi(T
j
i ))

)d

k,l=1

and −I(θ̂n, t) provide consistent estimates of ΣU and ΣI , respectively.

P r o o f . Making a Taylor expansion around the true parameter θ0 one gets

Un(θ̂n, t) = Un(θ0, t) + (θ̂n − θ0)T · In(θ∗, t)

where θ∗ ∈ line (θ̂n, θ0), so since θ̂n is a solution, this equation states that

−In(θ∗, t)−1 · Un(θ0, t) = θ̂n − θ0.

The theorem follows if one can show
√

n Un(θ0, t)
D−−−−→

n→∞
N(0, ΣU ), (12)

In(θ∗, t)
p−−−−→

n→∞
ΣI for θ̂n

p−−−−→
n→∞

θ0. (13)

The first condition (12) follows by the martingale convergence theorem, see Jacod
and Shiryaev [9], p. 476 or Andersen and others [2], p. 83. The quadratic predictable
variation process of

√
nUn(θ0, t) is equal to

1
n

n∑

i=1

t∫

0

γ3(θ0, Xi(s)) ·
m′

k(θ0, Xi(s)) ·m′
l(θ0, Xi(s))

σ2(Xi(s))
· λi

s ds

which converges to ΣU according to the assumption (6). Then together with the
result (10) one gets that

〈√
nUn(θ0, t)I{|Un(θ0, t)| > ε}

〉 p−−−−→
n→∞

0.

Finally, condition (13) follows from the Taylor expansion (similarly as in the last
part of previous proof). ¤

Further result can be used for testing a simple hypothesis H: θ = θ0 against the
composite hypothesis G: θ ∈ Θ. Let Wp(Σ) denote the Wishart distribution corre-
sponding to a p-dimensional normal distribution Np(0, Σ). Define Rn = n(Ln(θ̂n, t)−
Ln(θ0, t)).

Theorem 3.3. Under the hypothesis H and under the assumptions of the Theo-
rem 3.2. it holds that

Rn
D−−−−→

n→∞
Wp(1/2Σ−1/2

I ΣUΣ−1/2
I ).

P r o o f . The proof can be again carried out by repeating the steps of the proof
of Theorem 3 of [23]. ¤
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3.2. Properties of M-estimation for unknown σ2(.)

The conditional variance σ2(.) is usually unknown. The natural choice is replacing
σ2(.) by its estimator σ̂2

n(.). To be able to apply asymptotic properties of the M -
statistics on the estimator θ̂n, we need to know something about the behaviour of
the sum
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·
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.

It seems to be obvious if the derivative of the function ρ exists and is sufficiently
smooth that for consistent estimator of σ2(.) we can rely on properties proved in
the previous section. Indeed under some additional assumptions the theorems will
be still valid.

Scheike and Zhang [24] propose the non-parametric estimation of conditional
variance which is uniformly consistent. Let K(.) be a kernel function with support
on [−1; 1],

∫
K(u) du = 1, and let b = (b1, . . . bp) be a p-dimensional bandwidth,

|b| = b1 . . . bp, b ∈ (0,∞)p. The Nadaraya–Watson type estimator, m̂(z) of m(z) is
defined by

m̂(z) =
r̂(z)
α̂(z)

,

where
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and
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Similarly, the estimator of the variance function, σ2(.), can be estimated by the
squared-residual kernel estimator

V̂ (z) =
V (z)
α̂(z)

− (m̂(z))2,

where
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1
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Before stating the theorem, let us redefine the notation to make the dependence
on σ more explicit. Redefine Ln(θ, t) to Ln(σ, θ, t), Un(θ, t) to Un(σ, θ, t), In(θ, t) to
In(σ, θ, t) and R(θ, t) to R(σ, θ, t).

Theorem 3.4. Under the assumptions

(i) (4) holds,

(ii) Xi(s) belongs to some compact set C almost surely for all s,
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(iii) σ̂2
n(.) is a uniformly consistent estimator of σ2(.), i. e. supx∈C |σ̂2

n(x)− σ2(x)|
p−−−−→

n→∞
0, and further there exists ε > 0 such that σ̂n(x) > ε for all x ∈ C,

(iv) m(θ, x) is three times differentiable in a neighborhood B(θ0, K) around the
parameter θ0 and ψ(.) is two times differentiable and ψ′′(.) is absolutely con-
tinuous,

(v) γ4(θ0, Xi(s)) :=
∫ (
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)4
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)
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(vi) E 1
n

∑∫ t

0
λi

s ds = Op(1)

there exists a consistent solution of U(σ̂n, θ, t) = 0, that provides a local minimum
of L(σ̂n, θ, t).

P r o o f . The proof proceeds similarly as in Theorem 3.1. To prove the proposition,
we need to show that

(Un(σ̂n, θ0, t)− Un(σ, θ0, t))
p−−−−→

n→∞
0, (14)

(In(σ̂n, θ, t)− In(σ, θ0, t))
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0, (15)

(
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0, (16)

where θ∗ ∈ line (θ, θ0).
To show (14), start with the Taylor expansion of the ψ(σ̂n, θ0, s) for all σ̂n(Xi(s))

satisfying the assumption (iii) around true value σ(Xi(s)):

ψ(σ̂n, θ0, s) (17)

= ψ(σ, θ0, s)− ψ′(σ∗, θ0, s) ·
z −m(θ0, Xi(s))

σ2∗(Xi(s))
· (σ̂n(Xi(s))− σ(Xi(s)))

where σ∗(x) ∈ line (σ̂n(x), σ(x)) for all x ∈ C. Let us apply (17) in the formula
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and study both summands in the difference ∆Un(θ0, t) := Un(σ̂n, θ0, t)−Un(σ, θ0, t)
separately. Define the kth component in the ∆Un(θ0, t) as ∆Un(k, θ0, t) and define
the first summand in the ∆Un(k, θ0, t) as ∆U1n(k, θ0, t). Then
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= − 1
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Since the σ̂2
n(x) is a consistent estimator of σ2(x), and σ̂n(x) > ε > 0 it holds that
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It follows that |∆U1n(k, θ0, t)| ≤ K|Un(k, θ0, t)| and similarly as in (10) we get
∆U1n(k, θ0, t)

p−−−−→
n→∞

0.

Let us consider the second summand of ∆Un(k, θ0, t) :
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Since σ(x), σ∗(x), σ̂n(x) and m′
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continuous function we can write
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estimator of σ2(x) it is sufficient to prove that 1
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and note that due to the assumptions (v) and (vi) the first term is a 0-martingale
with a compensator that is equal to the second term. The quadratic predictable
variation process of the martingale is given as
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Hence, by Lenglarts’s inequality the first term of (18) converges in probability to
zero. The second term is equal to

1
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Now it is easy to show (15) and (16). Since we would just repeat the corresponding
technique as above we omit the rest of the proof. ¤
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Theorem 3.5. Under the assumption of Theorem 3.4, Theorem 3.2 and Theo-
rem 3.3 remain true if σ2(.) is replaced by its a uniformly consistent estimator σ̂2

n(.).

P r o o f . The proof follows similarly as above. ¤

4. DISCUSSION

We have presented in this paper the assumptions under which there exists a consis-
tent and asymptotic normal M -estimator of unknown regression parameter in model
with longitudinal data. Let us look at the assumptions more closely. The most severe
limitation was given on the form of error penalty function ρ(.) in the M -estimation
in (2). Since we used Taylor’s expansion for proving characteristics of estimator
we required so that ρ(.), ψ(.), ψ′(.),ψ′′(.) were absolutely continuous functions. For
example ordinary least square estimator meets these requirements but we search
for function which is less increasing than square. Since the influence function of an
M -estimate is proportional to ψ(x), the function ψ(x) (roughly speaking) measures
the influence of a datum on the value of the parameter estimation. For the least
square estimator with ρ(x) = x2

2 , the influence function is ψ(x) = x, that is, the
influence of a datum on the estimation increases linearly with the size of its error,
which confirms the non-robustness of the least square estimator. Although the set
of sufficiently smooth functions of ψ(.) are limited, we still can use e. g. L2 − L1

function, Cauchy function, Geman and McClure function, Welsch function or Hebert
and Leahy function. For the definition of a few commonly used M -estimators see
the following table:

Type ρ(x) ψ(x)

L2 –L1 2
(√

1 + x2

2 − 1
)

xq
1+ x2

2

Cauchy c2

2 log
(
1 +

(
x
c

)2
)

x
1+( x

c )2

Geman–McClure x2/2
1+x2

x
(1+x2)2

Welsch c2

2

(
1− e−( x

c )2
)

xe−( x
c )2

Hebert and Leahy 1
2 log(1 + x2) x

1+x2

These results should be extended also for non-smooth penalty functions. This
may be a relevant area for further research that can be inspired with the results and
methods of Rubio and Vı́̌sek [22].
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