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LASLETT’S TRANSFORM FOR
THE BOOLEAN MODEL IN Rd

Rostislav Černý

Consider a stationary Boolean model X with convex grains in Rd and let any exposed
lower tangent point of X be shifted towards the hyperplane N0 = {x ∈ Rd : x1 = 0} by
the length of the part of the segment between the point and its projection onto the N0

covered by X. The resulting point process in the halfspace (the Laslett’s transform of
X) is known to be stationary Poisson and of the same intensity as the original Boolean
model. This result was first formulated for the planar Boolean model (see N. Cressie [3])
although the proof based on discretization is partly heuristic and not complete. Starting
from the same idea we present a rigorous proof in the d-dimensional case. As a technical tool
equivalent characterization of vague convergence for locally finite integer valued measures
is formulated. Another proof based on the martingale approach was presented by A. D.
Barbour and V. Schmidt [1].
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1. INTRODUCTION

Let X be a stationary Boolean model in Rd with convex compact grains and intensity
λ > 0, i.e.

X =
∞⋃

i=1

(
xi +Gxi

)
,

where ∪∞i=1xi is a stationary Poisson point process (of germs) with intensity λ and
Gxi are i.i.d. random convex compact sets (grains), independent of ∪∞i=1xi, with
lexicographical minimum at the origin (we will denote by <lex the lexicographical
order, we put (a1, . . . , ad) <lex (b1, . . . , bd) iff ad < bd or (ad = bd and ad−1 < bd−1)
or . . . or ((a2, . . . , ad) = (b2, . . . , bd) and a1 < b1)). Denote the distribution of Gxi as
Λ0, it is usually called the distribution of a typical grain of X. Furthermore, points
{xi}∞i=1 will be called tangent points of X and those of them that are not in the
interior of X will be called exposed.

The Laslett’s transform is defined in the half-space Rd+ = {x ∈ Rd : x1 ≥ 0}. Its
idea is to remove all interiors of grains of the model X and then to close up the left
gaps by shifting all remaining points from Rd+ towards the hyperplane N0 = {x ∈
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Fig. (a) A realization of planar Boolean model of discs. The intensity is 0,01; the

distribution of disc radius is uniform U(2,4). (b) The corresponding point process of

Laslett’s transform and the shifted boundary of sample window.

Rd : x1 = 0} (see Figure). More precisely, assume LX is the Laslett’s transform and
x ∈ Rd+. Then

LX(x) = x− λ1 (s(x) ∩X) · e1,

where λ1(·) stands for the one-dimensional Lebesgue measure, e1 is the unit vector
(1, 0, . . . , 0) ∈ Rd and s(a) is the line segment connecting a point a with its orthog-
onal projection onto N0. The point process of translated exposed germs of X ∩ Rd+
is stationary Poisson with the same intensity λ as the original model X.

Remarkš. For a given realizationX of the Boolean model we have defined Laslett’s
transform as the mapping LX : Rd+ 7→ Rd+. Moreover, we can consider the Laslett’s
transform acting on the space of particle processes (for the notation see Section 2):

L : N(K′(Rd)) 7→ N(Rd+),

which assigns to a germ-grain model a point process in Rd+ of exposed tangent points
shifted by LX . Writing a subscript to the operator L we will distinguish between
the first and second notion for the Laslett’s transform.

Theorem 1. Let X be a stationary Boolean model in Rd with intensity λ > 0 and
convex compact grains. Then the Laslett’s transform of X forms the restriction of
a stationary Poisson point process in Rd+ with the same intensity λ.

The theorem was originally formulated for a planar Boolean model by G. M.
Laslett. Although the proof based on discretization and sequential conditioning (see
[3], Section 9.5.3) is partly heuristic, the idea is correct and with some technical
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arguments it can be made complete. Another proof using martingale approach was
given by A. D. Barbour and V. Schmidt (see [1]).

We start with the same idea of discretization of the model X and we give a rigor-
ous proof of Theorem 1 in Section 3. Thus the Laslett’s theorem can be generalized
to the Euclidean space of arbitrary dimension d ≥ 2.

Practical usage of Theorem 1 is straightforward. It is usual in practice that we do
not observe particular grains of the model but only their union. One can therefore ask
how to estimate the intensity λ then. Naturally, we can apply Laslett’s transform.
On the other hand the same estimator can be derived by working with the so-called
Tangent Point Process (see [4] and [5]).

The second practical usage of Laslett’s theorem lies in the fact that the resulting
process is Poisson. Hence, using well-known approaches for testing Poisson point
processes we can test that some observed random set is a part of a Boolean model
X. Unfortunately, since the converse of Theorem 1 does not generally hold true,
we can only reject that X is Boolean when the test rejects L(X) to be poissonian.
However, the opposite result of the test tells us nothing about X.

2. CONTINUITY OF THE LASLETT’S TRANSFORM

In this section we formulate first the equivalent characterization for the vague con-
vergence of locally finite integer valued measures which will be later used to show
the continuity of Laslett’s transform (on sufficiently large spaces of measures).

Let V be a complete separable metric space with a metric % and denote by K(V )
all compact sets in V . Let Cc(V ) be the space of all continuous functions on V with
compact support.

Denote by N(V ) the space of locally finite integer valued measures on V . Its
elements can be considered as locally finite sets as well. Hence for φ ∈ N(V ) we will
use the notation x ∈ φ which is equivalent to φ(x) > 0 and ∪φ = ∪{x : x ∈ φ}. On
N(V ) we assume the topology given by vague convergence:

φn
v→ φ iff ∀ f ∈ Cc(V ) :

∫
f dφn →

∫
f dφ.

We will use the notation d(x,A) for the distance of a point x from a set A, i. e.
d(x,A) = inf{%(x, y) : y ∈ A}. Further set Bx(r) the ball with center at x and
radius r and let (·)+ denote the positive part, i. e. (·)+ = max(0, ·).

Lemma 1. Let φn, φ ∈ N(V ). Then the following statements are equivalent:

(1) φn
v→ φ for n→∞,

(2) ∀K ∈ K(V ) ∃ ε0 > 0 such that ∀ ε : 0 < ε < ε0 ∃n0; ∀n > n0 : there exists
an injective mapping ξn : φ ∩Kε → φn such that

(a) ∀x ∈ φ ∩Kε : %(x, ξn(x)) < ε,
(b) (φn \ Im ξn) ∩K = ∅,

where Kε = {z ∈ X : d(z,K) ≤ ε} and Im ξn = ξn(φ ∩Kε).
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P r o o f . (1)⇒(2): Let φn
v→ φ, K ∈ K(V ) and ε1 > 0. Put {x1, . . . , xl} = φ∩Kε1

and choose ε0 > 0, ε0 < ε1 such that xj 6∈ Bxi(ε0) for all i 6= j, i, j = 1, . . . , l.
Let ε be given, ε0 > ε > 0. For i = 1, . . . , l set

fxi(x) =
(

1− 2 · %(x, xi)
ε

)+

.

Then fxi ∈ Cc(V ), spt fxi = Bxi(
ε
2 ) and it holds that

∫
fxi dφ = 1 = lim

n→∞

∫
fxi dφn .

Hence there exists n1 such that for all n > n1 there exists yi ∈ Bxi( ε2 )∩φn. Suppose
there exists yi ∈ Bxi( ε2 ) ∩ φn, yi 6= yi. Set

gxi(x) =

(
1− 2 · d

(
x,Bxi

(
ε
2

))

ε

)+

.

Again gxi ∈ Cc(V ), spt gxi = Bxi(ε) and we derive a contradiction

∫
gxi dφ = 1 = lim

n→∞

∫
gxi dφn ≥ 2.

Therefore it is possible to define uniquely ξn(xi) = yi and it remains to prove
assertion (b).

Set

h(x) =
(

1− d(x,K)
ε

)+

, hxi(x) =
{

1 x 6∈ Bxi
(
ε
2

)
,

2·%(x,xi)
ε otherwise

and
k(x) = min(h(x), hx1(x), . . . , hxn(x)) ,

k ∈ Cc(V ), spt k = Kε. Then

∫
k dφ = 0 = lim

n→∞

∫
k dφn .

Consequently, there exists n2 such that for all n > n2 any point from φn∩K belongs
to some Bxi(

ε
2 ), i = 1, . . . , l. According to the first part of the proof this point must

belong to Im ξn. Now it suffices to set n0 = max(n1, n2) and the assertion is proved.

(2)⇒(1): Let f ∈ Cc(V ) be given, set K = spt f . For this K choose ε0 such that
(2) holds. Denote l = card(φ ∩Kε0). Let ε > 0 be arbitrary. Since f is continuous
there exists 0 < δ < ε0, such that %(x, y) < δ ⇒ |f(x) − f(y)| < ε

l . According
to (2), for this δ there exists n0 such that ξn is an injective mapping with properties
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(a), (b), for n > n0. We have

∣∣∣∣
∫
f dφ−

∫
f dφn

∣∣∣∣ =

∣∣∣∣∣∣
∑

x∈φ∩Kδ
f(x)−

∑

x∈φn∩K
f(x)

∣∣∣∣∣∣

=

∣∣∣∣∣∣
∑

x∈φ∩Kδ
f(x)− f(ξn(x))

∣∣∣∣∣∣

≤
∑

x∈φ∩Kδ
|f(x)− f(ξn(x))| < ε,

using spt f = K, property (b) and property (a) for δ. ¤

In the rest of the section we will show the continuity of Laslett’s transform. More
precisely, we will show that if Φn

n→∞−→ Φ in distribution, where Φ is a Poisson process
of convex particles, then also L(Φn) n→∞−→ L(Φ) in distribution. The latter holds true
if L is continuous on some region Ur and Pr(Φ ∈ Ur) = 1, see [2], Theorem 2.7.

Set K′ = K′(Rd) the space of non-empty compact sets in Rd and K′0 those sets
from K′ with lexicographical minimum (denoted by lexmin) at the origin. K′ is
equipped with the Hausdorff metric dH , defined as

dH(A,B) = max
{

sup
x∈A

d(x,B), sup
y∈B

d(y,A)
}
.

We will gradually define three mappings F1, F2, F3 whose composition forms the
Laslett’s transform:

L = F3 ◦ F2 ◦ F1 .

The mapping F1 assigns marks to the process of grains. The marks have the inter-
pretation of the shift length for the corresponding tangent points. The mapping F2

preserves only germs and only those of them which are not overlapped by any other
grain. Finally the mapping F3 shifts the remaining points towards the hyperplane
N0 by the length given by the associated marks.

We say that two sets A,B ⊂ Rd touch each other (touch e.a.) if A ∩ B 6= ∅ and
λd(A ∩B) = 0.

Consider the following properties of two convex sets C1, C2:

(i) C1, C2 do not touch e.a.,

(ii) λ1 (s(lexminC1) ∩ ∂C2) = 0.

Set

Ur1 =
{
φ ∈ N(K′(Rd)) :

C1, C2 ∈ φ,
C1 6= C2

⇒ C1, C2 fulfill (i) and (ii).
}
.
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Lemma 2. Let Φ be a stationary Poisson process on K′(Rd) with convex grains.
Then

Pr(Φ ∈ Ur1) = 1 .

P r o o f . Assume without loss of generality that the intensity α of the process
Φ equals 1. Let M !

2 denote the second order factorial moment measure and Λ the
intensity measure of Φ. Since Φ is Poisson process, it holds (see [7], p. 47)

M !
2 = Λ2

and we have

Pr(∃C1, C2 ∈ Φ, C1 6= C2 : C1, C2 touch e.a.)

≤ E
∑

C1,C2∈Φ,C1 6=C2

1{C1,C2 touch e.a.}

= M !
2({C1, C2 touch e.a.}) = Λ2({C1, C2 touch e.a.})

=
∫ ∫ ∫

1{x+C0,C2 touch e.a.} dxΛ0(dC0)Λ(dC2)

=
∫ ∫

λd(∂(C2 ⊕ (−C0)))Λ0(dC0)Λ(dC2) = 0

since (C2 ⊕ (−C0)) is bounded and convex.

Since C2 is convex its projection onto N0 is convex as well. Denote this projection
by PN0(C2). A necessary condition for the segment s(lexmin(C1)) to have intersec-
tion of positive measure with boundary ∂C2 is that whole line covering s(lexmin(C1))
has non-empty intersection with boundary ∂PN0(C2). Then we have

Pr
(
∃C1, C2 ∈ Φ, C1 6= C2 : λ1(s(lexminC1) ∩ ∂C2) > 0

)

≤ E
∑

C1,C2∈Φ,C1 6=C2

1{λ1(s(lexminC1)∩∂C2)>0}

= M !
2

({
λ1(s(lexminC1) ∩ ∂C2) > 0

})

= Λ2
({
λ1(s(lexminC1) ∩ ∂C2) > 0

})

≤
∫ ∫ ∫

λd−1(∂PN0(C2)) λ1(dx) Λ0(dC0)Λ(dC2) = 0,

using Fubini theorem and the fact that the boundary of a convex set in Rd−1 has
measure 0. ¤
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Lemma 3. Define F1 : N(K′(Rd))→ N(K′(Rd)× R+) by

F1(φ) = {(K, z) : K ∈ φ, z = z(K,φ)},

where z : K′(Rd)×N(K′(Rd))→ [0,∞) is defined as

z : (K,φ) 7→ λ1

(
s(lexminK) ∩ (∪φ)

)
.

Suppose that Φn,Φ are point processes on K′(Rd), Φn
D→ Φ for n → ∞ and Φ is

stationary Poisson process with convex grains. Then

F1(Φn) D→ F1(Φ) for n→∞.

P r o o f . First we will show the continuity of the mapping z on Ur1 . Let φ ∈ Ur1 ,
K ∈ φ and ε0 > 0. Set {C1, . . . , Cl} = {C ′ ∈ φ : C ′ ∩ S ⊕Bε0(o) 6= ∅}, S =
s(lexminK). We can write

z(K,φ) =
l∑

i=1

λ1(Ci ∩ S)

−
∑

i < j
Ci ∩ Cj 6= ∅

λ1(Ci ∩ Cj ∩ S)

+
∑

i<j<k
Ci∩Cj∩Ck 6=∅

λ1(Ci ∩ Cj ∩ Ck ∩ S)− . . .

=
l∑

k=1

(−1)k+1
∑

i1 < · · · < ik
Ci1 ∩ · · · ∩ Cik 6= ∅

λ1(Ci1 ∩ · · · ∩ Cik ∩ S).

Using property (i) it can be easily shown that the mapping (C1, C2) 7→ C1 ∩C2 and
(with a help of property (ii)) the mapping (C1, C2) 7→ λ1(s(lexminC1) ∩ C2) are
both continuous in C1, C2 convex with properties (i) and (ii). It is then clear that
z(K,φ) is continuous on processes with corresponding properties.

Assume now that φn, φ ∈ N(K′(Rd)), φ ∈ Ur1 and φn
v→ φ. We will show

F1(φn) v→ F1(φ).

Using Lemma 1, for arbitrary U ∈ K
(
K′(Rd)

)
and sufficiently small ε > 0 we can

find n0 such that for all n > n0 there exists an injective mapping ξn : φ ∩ Uε → φn
with properties (a), (b) from Lemma 1.

Let U ∈ K
(
K′(Rd)× R+

)
be given. Set U = U |K′(Rd) and define

ξn : F1(φ) ∩ Uε → F1(φn), (K, z) 7→ (ξn(K), z(K,φn)) .
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Obviously this is an injective mapping which fulfills (b) from Lemma 1. It suffices
to prove

%((K, z), ξn(K, z)) < ε . (1)

This follows from the continuity of z and existence of m0 such that for n > m0,
%(z(K,φn), z(K,φ)) < ε. For n > max(n0,m0) we then get (1), so F1 is continuous
on Ur1 . Together with Lemma 2 we derived

F1(Φn) D→ F1(Φ). ¤

Let Πk denote the projection onto the kth axis and consider further two properties
of two convex sets C1, C2:

(iii) Π1(lexmin(C1)) 6= 0,

(iv) lexmin(C1) 6∈ ∂C2.

Set

Ur2 =
{
φ ∈ N(K′(Rd)) :

C1, C2 ∈ φ,
C1 6= C2

⇒ C1, C2 fulfill (iii) and (iv)
}
.

Lemma 4. Let Φ be a stationary Poisson process on K′(Rd) with convex grains.
Then

Pr(Φ ∈ Ur2) = 1 .

P r o o f . Assume without loss of generality that the intensity α of the process Φ
equals 1. Property (iii) follows easily from the definition of Poisson process. Similarly
to Lemma 2 we have

Pr(∃C1, C2 ∈ Φ, C1 6= C2 : lexminC1 ∈ ∂C2)

≤ M !
2({lexminC1 ∈ ∂C2})

=
∫ ∫ ∫

1{lexmin(x+C0)∈∂C2} dxΛ0(dC0)Λ(dC2)

=
∫ ∫

λd(∂C2)Λ0(dC0)Λ(dC2) = 0,

since C2 is convex and compact. ¤

Lemma 5. Define F2 : N(K′(Rd)× R+)→ N(Rd+ × R+) by

F2(φ) =

{
(lexminK, z) : (K, z) ∈ φ, lexminK ∈ Rd+ ∩

(⋃
(K,z)∈φ

K

)C}
.
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Assume that Φn,Φ are point processes on K′(Rd), Φn
D→ Φ for n → ∞ and Φ is

stationary Poisson process with convex grains. Then

F2(F1(Φn)) D→ F2(F1(Φ)) ,

where the mapping F1 is defined in Lemma 3.

P r o o f . Set Ur2 =
{
{(Kn, zn)}∞n=1 : {Kn}∞n=1 ∈ Ur2

}
. Lemma 4 can be easily

applied to derive
Pr(F1(Φ) ∈ Ur2) = 1 .

We shall show the continuity of F2 in every point of Ur2 .

Assume φn, φ ∈ N(K′(Rd) × R+), φ ∈ Ur2 and φn
v→ φ. Applying Lemma 1, for

every sufficiently small ε > 0, every L ∈ K(K′(Rd) × R+) and every n > n0 there
exists an injective mapping

ξn : φ ∩ Lε → φn

with properties (a) and (b).
Denote P2(K, z) = (lexminK, z) for K ∈ K′(Rd) and z ∈ R+. For (x, z) ∈ F2(φ)∩

P2(Lε) (ε arbitrary, sufficiently small), let K ∈ K′(Rd) be such that (K, z) ∈ φ∩Lε.
Define

ξn : (x, z) 7→ P2

(
ξn(K, z)

)
.

Since ξn is injective and φ cannot contain two different grains with the same tangent
point (property (iv)), ξn is injective.

We will show that ξn(x, z) ∈ F2(φn) for n sufficiently large, i. e. for ξn(K, z) =

(Kn, zn) we have lexminKn ∈ Rd+ ∩
(⋃

(B,c)∈φn B
)C
. Obviously, there exists n0

such that lexminKn ∈ Rd+ for n > n0, since lexminK ∈ Rd+, Π1(lexminK) 6= 0
(property (iii)) and | lexminK − lexminKn| < d(lexminK, (Rd+)C) for n > n0 ((a)
in Lemma 1).

Let (x, z) ∈ F2(φ)∩P2(Lε), (B, c) ∈ φ∩Lε be arbitrary such that lexminB 6= x.
Then using (iv) we derive x ∈ BC and so there exists δ > 0; Bx(2δ) ∩B = ∅.

Denote (Bn, cn) = ξn(B, c). Choose n1 such that for any u ∈ φ ∩ Lε and any
n > n1, %(ξn(u), u) < δ (% meaning here the maximal metric on product space
K′(Rd) × R+). Then dH(Bn, B) < δ, |xn − x| < δ and hence xn 6∈ Bn. We have
shown for n > max(n0, n1) that ξn is an injective mapping from F2(φ) ∩ P2(Lε) to
F2(φn).

Condition (a) for ξn from Lemma 1 follows easily from the properties of ξn. It
remains to show the condition (b).

Let (x, z) 6∈ F2(φ) but ∃K ∈ K′ such that (K, z) ∈ φ ∩ Lε and P2(K, z) = (x, z).
Then one of the following statements must be true:

• ∃ (B, c) ∈ φ, lexminB 6= x, that fulfills x ∈ intB.
Set δ > 0 such that Bx(4δ) ⊆ B. Let (Bn, cn) = ξn(B, c) and n2 be such



578 R. ČERNÝ

that for all n > n2 and arbitrary u ∈ φ ∩ Lδ holds %(u, ξn(u)) < δ. Then
dH(B,Bn) < 2δ and hence Bx(δ) ⊆ (B)−2δ ⊆ Bn ((B)−2δ = {x : Bx(2δ) ⊆
B}).
We have shown that xn ∈ Bn and hence

(xn, zn) 6∈ F2(φn) .

• x 6∈ Rd+.
Then ∃ δ > 0 such that Bx(δ) ⊆ (Rd+)C and hence xn 6∈ Rd+ for n > n2. Again

(xn, zn) 6∈ F2(φn) .

Setting m0 = max(n0, n1, n2), we found for n > m0 an injective mapping

ξn : F2(φ) ∩ P2(Lε)→ F2(φn) ,

which fulfills conditions of Lemma 1. Hence F2(φn) v→ F2(φ) and together with
results of Lemma 3 we finally obtain

F2(F1(Φn)) D→ F2(F1(Φ)) for n→∞ . ¤

Lemma 6. Set Ur3 ⊆ N
(
Rd+ × R+

)
:

Ur3 =
{
φ : φ

({
(x, z) : (x1 − z, x2, . . . , xd) ∈ K

})
<∞, ∀K ∈ K′(Rd+)

}
.

Let Φ be a stationary Poisson point process on K′(Rd) with convex grains, inten-
sity α > 0 and the distribution of typical grain Λ0. Then

Pr
[
F2

(
F1(Φ)

)
∈ Ur3

]
= 1 .

P r o o f . Let K ∈ K′(Rd+) be an arbitrary compact set. Choose a rectangle RK ⊇
K with edges parallel to axes and one of its faces lying in N0. Denote this face by
FN0 .

For L ∈ K′(Rd+) set H(L) = {(x, z) ∈ Rd+ ×R+ : (x1 − z, x2, . . . , xd) ∈ L}. Then
F2(F1(Φ))(H(K)) ≤ F2(F1(Φ))(H(RK)) and hence

Pr[F2(F1(Φ))(H(K)) =∞] ≤ Pr[F2(F1(Φ))(H(RK)) =∞] .

Let V = FN0 × R. We will define a one-dimensional process Φ̃ of convex grains
on the axis x1, that arises as an orthogonal projection of the part of the process Φ
that intersects V :

Φ̃ =
∑

G∈Φ:G∩V 6=∅
δΠd(G) .
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Denote Ξ̃ =
⋃
G∈eΦG. It can be easily shown that Ξ̃ is a Boolean model and hence

it is ergodic. Let p be the volume fraction of Ξ̃. Using the ergodicity of Ξ̃ we derive

Pr [F2(F1(Φ))(H(RK)) =∞]

≤ Pr[∀ r ≥ 0 : λd([0, r]× FN0)− λd((Ξ ∩ ([0, r])× FN0)) ≤ λd(RK)]

≤ Pr[∀ r ≥ 0 : λ1([0, r])− λ1(Ξ̃ ∩ [0, r]) ≤ λ1(Π1(RK))]

= Pr

[
∀ r ≥ 0 :

λ1(Ξ̃ ∩ [0, r])
λ1([0, r])

≥ 1− λ1(Π1(RK))
r

]

= Pr

[(
∀ r ≥ 0 :

λ1(Ξ̃ ∩ [0, r])
λ1([0, r])

≥ 1− λ1(Π1(RK))
r

)

⋂ (
lim
r→∞

λ1(Ξ̃ ∩ [0, r])
λ1([0, r])

= p

)]

= Pr[p ≥ 1] = 0 . ¤

Lemma 7. Define F3 : N(Rd+ × R+)→ N(Rd+) by

F3(φ) = {((x1 − z)+, x2, . . . , xd) : (x, z) ∈ φ}.

Assume that Φn,Φ are point processes on K′(Rd), Φn
D→ Φ for n → ∞ and Φ is

stationary Poisson with convex grains. Then

F3(F2(F1(Φn))) D→ F3(F2(F1(Φ))) .

P r o o f . We will show the continuity of F3 on Ur3 . Let φn, φ ∈ N(Rd+ × R+),
φn

v→ φ and φ ∈ Ur3 . Our aim is to show F3(φn) v→ F3(φ).
From the assumption it follows that for all h ∈ Cc(Rd+ × R+),

∫
h dφn =

∑

(xn,zn)∈φn
h(xn, zn) n→∞−→

∑

(x,z)∈φ
h(x, z) =

∫
h dφ . (2)

Let f ∈ Cc(Rd+). Denote

uφ,f = sup
{
z : (x, z) ∈ φ, ((x1 − z)+, x2, . . . , xd) ∈ spt f

}



580 R. ČERNÝ

and similarly uφn,f . Since φ ∈ Ur3 , uφ,f < ∞. Applying Lemma 1 we derive
from convergence φn

v→ φ the existence of an n0 such that for all n > n0 we have
uφn,f < uφ,f + 1. Choose g ∈ CC(R+) such that

g(z) = 1, when 0 ≤ z ≤ uφ,f + 1 .

It is chosen to fulfill
∑

(xn,zn)∈φn
f(xn, zn) =

∑

(xn,zn)∈φn
f(xn, zn) g(zn),

∑

(x,z)∈φ
f(x, z) =

∑

(x,z)∈φ
f(x, z) g(z).

Since the positive part is a continuous function, f((x1 − z)+, x2, . . . , xd) g(z) ∈ Cc
and from (2) we derive

lim
n→∞

∫
f dF3(φn) = lim

n→∞

∑

(xn,zn)∈φn
f((xn1 − zn)+, xn2, . . . , xnd)

= lim
n→∞

∑

(xn,zn)∈φn
f((xn1 − zn)+, xn2, . . . , xnd) g(zn)

=
∑

(x,z)∈φ
f((x1 − z)+, x2, . . . , xd) g(z)

=
∫
f dF3(φ).

Hence it holds that F3(φn) v→ F3(φ) and F3 is continuous on Ur3 . Finally

F3(F2(F1(Φn))) D→ F3(F2(F1(Φ))) . ¤

3. PROOF OF THEOREM 1

The following proof proceeds through several steps. The goal is to derive void
probabilities for the resulting transformed process, which determine its distribution
(see [7], p. 37).

First, the discrete version of the Boolean model is defined and its convergence
(in distribution) to the original model is shown. Then we derive the distribution
of the process corresponding to the Laslett’s transform of the discrete model and
compute its void probabilities. From the continuity of the Laslett’s transform it
follows that these probabilities converge to those of the transformed non-discrete
process corresponding to Boolean model.
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P r o o f o f T h e o r e m 1. Let {Zm}m∈N be a system of square grids of points
in the space Rd:

Zm =
{

1
d
√
m
· z, z ∈ Zd

}
.

We will use the notation Zm+ for Zm ∩ Rd+.
Let m be given and let {Yz}z∈Zm be a collection of independent and identically

distributed Bernoulli random variables, for which

Yz =

{
1 with probability λ

m ,

0 with probability 1− λ
m .

Define a point process on Zm by setting

ψm(z) = Yz.

Further let {Gz}z∈Zm be a given collection of i.i.d. grains distributed according to
Λ0 and independent of {Yz}z∈Zm . Define

Mm
Gz

=
{
y ∈ Zm : Gz ∩

(
y ⊕

(
0, 1

d
√
m

]d)
6= ∅

}
,

Gm0
z =

⋃
y∈Mm

Gz

y ⊕
(

0, 1
d
√
m

]d
,

Gmz = Gm0
z − lexmin(Gm0

z ).

It is now possible to define the underlying process for the discrete version of the
Boolean model:

Φm =
∑

z∈Zm, ψm(z)>0

δ(z,Gmz ).

Note that the Laslett’s transform of Φm leaves its points in Zm.

We shall show that the processes {Φm}∞m=1 converge in distribution to the Poisson
process corresponding to X. This is equivalent to convergence of corresponding
Laplace transforms (see [6], p. 27).

LΦm(f) = E e−Φm(f) = E exp

{
−

∑

z∈Zm
f (z,Gmz )ψm(z)

}

= E

[
E

[
exp

{
−

∑

z∈Zm
f (z,Gmz )ψm(z)

}∣∣∣∣∣ {Gz}z∈Zm∩spt f |Rd

]]

= E
∏

z∈Zm∩spt f |Rd
E

[
exp

{
− f (z,Gmz )ψm(z)

}∣∣∣∣ {Gz}z∈Zm∩spt f |Rd

]

= E
∏

z∈Zm∩spt f |Rd

(
λ

m
e−f(z,Gmz ) +

(
1− λ

m

))
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=
∏

z∈Zm∩spt f |Rd

(
1− λ

m

∫ (
1− e−f(z,Gmz )

)
Λ0 (dGz)

)

= exp

{ ∑

z∈Zm
log

(
1− λ

m

∫ (
1− e−f(z,Gmz )

)
Λ0 (dGz)

)}
.

Using the Taylor expansion we have the estimate

−x− x2

2
1

(1− x)2
≤ log(1− x) ≤ −x− x2

2
, where x ∈ [0, 1) .

Since f is bounded we derive:

lim
m→∞

∑

z∈Zm

λ2

2m2

(∫ (
1− e−f(z,Gmz )

)
Λ0(dGz)

)2

≤ lim
m→∞

∑

z∈Zm∩spt f |Rd

λ2

2m2

(∫ (
1− e−K

)
Λ0(dGz)

)2

= lim
m→∞

λd(spt f |Rd)m
λ2

2m2
(1− e−K)2 = 0

and

lim
m→∞

∑

z∈Zm

λ2

2m2

(∫ (
1− e−f(z,Gmz )

)
Λ0(dGz)

)2

(
1− λ

m

∫ (
1− e−f(z,Gmz )

)
Λ0(dGz)

)2

≥ lim
m→∞

∑

z∈Zm∩spt f |Rd

λ2

2m2

(∫ (
1− e−L

)
Λ0(dGz)

)2

(
1− λ

m

∫
(1− e−K) Λ0(dGz)

)2

= lim
m→∞

λd(spt f |Rd)m
λ2

2m2

c21
(1− λ

mc2)2
= 0 .

Hence lim
m→∞

LΦm(f) = lim
m→∞

exp

{
∑

z∈Zm
− λ
m

∫ (
1− e−f(z,Gmz )

)
Λ0 (dGz)

}
.

Further

dH (Gz, Gmz ) ≤ d 1
2m−

1
d + λ1

(
Gm0
z ∩ {(x1, 0, . . . , 0) : x1 ≤ 0}

)
→ 0, for m→∞.

From the continuity of e−f , for any ε > 0 there exists m0 such that for all m > m0,
∣∣∣e−f(z,Gmz ) − e−f(z,Gz)

∣∣∣ < ε

λ · λd(spt f |Rd)
.
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The definition of Riemann integral finally gives

lim
m→∞

LΦm(f) = lim
m→∞

exp

{
∑

z∈Zm
− λ
m

∫ (
1− e−f(z,Gmz )

)
Λ0 (dGz)

}

= lim
m→∞

exp

{
∑

z∈Zm
− λ
m

∫ (
1− e−f(z,Gz)

)
Λ0 (dGz)

}

= exp
{
−λ

∫ ∫ (
1− e−f(z,Gz)

)
Λ0(dGz) dz

}
,

which is the Laplace functional of the process Φ.

Now we will focus on the Laslett’s transform for the discrete model Φm. Denote
it by L. L(Φm) can be expressed in the following way:

L(Φm)(z) = YL−1(z), z ∈ Zm.

According to Lemma 7 it follows that L(Φm) D→ L(Φ).

Let K ⊆ Rd+ be an arbitrary compact set, µ = card(K ∩ Z+
m). Set A(z0) = {y ∈

Zm : y <lex z0} and K(z) = K ∩A(z). Then

Pr(L(Φm)(K) = 0) =
∏

z∈K∩Z+
m

Pr
(
L(Φm)(z) = 0

∣∣L(Φm)(K(z)) = 0
)
.

This can be shown by sequential conditioning taking points from K ∩ Z+
m from

the largest to the smallest (according to lexicographical order). For K = ∅ the
probability is taken to be unconditioned.

Set g(z) = {y : y1 ≥ z1, yk = zk, k = 2, . . . , d}. We have

Pr(L(Φm)(K) = 0)

=
∏

z∈K∩Z+
m

∑

y∈g(z)

Pr
(
Yy = 0 | L(Φm)(K(z)) = 0, L−1(z) = y

)

×Pr
(
L−1(z) = y | L(Φm)(K(z)) = 0

)

=
∏

z∈K∩Z+
m

(
1− λ

m

) ∑

y∈g(z)

Pr
(
L−1(z) = y | L(Φm)(K(z)) = 0

)

=
∏

z∈K∩Z+
m

(
1− λ

m

)
=

(
1− λ

m

)µ
−→ e−λ λd(K), for m→∞.

It remains to show that Pr(L(Φm)(K) = 0) m→∞−→ Pr(L(Φ)(K) = 0). Since
we know that L(Φm) D→ L(Φ) this follows from convergence in distribution for K
stochastically continuous, i. e. Pr(L(Φ)(∂K) > 0) = 0 (see [6], p. 26).
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Since K is generated by rectangles with faces parallel to the coordinate system it
will be sufficient to show that these rectangles are stochastically continuous sets.

Let F be a face of K that is not parallel to N0. Since the Laslett’s transform
shifts points in direction orthogonal to N0 it obviously follows from the properties
of Boolean model X that Pr(L(Φ)(F ) > 0) = 0.

Let Fp ⊆ N0 be compact and assume for contradiction that there exists x ∈ Rd+
such that

Pr
(
L(Φ)(x+ Fp) ≥ 1

)
> 0.

The stationarity of X and property Pr(X ∩ (Fp × [0, r]) = ∅) > 0 together imply
that there exist many points with the same properties like x. Particulary

Pr
(
L(Φ)(x+ Fp) ≥ 1

)
> 0, for x ∈ [a, b], b > a.

Hence Pr
(
L(Φ)(Fp× [a, b]) =∞

)
≥ Pr

(
L(Φ)(Fp + a+ b

n ) ≥ 1, n ≥ 1
)
> 0. This is

a contradiction to the result of Lemma 6 and hence K is stochastically continuous.
Thus the derived limit implies that the process L(Φ) is stationary Poisson with

intensity λ. Theorem 1 is proved. ¤
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