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Doubly stochastic point processes driven by non-Gaussian Ornstein–Uhlenbeck type
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1. INTRODUCTION

The filtering in point processes is an old problem which comes from applications in
medical diagnostics and optical communications (see [14] and the references therein).
The counts registered in time are modelled as a realization of an inhomogeneous
point process the intensity of which depends on a random function. This is the
doubly stochastic point process situation (particularly if the inhomogeneous point
process is conditionally Poisson then the resulting doubly stochastic point process is
Cox). The filtering aims to estimate the random function given the observed counts.
A nonlinear estimation leads to the conditional expectation evaluation studied by
many authors (cf. [3, 10, 11, 15]). It is of interest to consider the case when the
random function has a well-defined representation as a solution of a stochastic differ-
ential equation. In this case the result is again in a form of a stochastic differential
equation which can be solved numerically. Various special cases – when the random
function is a Gauss–Markov diffusion process or a Poisson driven Markov process,
were solved in [15].

In [2] we extended the solution for temporal Cox processes to the case when the
random intensity is a function of an Ornstein–Uhlenbeck (OU) type process ([1])
derived from a Lévy process. This leads to a wider class of intensity processes
with prescribed marginal distribution, typically nonnegative. Therefore the diffu-
sion component of the Lévy process was omitted (also because for this component
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the problem was solved). We can surely obtain nonnegativity by a suitable trans-
formation but in that way we loose the linear character of innovations given by the
stochastic differential equation for OU processes.

Further generalization which is of great interest is that from temporal to spatio-
temporal point processes. Here still the time dynamics is dominant but a random
spatial coordinate is added to each count, representing e. g. the location of a mov-
ing detector. A pioneering work in this field is [7] which developes the notion of a
conditional intensity (cf. [6]) and a representation theorem for the conditional char-
acteristics. In the applications besides filtering also prediction and smoothing are
considered and results for Itô process obtained. The aim of the present paper is to
develop analogous results for the broad class of driving random functions of OU type
including the case of infinite activity underlying Lévy process with finite variation.
In this new setting a substantial extension of models is obtained.

The structure of the paper is as follows: in Section 2 the necessary background
from Lévy and OU type processes is gathered. In Section 3 the filtering problem
is defined and some comments to previous solutions given. In Section 4 we turn to
the spatio-temporal situation. The doubly stochastic analytic point processes are
defined and their properties recalled. Section 5 yields the main result, the filtering
equation for a spatio-temporal point process of given type is developed.

2. LÉVY PROCESSES AND PROCESSES
OF ORNSTEIN–UHLENBECK TYPE

In this section we review the basic definitions and properties of the Lévy processes
and the Ornstein–Uhlenbeck type processes derived from them. The general theory
about Lévy processes was taken from [12] and [13], and the theory about Ornstein–
Uhlenbeck type processes derived from Lévy processes and some more specialized
results come from [1] and [4].

Definition 1. Let Z = {Z(t)}t≥0 be a stochastic process defined on a probability
space (Ω,F ,P) taking values in Rd whose realizations are right continuous with
limits from the left almost surely (rcll). Suppose that Z is stochastically continuous
with stationary and independent increments and Z(0) = 0 a. s. Then Z is called a
Lévy process.

In the paper we will denote the limit from the left by Z(t−) = lims↑t Z(s).

Definition 2. Let X be a random variable taking values in Rd. The cumulant
transform C{· ‡X} of X is defined by

C{v ‡X} = log E [ei〈v,X〉], v ∈ Rd,

where 〈·, ·〉 denotes the scalar product.

The following convenient property holds for the cumulant transform of any Lévy
process.
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Theorem 1. (Sato [13], Theorems 1.1 and 1.3) Let Z = {Z(t)}t≥0 be a Lévy
process taking values in Rd. Then for the cumulant transform of Z holds

C{v ‡ Z(t)} = t C{v ‡ Z(1)}, for any t ≥ 0, v ∈ Rd, (1)

and Z(1) has the Lévy–Khintchin representation

C{v‡Z(1)} = i 〈a, v〉−1
2
〈v, Av〉+

∫

Rd

(
ei〈v, x〉 − 1− i 〈v, x〉1{|x| ≤ 1}

)
µ(dx), (2)

where |x| denotes the Euclidean norm of x, A is a symmetric nonnegative-definite
d× d matrix, a ∈ Rd, and µ is a measure on Rd satisfying µ({0}) = 0 and

∫

Rd
(|x|2 ∧ 1)µ(dx) <∞.

The triplet (a,A, µ) is unique.

Definition 3. We call the triplet (a,A, µ) from the previous theorem the generat-
ing triplet, µ is called the Lévy measure of the process Z(t).

The Lévy–Itô decomposition of a Lévy process into a deterministic, a Brownian
diffusion and a pure jump part is now formulated (it is a special case of Theorem
1.4 from [13]).

Theorem 2. Let Z(t) be a Lévy process taking values in Rd with the generating
triplet (a,A, µ). For any G ∈ B((0,∞)×Rd) let JZ(G) = JZ(G,ω) be the number of
jumps at time s with height Z(s, ω)−Z(s−, ω) such that (s, Z(s, ω)−Z(s−, ω)) ∈ G.
Then JZ(G) has Poisson distribution with mean µ̃(G). If G1, . . . , Gn are disjoint,
then JZ(G1), . . . , JZ(Gn) are independent. We can define, a. s.,

Z1(t, ω) = lim
ε→0

∫

(0,t]×{ε<|x|≤1}
{xJZ(ds, dx, ω)− xµ̃(ds, dx)} (3)

+
∫

(0,t]×{|x|>1}
xJZ(ds, dx, ω),

where the convergence on the right-hand side is uniform in t in any finite interval
a. s. The process {Z1(t)} is a Lévy process with the generating triplet (0, 0, µ). Let

Z2(t, ω) = Z(t, ω)− Z1(t, ω).

Then {Z2(t)} is an a. s. continuous Lévy process with the generating triplet (a,A, 0),
Z2(t) = at + B(t), B(t) is the Brownian motion with covariance matrix A. The
processes {Z1(t)} and {Z2(t)} are independent.
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Corollary 3. (Cont and Tankov [4] Proposition 3.7) Each Lévy process can be
represented for any ε > 0 as Z(t) = Zε(t)+Rε(t) where Zε(t) is a process with finite
number of jumps on each bounded time interval and Rε(t) is a mean-zero square
integrable martingale such that its variation Var(Rε(t))→ 0 as ε→ 0.

The properties of JZ in Theorem 2 show that it is a Poisson random measure
on R+ × Rd with intensity measure µ̃(ds, dx) = dsµ(dx). Thus for a deterministic
measurable function f on [0, t]× Rd the integral with respect to JZ

∫ t

0

∫

Rd
f(s, y)JZ(ds, dy) =

∑

n,tn∈[0,t]

f(tn, yn),

is a stochastic process with jumps yn ∈ Rd at times tn, where JZ =
∑
n≥1 δ(tn,yn)

(δ denotes the Dirac measure).
We will consider the case A = 0. Then µ(Rd) <∞ leads to a pure jump process

with finitely many jumps on each finite time interval while when µ(Rd) =∞ (infinite
activity case) the jump times form a countable dense set in R+. Nevertheless, even
when µ(Rd) = ∞ the trajectories of Z may have finite variation. This happens if
and only if ∫

|x|≤1

|x|µ(dx) <∞. (4)

In the sequel we will always assume that A = 0 and (4) holds for the process
Z(t). When a =

∫
|x|≤1

xµ(dx) it holds

C{v ‡ Z(t)} = t

∫

Rd
(ei〈v, x〉 − 1)µ(dx), (5)

and

Z(t) =
∫

Rd

∫ t

0

xJZ(ds, dx), (6)

is a purely jump process with finite variation. If moreover µ(Rd) <∞ then Z(t) is a
compound Poisson process, i. e. it has only finite number of jumps in any bounded
interval.

Now we can introduce the Ornstein–Uhlenbeck type (OU type) processes. Sup-
pose first that d = 1.

Definition 4. Let Z(t) be a one-dimensional Lévy process, γ > 0 and consider the
stochastic differential equation for X(t), t ≥ 0

dX(t) = −γX(t)dt+ dZ(γt). (7)

The stationary solution of (7) is called a process of Ornstein–Uhlenbeck type (OU
type process). Z(t) is called the background driving Lévy process (BDLP) for X(t).

To be able to specify the conditions under which (7) has a desired solution we
need one more definition.
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Definition 5. A random variable Y with characteristic function ψ has a self-
decomposable distribution if for all c ∈ (0, 1) there exists a characteristic function
ψc such that

ψ(v) = ψ(cv)ψc(v) for all v ∈ R.

Theorem 4. (Barndorff-Nielsen and Shephard [1], Theorem 1) Let ψ be the char-
acteristic function of a random variable X. If X is self-decomposable then there is
a stationary stochastic process X(t) and a Lévy process Z(t) such that X(t) D= X
(equality in distribution) and

X(t) = e−γtX(0) +
∫ t

0

e−γ(t−s) dZ(γs), (8)

for all γ > 0, thus X(t) satisfies (7).

The process (8) is a unique stochastically continuous Markov process and it has a
modification with right-continuous realizations with left limits. We will always work
with this rcll modification of X(t).

We can also start with the BDLP Z(t) – there exists a sufficient condition on
Z(t) for the existence of a stationary solution of the equation (7). For the general
case see e. g. [9] Theorem 3.6.6. Here we discuss the case of purely jump Z(t) with
finite variation.

Lemma 5. (Barndorff-Nielsen and Shephard [1], Lemma 1) Let Z(t) be a Lévy
process specified by (5) and assume that for its Lévy measure holds

∫ ∞

1

log(x)µ(dx) <∞. (9)

Then there exists a unique solution of the equation (7) and X(t) can be written
as (8). For the cumulant transform of X(t) holds

C{ζ ‡X(t)} =
∫ ∞

0

C{e−sζ ‡ Z(1)}ds. (10)

If we moreover suppose that µ has a differentiable density w and we define a function
u by

u(x) =
∫ ∞

1

w(vx)dv, (11)

then u is the Lévy density (density of the Lévy measure) of the marginal distribution
of the process X(t) and w can be computed from u by

w(x) = −u(x)− xu′(x), (12)

where u′(x) denotes the derivative of u.
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For d > 1 let Z(t) be the d-dimensional Lévy process with characteristic function
given by (5) and suppose for simplicity that µ has the density w with respect to
d-dimensional Lebesgue measure and denote by wi(xi) the ith marginal of w, i. e.

wi(xi) =
∫

R (d−1)
w(x)dx1 . . . dxi−1 dxi+1 . . . dxd.

If each wi satisfies condition (9) then we may (on account of Lemma 5) define the
stationary processes Xi(t) by

Xi(t) = e−γtXi(0) +
∫ t

0

e−γ(t−s) dZi(γs).

The vector process X(t) = (X1(t), . . . , Xd(t)) is then the solution of the vector
stochastic differential equation

dX(t) = −γX(t)dt+ dZ(γt), (13)

where γ > 0, and it is a vector OU type process.

3. FILTERING PROBLEM

In this section we will briefly review some solutions of the filtering problem for the
temporal Cox point processes. Let Φ be a Cox point process on R+ with driving
random measure Λ. That means conditionally Φ | (Λ = Λ̄) is a Poisson point process
with intensity measure Λ̄. Assume that Λ is absolutely continuous with respect to
the Lebesgue measure, with density λ. The random process λ is called the driving
intensity (function) of Φ. We will make the following assumptions on λ

(L1) {X(t)}t≥0 is an Rd valued stochastic process and the driving intensity of Φ
has the form

λ(t) = λ(t,X(t)),

where λ : R+ × Rd 7→ R+ is a positive function, X(t) will be also called the
driving process.

(L2) It holds
E (λ(t,X(t)) <∞, for all t ∈ R+.

Now we can formulate the filtering problem for Φ. Denote the number of points of
Φ in [0, t] as

N(t) = Φ([0, t]), t ∈ R+.

In the filtering problem our aim is to find the MSE optimal estimator λ̂ of λ(t,X(t))
given {N(s), 0 ≤ s < t}, i. e. the random function λ̂ that minimizes

E [|λ(t,X(t))− λ̂|2 | N(s), 0 ≤ s < t].
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The solution is the conditional expectation of the driving intensity

λ̂(t) = E [λ(t,X(t)) | N(s), 0 ≤ s < t]. (14)

Thus our problem reduces to the evaluation of (14).
To shorten the notation we will denote by hat all the conditional characteristics

given the sample path of Φ, i. e.

Ê [ · ] = E [· | N(s), 0 ≤ s < t].

For example for the conditional characteristic function of X(t) we write

ψ̂t(v) = Ê [ei〈v,X(t)〉].

Definition 6. Suppose X(t) is a Markov process and there exists a nonnegative
function gt(v,X(t)) with finite mean such that for all 4t > 0 it holds

1
4t

∣∣∣E
[
ei〈v,4X(t)〉 − 1 | X(t)

]∣∣∣ ≤ gt(v,X(t)), (15)

where 4X(t) = X(t+4t)−X(t).
The characteristic form for the differential generator of X(t) is defined as

Ψt(v | X(t)) = lim
4t↓0

1
4tE

[
ei〈v,4X(t)〉 − 1 | X(t)

]
, (16)

if the right hand side exists.

In [15] the following theorem is proved.

Theorem 6. (Snyder and Miller [15], Theorem 7.4.2) Let Φ be a Cox process on
R+ with driving intensity λ. Suppose (L1) and (L2) are satisfied for the Rd-valued
driving process {X(t)}t≥0 which is Markov stochastically continuous and suppose
that λ(t,X(t)) is left continuous. Then the following differential equation holds for
the conditional characteristic function of X(t)

dψ̂t(v) = Ê
[
ei〈v,X(t)〉Ψt(v | X(t))

]
dt (17)

+Ê
[
ei〈v,X(t)〉(λ(t,X(t))− λ̂(t))

] 1

λ̂(t)
(dN(t)− λ̂(t)dt),

ψ̂0(v) = E ei〈v,X(0)〉.

Equations of this type for temporal Cox point processes with driving Markov jump
or diffusion processes of special types were obtained by [3, 10, 11, 14]. Inverse Fourier
transform of (17) leads to a differential equation for the conditional distribution of
X(t) given {N(s), 0 ≤ s < t}. This equation can be solved numerically recursively in
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time, cf. [15]. The desired estimate of λ̂(t) is obtained by evaluating the expectation
of λ(t,X(t)) with respect to this distribution. Our aim is not the numerical solution
but the extension of the class of models for the theoretical study of the filtering
problem.

Consider a Cox point process Φ driven by an OU type vector process X(t). The
characteristic form of the differential operator for such X(t) was derived in [2].

Lemma 7. (Beneš and Prokešová [2], Lemma 1) Let X(t) be an OU type d-
dimensional process given as a solution of (13) with γ > 0 and with the background
driving Lévy process Z(t) satisfying equation (5). If X(t) has finite mean then the
characteristic form for the differential generator for X(t) is

Ψt(v | X(t)) = −iγ 〈v, X(t)〉+ γ

∫

Rd
(ei〈v, x〉 − 1)µ(dx). (18)

The main result of [2] is the following theorem which yields the differential equa-
tion for the probability density of X̂(t).

Theorem 8. (Beneš and Prokešová [2], Theorem 2) Under the assumptions of
Theorem 6 and Lemma 7 let the Lévy measure µ have density w with respect to the
Lebesgue measure. If µ(Rd) < ∞ the conditional probability density of X(t) given
{N(s), 0 ≤ s < t}, satisfies

dp̂t(x) = γ

(
p̂t(x)(1− µ(Rd)) + (p̂t ∗ w)(x) +

〈
x,

dp̂t(x)
dx

〉)
dt (19)

+p̂t(x)
(
λ(t, x)− λ̂(t)

) 1

λ̂(t)

(
dN(t)− λ̂(t)dt

)
,

where p̂t ∗ w denotes the convolution of p̂t and w.
Generally (also for µ(Rd) =∞) it holds

dp̂t(x) = γ

(
F−1(ψ̂t · log(ψZ(1))) + p̂t(x) +

〈
x,

dp̂t(x)
dx

〉)
dt (20)

+p̂t(x)
(
λ(t, x)− λ̂(t)

) 1

λ̂(t)

(
dN(t)− λ̂(t)dt

)
,

where F−1 denotes the inverse Fourier transform.

In the following examples we demonstrate both situations from the Theorem 8
for d = 1.

Example 1. a) The gamma OU process X(t) has marginal probability density

p (x) =
αν

Γ(ν)
xν−1e−αx, x ≥ 0, p (x) = 0, x < 0, (21)
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with parameters α > 0, ν > 0. The Lévy density of the gamma distribution is

u(x) = ν
1
x
e−αx, x ≥ 0,

Now using the equation (12) from Lemma 5 we can evaluate the density w of the
Lévy measure µ of Z(1)

w(x) = ανe−αx, x ≥ 0, w(x) = 0, x < 0,

µ is finite. From Lemma 7 we get

Ψt(v | X(t)) = νγ

(
α

α− iv − 1
)
− ivγX(t) (22)

and from Theorem 8 we get for the gamma OU type process

dp̂t(x) = − νγ (p̂t(x)− (p̂t ∗ Eα)(x))) dt

+ γ

(
p̂t(x) + x

dp̂t(x)
dx

)
dt (23)

+ p̂t(x)
(
λ(t, x)− λ̂(t)

) 1

λ̂(t)

(
dN(t)− λ̂(t)dt

)
,

where Eα is the density of the exponential distribution with parameter α.

b) The inverse Gaussian (IG) OU type process X(t) has the marginal probability
density

p (x) =
δ√
2π

e−δγ x−
3
2 e−

1
2 ( δ2

x +γ2x), δ > 0, γ ≥ 0, x ≥ 0

and the Lévy density

u(x) =
1√
2π

δ x−
3
2 e−

γ2x
2 , x ≥ 0.

Using Lemma 5 we obtain the Lévy density of the Lévy measure µ of Z(1)

w(x) =
1√
2π

δ

2
(

1
x

+ γ2)
1√
x
e−

γ2x
2 , x ≥ 0.

Here we can see that
∫
R w(x)dx = ∞ (infinite activity case with finite variation –

(4) holds) and thus equation (20) from Theorem 8 applies.

4. SPATIO–TEMPORAL DOUBLY STOCHASTIC ANALYTIC
POINT PROCESSES

Spatio-temporal point processes can be defined in several ways (cf. [5]). We follow
the approach of Fishman and Snyder [7] based on the notion of an analytic point
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process. Further doubly stochastic spatio-temporal point processes are defined and
the problem of filtering is studied.

A spatio-temporal point process is a point process Φ defined on X = [0,∞)×Rk.
Let N be the set of all locally finite simple counting measures on X (simple means
that φ({x}) ≤ 1 for all x ∈ X , φ ∈ N ). Denote N the smallest σ-algebra on N
which makes mappings φ 7→ φ(B) measurable for each Borel set B ⊂ X . We will
put (Ω,F) = (N ,N), with Φ being the identity map from (Ω,F ,P) to N , P is the
probability distribution of Φ and let

E Φ([0, t)× Rk) <∞ for any t > 0. (24)

The symbol N(t), t > 0 will now denote the random variable equal to Φ([0, t)×Rk),
N(0) = 0.

A simple counting measure is characterized by its support. Thus we can identify
the realizations Φ(ω), ω ∈ Ω as

Φ(ω) = {(t1, r1), (t2, r2), . . . },

where 0 ≤ t1 ≤ t2 ≤ . . . are the times of events and ri ∈ Rk their locations. For
j = 1, 2, . . . let Uj = {(t1, r1), (t2, r2), . . . , (tj , rj)} and Fj ⊂ F be the σ−algebra
generated by Uj . Further let Ft = σ{Φ |[0,t)×Rk} ⊂ F be the σ−algebra generated
by the past of the process up to time t, F0 = {∅,Ω}.

Definition 7. A spatio-temporal point process Φ is analytic if the following con-
ditions hold:

a) P(N(t) <∞) = 1 for all t ≥ 0 finite.

b) The measure Pj(Q) = P(Uj ∈ Q), Q ∈ B(R(k+1)j) is absolutely continuous
w.r.t. Lebesgue measure on R(k+1)j , j = 1, 2, . . .

c) The conditional distribution

Fj+1(t | Fj) = P(tj+1 < t | t1, r1, . . . , tj , rj),

j = 0, 1, 2, . . . satisfies Fj+1(t | Fj) < 1 for all finite t a. s.

According to the condition b) of Definition 7 there exists fj [(t1, r1), . . . , (tj , rj)]
the density of the first j points of Φ. The conditional density

fj+1(t, r | Fj) =
fj+1[(t1, r1), . . . , (tj , rj), (t, r)]

fj [(t1, r1), . . . , (tj , rj)]
, j ≥ 1, f1(t, r | F0) = f1(t, r),

enables to define

gj(t, r;ω) =

{
0, t0 ≤ t < tj
fj+1(t, r | Fj)[1−

∫ t
tj

∫
Rk fj+1(s, q | Fj) dq ds]−1.
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Definition 8. The conditional intensity of an analytic spatio-temporal point pro-
cess is defined by

λ∗(t, r) = gN(t)(t, r).

Under the condition

E

[∫ t

0

∫

Rk
λ∗(u, v)dvdu

]2

<∞ (25)

for any B ∈ B(Rk) and 0 ≤ t < u <∞ it holds a. s.

E [Φ([t, u)×B) | Ft] = E

[∫ u

t

∫

B

λ∗(u, v)dvdu | Ft
]
. (26)

Also, the likelihood of a realization of the process observed up to time t is expressed
by means of the conditional intensity as

Lt(ω) =
N(t)∏

i=1

λ∗(ti, ri) exp
[
−

∫ t

0

∫

Rk
λ∗(u, v)dv du

]
, (27)

assuming the product to be equal to 1 if N(t) = 0.

Lemma 9. Suppose that for the intensity Λ of a spatio-temporal Poisson point
process Π holds (24) and that Λ is absolutely continuous with respect to the Lebesgue
measure on R+ × Rk. Then Π is analytic and its conditional intensity is equal to
the intensity function λ∗ = λ.

P r o o f . Condition a) from the Definition 7 follows from (24), b) and c) from the
absolute continuity of Λ with respect to the Lebesgue measure on X . λ∗ = λ follows
from (26) and the definition of the Poisson point process. ¤

It is just the Poisson process for which the conditional intensity is non-random.
Now we proceed to the doubly stochastic processes.

Let (Ω∗,S, P ∗) be another probability space and

P : Ω∗ ×F 7→ [0, 1]

a probability kernel such that for each ω∗ ∈ Ω∗ P (ω∗, .) is the distribution of a
spatio-temporal point process, denoted Φ∗.

Definition 9. A doubly stochastic (spatio-temporal) point process is a process
with distribution P̄ (A) = P ′(A× Ω∗), A ∈ F , where

P ′(A× S) =
∫

S

P (ω∗, A)P ∗(dω∗), , S ∈ S.

If for each ω∗ ∈ Ω∗ P (ω∗, ·) is the distribution of a Poisson point process on X , the
doubly stochastic process with distribution P̄ is called a Cox process.
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Theorem 10. (Fishman and Snyder [7], Theorem 3) Let Φ be a doubly stochas-
tic spatio-temporal point process such that Φ∗ is analytic for each ω∗ ∈ Ω∗ and
the corresponding conditional intensities λ∗(t, r;ω, ω∗) are jointly measurable in the
arguments t, r, ω and ω∗ and

∫

Ω×Ω∗

[∫ t

0

∫

Rd
λ∗(s, q;ω, ω∗)dqds

]
P ′(dω × dω∗) <∞. (28)

Then (i) Φ is analytic,
(ii) the conditional intensity λ̂∗(t, r;ω) of the point process Φ is

λ̂∗(t, r;ω) = E ′[λ∗(t, r;ω, ω∗)|Ft × S0],

where S0 = {∅,Ω∗} is the trivial σ-algebra and E ′ the expectation w.r.t. P ′.

Combining the theorem with Lemma 9 a direct consequence for the Cox pro-
cesses is

Corollary 11. Let Φ be a Cox process on X satisfying (24), such that its driving
measure Λ(ω∗) is absolutely continuous with respect to the Lebesgue measure on X
a. s. Then Φ is an analytic doubly stochastic point process.

5. FILTERING FOR SPATIO–TEMPORAL DOUBLY STOCHASTIC
ANALYTIC POINT PROCESSES DRIVEN BY OU TYPE PROCESSES

In the above setting used for doubly stochastic spatio-temporal point processes, the
filtering problem means doing inference about the value of the unobserved ω∗ if we
observe the realization {(t1, r1), . . . , (tN(t), rN(t))} in [0, t)×Rk. We can express the
conditional probability

P ∗(S | Ft)(ω) = P ′(Ω× S | Ft × S0)(ω, ω∗), S ∈ S,

using the likelihood. The likelihood of a general doubly stochastic process is equal
to

L̄t(ω) = ΠN(t)
i=1 λ̂

∗(ti, ri) exp
[
−

∫ t

0

∫

Rk
λ̂∗(u, v) dv du

]
.

Theorem 12. (Fishman and Snyder [7], Theorem 5) For a doubly stochastic process
Φ satisfying the conditions of Theorem 10 it holds for all S ∈ S and t ∈ [0,∞)

P ∗(S | Ft)(ω) =
1

L̄t(ω)

∫

S

Lt(ω, ω∗)P ∗(dω∗),

P̄ a. s. on Ft. Here Lt(ω, ω∗) are likelihoods for Φ∗ given ω∗, cf. (27).

This so-called representation theorem has important consequences.
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Corollary 13. Let Φ be a doubly stochastic analytic point process satisfying con-
ditions of Theorem 10 and suppose that the conditional intensities λ∗(t, r, ω, ω∗)
are left continuous in t and continuous in r. For an (Ft × S)-measurable spatio-
temporal vector random field Y (t, r;ω, ω∗) defined on [0,∞)× Rk × Ω× Ω∗ denote
Ŷ (t, r) = E ′[Y (t, r;ω, ω∗)|Ft × S0]. It holds

Ŷ (t, r) = E ∗(Y (t, r) exp(ξ(t))),

where E ∗ is the mean value with respect to P ∗ and

ξ(t) = −
∫ t

0

∫

Rk
(λ∗(s, r)− λ̂∗(s, r)) drds+

∫ t

0

∫

Rk
log

λ∗(s, r)

λ̂∗(s, r)
Φ(ds, dr). (29)

Now we have at our disposal all we need to attack the problem of filtering for
a doubly stochastic point process driven by OU type temporal stochastic process
{X(t)}. We are interested in the filtered estimate X̂(t) = E ′[X(t, ω, ω∗)|Ft×S0]. To
be able to derive the differential equation for X̂ we need the Itó differential formula
for a special type of vector process. Stochastic integral with respect to the Poisson
random measure is understood in the sense of [4], Subsection 8.1.4.

Lemma 14. Let Φ be a doubly stochastic point process from Theorem 10. Let for
the vector process ζ(t) = (ζ1(t), . . . , ζm(t)) hold

dζ(t;ω, ω∗) = α(t;ω, ω∗)dt+ C dZ(γt;ω∗) +
∫

Rk
δ(t, r;ω, ω∗)Φ((dt, dr);ω, ω∗),

(30)
where α, δ are random m-dimensional vectors, C is an m×d matrix of real numbers,
and {Z(t)} is a d-dimensional Lévy process with the characteristic function given
by (5). We assume that α, δ have sample paths which are left continuous in t and
continuous in r and are (Ft × St)-measurable, where St = σ{Z(s); s ≤ t} ⊂ S. Let
η be a C1(Rm) scalar function. Then η satisfies the following stochastic differential
equation a. s.

dη(ζ(t)) =
〈
α(t),

∂η

∂ζ
(t)

〉
dt+

∫

Rk
(η(ζ(t−) + δ(t, r))− η(ζ(t−))) Φ(dt, dr)

+
∫

Rd
(η(ζ(t−) + Cy)− (η(ζ(t−)))) JZ(dγt, dy), (31)

where JZ is a Poisson process satisfying (6).

P r o o f . We need to show that

η(ζ(t))− η(ζ(0)) =
∫ t

0

〈
α(t),

∂η

∂ζ
(t)

〉
dt (32)

+
∫ t

0

∫

Rk
(η(ζ(t−) + δ(t, r))− η(ζ(t−))) Φ(dt, dr)

+
∫ t

0

∫

Rd
(η(ζ(t−) + Cy)− (η(ζ(t−))))JZ(dγt, dy),
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holds a. s.

Let us first suppose that the Lévy process Z has finite Lévy measure µ, i. e.
{Z(t)} has only finite number of jumps on every interval [0, t) a. s. Then we can
proceed like in the classical proof of the Itô formula in [8]. We consider a sequence
of partitions Tj = {τ1,j , . . . , τj+1,j} of the interval [0, t) defined for j ∈ N by

τi,j =
i− 1
j

t, i = 1, 2, . . . , j + 1.

For any such partition we can write

η(ζ(t))−η(ζ(0)) =
j∑

i=1

η(ζ(τi+1,j))−η(ζ(τi,j)) =
j∑

i=1

η(ζ(τi,j)+4ζ(τi,j))−η(ζ(τi,j)),

where
4ζ(τi,j) = ζ(τi+1,j)− ζ(τi,j) = 4Ai,j +4Bi,j +4Di,j ,

and

4Ai,j =
∫ τi+1,j

τi,j

α(s;ω, ω∗)ds,

4Bi,j = C

∫ τi+1,j

τi,j

dZ(γs;ω, ω∗),

4Di,j =
∫ τi+1,j

τi,j

∫

Rk
δ(t, r;ω, ω∗)Φ((dt, dr);ω, ω∗).

Let us write η(ζ(t))− η(ζ(0)) =
∑
A,j +

∑
B,j +

∑
D,j where

∑
A,j

=
j∑

i=1

η(ζ(τi,j) +4ζ(τi,j))− η(ζ(τi,j) +4Bi,j +4Di,j),

∑
B,j

=
j∑

i=1

η(ζ(τi,j) +4Bi,j +4Di,j)− η(ζ(τi,j) +4Di,j),

∑
D,j

=
j∑

i=1

η(ζ(τi,j) +4Di,j)− η(ζ(τi,j)).

From the mean-value theorem we have

lim
j→∞

∑
A,j

=
∫ t

0

〈
α(s),

∂η

∂ζ
(s)

〉
ds. (33)

Because Φ is an analytic doubly stochastic point process it has only finite number
of points in [0, t) × Rk thus

∫ t
0

∫
Rk Φ(ds, dr) has only finite number of jumps. The

same holds for

C

∫ t

0

dZ(γs) = C

∫ t

0

∫

Rd
yJZ(dγs, dy))
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when the Lévy measure µ of Z is finite on Rd. Moreover the jumps of Φ and JZ
arise at different times a. s. Thus for big enough m(ω, ω∗) there is at most one jump
of Φ and JZ in each [τi,j , τi+1,j) for any j ≥ m(ω, ω∗) and

∑
D,j

=
Φ([0,t)×Rk;ω,ω∗)∑

l=1

η(ζ(τl,j) + δ(tl, rl))− η(ζ(τl,j))

∑
B,j

=

R t
0 1[

R
Rd JZ(γs,dy)6=0] ds∑

q=1

η(ζ(τq,j) + Cyq)− η(ζ(τq,j)).

Here (tl, rl), (γtq, yq) are the occurrence points of Φ, JZ , respectively and the in-
tervals [τl,j , τl+1,j) and [τq,j , τq+1,j) are the elements of the partition containing the
points tl, tq respectively. From the continuity of η and the existence of left limits
for ζ it follows

lim
j→∞

∑
D,j

=
Φ([0,t)×Rk;ω,ω∗)∑

l=1

η(ζ(tl−) + δ(tl, rl))− η(ζ(tl−))

=
∫ t

0

∫

Rk
(η(ζ(s−) + δ(s, r))− η(ζ(s−))) Φ(ds, dr) (34)

lim
j→∞

∑
B,j

=

R t
0 1[

R
Rd JZ(γs,dy)6=0] ds∑

q=1

η(ζ(tq−) + Cyq)− η(ζ(tq−))

=
∫ t

0

∫

Rd
(η(ζ(s−) + Cy)− η(ζ(s−))) JZ(dγs, dy), (35)

almost surely. By combining (33), (35) and (34) we get (32).

For general Lévy processes {Z(t)} we know from Corollary 3 that every Lévy
process can be decomposed as Z(t) = Zε(t) + Rε(t), where Zε(t) is a Lévy process
with finite number of jumps in any bounded interval and Rε(t) is a mean-zero square
integrable martingale with Var(Rε(t)) → 0 as ε → 0. Denote by ζε the process
defined by (30) but with the Lévy process {Zε(t)} instead of {Z(t)}.

Suppose that η and its first derivatives are bounded by a constant K. Then

|η(ζ(t−) + Cy)− η(ζ(t−))| ≤ KCy

thus the right hand side of (32) is finite since Z(t) =
∫ t

0

∫
Rd yJZ(d(y, s)) is. Moreover

|η(ζ(t))− η(ζε(t))|2 ≤ K2(Rε(t))2.

Thus
lim
ε→0

η(ζε(t)) = η(ζ(t)),

in L2(P). But the equation (32) holds for ζε and taking the limits on both sides we
get the equality (32) also for Z(t).
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A general Lévy process fulfilling the assumptions of Lemma 14 is of finite variation
thus if we define the sets AM = {(ω, ω∗) : ζ(s;ω, ω∗) ≤ M for all s ≤ t}, then
AM → (Ω × Ω∗) as M → ∞. But η is bounded with bounded first derivatives on
AM and (32) holds on AM . Thus taking limit M → ∞ the validity of (32) follows
for any ζ satisfying the assumptions of the theorem. ¤

Now we are ready to derive the differential equation for the conditional mean X̂
of X(t).

Theorem 15. Let Φ be a doubly stochastic point process from Theorem 10 driven
by an OU type d-dimensional process X(t) given by (13) with γ > 0 and with the
Lévy process Z(t) satisfying equation (5). Suppose that the conditional intensities
λ∗(t, r) are left continuous in t and continuous in r. Then the conditional mean X̂(t)
satisfies

dX̂(t) = − γX̂(t)dt−
∫

Rk
(Ê [X(t−)λ∗(t, r)]− X̂(t−)λ̂∗(t, r))drdt (36)

+
∫

Rk
(Ê [X(t−)λ∗(t, r)]− X̂(t−)λ̂∗(t, r))

1

λ̂∗(t, r)
Φ(dt, dr) + dẐ(γt),

P r o o f . Let ζ(t) = [X(t), ξ(t)] be a vector process with (d + 1) components.
Combining (13) and (29) we get the stochastic differential equation for ζ

dζ(t) =
( −γX(t)
−

∫
Rk(λ∗ − λ̂∗)dr

)
dt+

(
0∫

Rk log λ∗

cλ∗ Φ(dt, dr)

)
+

(
dZ(γt)

0

)
.

For i = 1, . . . , d let
ηi(ζ(t)) = Xi(t) exp(ξ(t)).

Then ηi are continuously differentiable functions and we have

∂ηi
∂ζj

=





eξ(t) i = j
0 j 6= i, d+ 1
ηi j = d+ 1.

Thus we can use Lemma 14 for ζ and each ηi with

α(t) = [− γX(t),−
∫

Rk
(λ∗ − λ̂∗)dr ],

δ(t, r) =
[

0, . . . , 0, log
λ∗

λ̂∗

]
,

C =
(

1
0

)
,

where 1 is d× d identity matrix and 0 is 1× d matrix of zeros. Using the equalities

ηi(ζ(t−) + Cy)− (ηi(ζ(t−))) = (X(t) + y)eξ(t−) −X(t)eξ(t−) = yeξ(t−),
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and

ηi(ζ(t−) + δ(t, r))− ηi(ζ(t−)) = Xi(t−)eξ(t−)+log λ∗
dλ∗ −Xi(t−)eξ(t−)

= ηi(ζ(t−))
(
λ∗

λ̂∗
− 1

)
,

we obtain

dηi(ζ(t)) = −γXi(t)eξ(t−) dt− ηi(ζ(t−))
∫

Rk
(λ∗ − λ̂∗) drdt (37)

+ηi(ζ(t−))
∫

Rk
(λ∗ − λ̂∗) 1

λ̂∗
Φ(dt, dr) +

∫

Rd
yeξ(t)JZ(dγt, dy).

Now from Lemma 13 we have X̂i(t) = E ∗(ηi(ζ(t))) and from Fubini’s theorem

dX̂i(t) = E ∗(dηi(ζ(t))).

Therefore taking expectations on both sides of (37) and writing

E ∗
[∫

Rd
yeξ(t)JZ(dγt, dy)

]
= E ∗

[
eξ(t)

∫

Rd
yJZ(dγt, dy)

]
= dẐ(γt),

we obtain the equation (36). ¤

Corollary 16. Let Φ be a spatio-temporal Cox process from Corollary 11 driven
by an OU type d-dimensional process X(t) from the Theorem 15. Suppose that the
conditional intensities λ∗(t, r) are left continuous in t and continuous in r. Then the
conditional mean X̂(t) satisfies equation (36).
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2001.

[14] D. L. Snyder: Filtering and detection for doubly stochastic Poisson processes. IEEE
Trans. Inform. Theory 18 (1972), 91–102.

[15] D. Snyder and M. Miller: Random Point Processes in Time and Space. Springer–
Verlag, New York 1991.
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Viktor Beneš, Department of Probability and Mathematical Statistics, Faculty of Mathe-

matics and Physics – Charles University, Sokolovská 83, 186 75 Praha 8. Czech Republic.
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