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COOPERATIVE FUZZY GAMES EXTENDED
FROM ORDINARY COOPERATIVE GAMES
WITH RESTRICTIONS ON COALITIONS
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Cooperative games are very useful in considering profit allocation among multiple de-
cision makers who cooperate with each other. In order to deal with cooperative games in
practical situations, however, we have to deal with two additional factors. One is some
restrictions on coalitions. This first factor has been taken into consideration through fea-
sibility of coalitions. The other is partial cooperation of players. In order to describe this
second factor, we consider fuzzy coalitions which permit partial participation in a coali-
tion to a player. In this paper we take both of these factors into account in cooperative
games. Namely, we analyze and discuss cooperative fuzzy games extended from ordinary
cooperative games with restrictions on coalitions in two approaches. For the purpose of
comparison of these two approaches, we define two special classes of extensions called U -
extensions which satisfy linearity and W -extensions which satisfy U -extensions and two
additional conditions, restriction invariance and monotonicity. Finally, we show sufficient
conditions under which these obtained games in two approaches coincide.
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1. INTRODUCTION

A cooperative game (or coalitional game) is usually described by a set of players
and a characteristic function. In a transferable utility game only one number is
attached to each coalition. In order to deal with practical situations in cooperative
game theory, we have to take into account two important factors: restrictions on
coalitions and partial cooperation by players.

The first factor has been taken into consideration through feasibility of coalitions.
In a cooperative game, it is generally assumed that an arbitrary coalition is feasible,
i. e., each player can form a coalition with arbitrary players. However, situations
where some of coalitions are impossible or prohibited may occur, that is, infeasible
coalitions may occur. In order to deal with these situations, the concept of feasible
coalition systems has been introduced (cf. Algaba et al. [1] and Bilbao [3]).

The second factor has been studied through fuzzy coalitions instead of ordinary
coalitions which are subsets of players and leads to cooperative fuzzy games. In a
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traditional cooperative game, it is generally assumed that each player participates
in a coalition fully or not. On the contrary, Aubin [2] introduced a fuzzy coalition
which permits partial participation in a coalition to a player. As a game with fuzzy
coalitions, a cooperative fuzzy game has been studied [8]. Each fuzzy coalition
is identified with a point in the hypercube [0, 1]n, while an ordinary coalition is
regarded as a vertex of this hypercube, i. e., a point in {0, 1}n. Another application
of fuzzy theory to cooperative games is in studies of cooperative games with fuzzy
worth (coalitional values) [6]. In this paper, however, we deal only with cooperative
games with fuzzy coalitions as cooperative fuzzy games.

The outline of this paper is as follows. Section 2 introduces cooperative games
and feasible coalition systems as restrictions on coalitions. Section 3 introduces co-
operative fuzzy games and feasible fuzzy coalition systems as restrictions on fuzzy
coalitions. Section 4 deals with cooperative fuzzy games obtained by extending co-
operative games. We consider two special classes of extensions called U -extensions
which satisfy linearity and W -extensions which satisfy U -extensions and two addi-
tional conditions, restriction invariance and monotonicity. In Section 5, we take two
approaches to cooperative fuzzy games extended from ordinary cooperative games
with restrictions on coalitions. We show sufficient conditions under which these
obtained games in two approaches coincide.

2. COOPERATIVE GAMES WITH RESTRICTIONS ON COALITIONS

In this paper we deal with transferable utility games as cooperative games (coali-
tional games), and their extensions as cooperative fuzzy games. LetN = {1, 2, . . . , n}
be a set of players and S ⊆ N be a coalition which is a subset of N . A transferable
utility game v : 2N → R is a function with v(∅) = 0. The function v is also called
characteristic function. The set of all games with the player set N is denoted as ΓN .

Superadditivity and convexity are defined as follows:

Definition 1. A game v ∈ ΓN is said to be

1. superadditive if v(S) + v(T ) ≤ v(S ∪ T ), ∀S, T ⊆ N s.t. S ∩ T = ∅.

2. convex if v(S) + v(T ) ≤ v(S ∪ T ) + v(S ∩ T ), ∀S, T ⊆ N .

The sum of two games v, w ∈ ΓN , and the scalar multiplication of v by α ∈ R
are defined by {

(v + w)(S) = v(S) + w(S), ∀S ⊆ N,
(αv)(S) = αv(S), ∀S ⊆ N,

respectively. Since every transferable utility game is uniquely determined by col-
lection of its worth {v(S) : S ⊆ N,S 6= ∅}, the vector space ΓN of all cooperative
games on N will be identified with R2N−1. In fact, for any T ⊆ N,T 6= ∅, we define
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the unanimity game uT ∈ ΓN by

uT (S) =

{
1, if T ⊆ S,
0, otherwise.

Then, every game v ∈ ΓN is represented by a unique linear combination of unanimity
games:

v =
∑

T⊆N,T 6=∅
dT (v)uT ,

where
dT (v) =

∑

S⊆T
(−1)|T |−|S|v(S)

is called the dividend of T in the game v. The dividends satisfy the following
recursive formula:

dT (v) =





0, if T = ∅,

v(T )−
∑

S⊂T
dS(v), if T 6= ∅.

Now we consider some restrictions on coalitions. It is usually described by a set
system on N (see e.g. [3]).

Definition 2. A set F ⊆ 2N is said to be a feasible coalition system (FCS for
short) if it satisfies the following two conditions:

1. ∅ ∈ F .
2. {i} ∈ F , ∀ i ∈ N.

We introduce some basic concepts about FCS. For a coalition S ⊆ N , {Sk}k∈K , ∅ 6=
Sk ⊆ S is said to be a partition of S if it satisfies

{
Sk ∩ Sk′ = ∅, k 6= k′, k, k′ ∈ K,
S =

⋃
k∈K Sk.

Especially for an FCS F , a partition of S, {Sk} such that Sk ∈ F for all k, is said
to be an F-partition of S. PF (S) denotes the set of all F-partitions of S.

For a coalition S ⊆ N and an FCS F , a subset of S is said to be an F-component
of S if it is a maximal subset of S in F . CF (S) denotes the set of all F-components
of S.

Definition 3. Let F be an FCS and v ∈ ΓN . Then the restricted game of v by F ,
vF ∈ ΓN , is defined as follows:

vF (S) = max

{∑

k∈K
v(Sk) | {Sk}k∈K ∈ PF (S)

}
, ∀S ⊆ N.

Special classes of FCS have been investigated. In this paper, we deal with parti-
tion systems in the special class.
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Definition 4. An FCS F is said to be a partition system (PS for short) if CF (S)
is a partition of S for all S ⊆ N .

Proposition 1. (see [3]) An FCS F is a PS if and only if S ∪ T ∈ F for any
S, T ∈ F such that S ∩ T 6= ∅.

Proposition 2. ([3]) If v ∈ ΓN is superadditive and FCS F is a PS, then

vF (S) =
∑

T∈CF (S)

v(T ), ∀S ⊆ N.

Given an FCS F and a game v ∈ ΓN , we define the restricted dividends of T ∈ F
in the game v in the following recursive manner:

dFT (v) =





0, if T = ∅,

v(T )−
∑

S⊂T,S∈F
dFS (v), if T 6= ∅, T ∈ F .

The following theorem is useful because we are able to calculate the dividends in the
restricted games without calculating the restricted game.

Theorem 1. If a game v ∈ ΓN is superadditive and an FCS F is a PS, then

dT (vF ) =
{

0, if T /∈ F ,
dFT (v), if T ∈ F .

P r o o f . Note that dT (vF ) = dFT (v) = 0 for T = ∅. We prove the theorem by
induction. First let T = {i} for any i ∈ N . Then T ∈ F and, by Proposition 2,

dT (vF ) = vF (T ) = v(T ) = dFT (v).

Next consider the case |T | > 1 and T ∈ F . Then

dT (vF ) = vF (T )−
∑

S⊂T
dS(vF ) = v(T )−

∑

S⊂T,S∈F
dFS (v) = dFT (v).

Finally, consider the case |T | > 1 and T 6∈ F with CF (T ) = {T1, . . . , Tl}. Then

dT (vF ) = vF (T )−
∑

S⊂T
dS(vF ) =

l∑

j=1

v(Tj)−
∑

S⊂T,S∈F
dFS (v).

If S ⊂ T and S ∈ F , then there exists k ∈ {1, . . . , l} such that S ∩ Tk 6= ∅. Since F
is a PS, S ∪ Tk ∈ F by Proposition 1. In view of maximality of Tk, S ∪ Tk = Tk,
which implies that S ⊆ Tk. Hence

dT (vF ) =
l∑

j=1

{v(Tj)−
∑

S⊂Tj ,S∈F
dFS (v)} = 0.

This complete the proof of the theorem. ¤
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3. COOPERATIVE FUZZY GAMES WITH RESTRICTION
ON COALITIONS

In a cooperative game, the coalition S is identified with the vector eS , defined by
eSi = 1 if i ∈ S and eSi = 0 otherwise, and the domain 2N of the characteristic
function v is identified with {0, 1}n, i. e., v : {0, 1}n → R. Hence extending {0, 1}n
to [0, 1]n implies extending ordinary coalitions to fuzzy coalitions. Thus, given the
player set N , a cooperative fuzzy game ξ on N is a function from [0, 1]n to R with
ξ(0) = 0. The set of all cooperative fuzzy games is denoted ∆N . Let s ∈ [0, 1]n

be a fuzzy coalition which is a fuzzy subset of N . Then, for a fuzzy coalition
s = (s1, . . . , sn), each element si of s indicates the membership grade of i in s, i. e.,
the rate of ith player’s participation in s.

In this paper we use the following notations. First, the vector e{i} is simply
denoted by ei. For s, t ∈ [0, 1]n, vectors s ∨ t and s ∧ t ∈ [0, 1]n are defined by

(s ∨ t)i = max{si, ti},
(s ∧ t)i = min{si, ti},

For s ∈ [0, 1]n, let supp s = {i ∈ N | si > 0}. In this paper, for s, t ∈ [0, 1]n, s ≤ t
means that si ≤ ti, ∀ i and s < t means that s ≤ t and s 6= t.

Then superadditivity and convexity in a cooperative fuzzy game are defined as
extensions of them in a cooperative game.

Definition 5. A cooperative fuzzy game ξ ∈ ∆N is said to be

1. strongly superadditive if ξ(s)+ξ(t) ≤ ξ(s+ t), ∀ s, t ∈ [0, 1]n s.t. s+ t ∈ [0, 1]n.

2. weakly superadditive if ξ(s) + ξ(t) ≤ ξ(s ∨ t), ∀ s, t ∈ [0, 1]n s.t. s ∧ t = 0.

3. convex if ξ(s) + ξ(t) ≤ ξ(s ∨ t) + ξ(s ∧ t), ∀ s, t ∈ [0, 1]n.

It is obvious that if the game ξ is strongly superadditive, then it is weakly super-
additive. If ξ is convex, it is weakly superadditive. In Brânzei [4], a fuzzy game is
said to be convex if it satisfies the coordinate-wise convexity condition in addition
to the inequality in the above definition.

The sum of two games ξ, ξ′ ∈ ∆N and the scalar multiplication of ξ by α ∈ R is
defined by {

(ξ + ξ′)(s) = ξ(s) + ξ′(s), ∀ s ∈ [0, 1]n,

(αξ)(s) = αξ(s), ∀ s ∈ [0, 1]n,
respectively.

Now we deal with the cooperative fuzzy game with restrictions on fuzzy coalitions.
For a set F ⊆ [0, 1]n and a vector s ∈ [0, 1]n, a vector t ∈ [0, 1]n is said to be

F -vector of s if

t ≤ s, t ∈ F, and t ≤ t′ ≤ s with t′ ∈ F imply that t′ = t

and CF (s) is the set of all F -vectors of s.
First, FFCS is defined as follows:
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Definition 6. A set F ⊆ [0, 1]n is said to be a feasible fuzzy coalition system
(FFCS for short) if it satisfies the following two conditions:

F1. αei ∈ F, ∀α ∈ [0, 1].

F2. For any s ∈ [0, 1]n and t ∈ F such that t ≤ s, there exists t̄ ∈ CF (s) such that
t ≤ t̄.

For a fuzzy coalition s ∈ [0, 1]n, {s1, . . . , sl} ⊆ [0, 1]n such that
∑l
j=1 s

j = s is
said to be a partition of s. Especially for an FFCS F , a partition of s, {s1, . . . , sl}
such that sj ∈ F for all j = 1, . . . , l, is said to be an F -partition of s. PF (s) denotes
the set of all F -partitions of s.

We extend the restricted game of cooperative games to cooperative fuzzy games.

Definition 7. Let ξ ∈ ∆N be a cooperative fuzzy game and F be an FFCS. Then
the restricted game of ξ by F , ξF ∈ ∆n, is defined as follows:

ξF (s) = sup
{ l∑

j=1

ξ(sj)
∣∣∣ {s1, . . . , sl} ∈ PF (s)

}
, ∀ s ∈ [0, 1]n.

Clearly, if ξ is strongly superadditive and s ∈ F , we have ξF (s) = ξ(s).

Definition 8. FFCS F is said to be a partition fuzzy system (PFS for short) if
CF (s) is a partition of s for any s ∈ [0, 1]n.

For s ∈ [0, 1]n and T ⊆ N , s|T is defined as follows:

(s|T )i =

{
si, if i ∈ T,
0, if i /∈ T.

Proposition 3. (see [7]) The following conditions are equivalent.

1. An FFCS F is a PFS.

2. For any s ∈ [0, 1]n, there exists a partition {I1, . . . , Il} of N such that

CF (s) = {s|I1 , . . . , s|Il}.

3. If s, t ∈ F and s ∧ t 6= 0, then s ∨ t ∈ F .

Proposition 4. (see [7]) Let s ∈ [0, 1]n be a fuzzy coalition and let ξ ∈ ∆N be a
cooperative fuzzy game. For an FFCS F, if CF (s) is a partition of s and ξ is strongly
superadditive, then the following holds:

ξF (s) =
∑

t∈CF (s)

ξ(t).
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4. COOPERATIVE FUZZY GAMES AS EXTENSIONS OF ORDINARY
COOPERATIVE GAMES

In this section, we introduce cooperative fuzzy games as extensions of ordinary
cooperative games.

Let g be a mapping of ΓN into ∆N with the following three properties:

• For each v ∈ ΓN , the value g(v) of g at v is an extension of v.

• g(v + w) = g(v) + g(w), ∀ v, w ∈ ΓN

• g(αv) = αg(v), ∀α ∈ R, ∀ v ∈ ΓN

Moreover, let G denote the set of all such functions for ΓN and ∆N . Now we can
define two different concepts in a natural way; namely, “U -extension with respect to
a given g ∈ G” and “U -extension”.

Definition 9. Let g be an element of G. A cooperative fuzzy game ξ ∈ ∆N is said
to be a (Ug)-extension of v ∈ ΓN if ξ = g(v).

Definition 10. A cooperative fuzzy game ξ ∈ ∆N is said to be a U -extension of
v ∈ ΓN if there exists g ∈ G such that ξ = g(v).

Note that according to these definitions, a cooperative fuzzy game ξ ∈ ∆N is a
U -extension of v ∈ ΓN if and only if it is an (Ug)-extension for some g ∈ G. In
the following, when we consider U -extensions, we fix some g ∈ G and denote the
(Ug)-extension g(v) of v simply by ξv without ambiguity.

If ξv is a U -extension of v, it can be represented as a linear combination of the
U -extensions ξuT of the unanimity games uT as ξv =

∑
T⊆N dT (v)ξuT . Moreover,

we assume two additional conditions, restriction invariance and monotonicity, on
extensions to obtain W -extensions.

Definition 11. A cooperative fuzzy game ξ ∈ ∆N is said to be a W -extension of
v ∈ ΓN if it is a U-extension of v ∈ ΓN and if

W1. ξuT (s) = ξuT (s|T ), ∀ s ∈ [0, 1]n,

W2. ξuT (s) ≤ ξuT (t), ∀ s, t ∈ [0, 1]n s.t. s ≤ t.

Since the space ΓN of all cooperative games on N is a linear space and the set of
unanimity games forms a basis, a U -extension of any game v is specified by those of
unanimity games. We obtain a stronger result for a W -extension.
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Proposition 5. If ξ ∈ ∆N is a W -extension of v ∈ ΓN , then

ξv(s) =
∑

T⊆supp s

dT (v)ξuT (s) ∀ s ∈ [0, 1]n.

P r o o f . Let s ∈ [0, 1]n. Then, by Definition 11, we have

ξuT (esupp s) =

{
1, T ⊆ supp s,

0, otherwise.

Suppose T 6⊆ supp s. Then, we have 0 ≤ s ≤ esupp s. Since it follows from W2 that

0 = ξuT (0) ≤ ξuT (s) ≤ ξuT (esupp s) = 0,

we have ξuT (s) = 0. Therefore, we have

ξv(s) =
∑

T⊆N
dT (v)ξuT (s) =

∑

T⊆supp s

dT (v)ξuT (s).
¤

Two well-known examples of W -extensions are the multilinear extension and the
Lovász extension. The multilinear extension mv of v, introduced by Owen [9], is
given by

muT (s) =
∏

i∈T
si.

On the other hand, the Lovász extension [5] lv of v is given by

luT (s) = min
i∈T

si.

Some properties of these extensions are given in Bilbao [3] and Tanino [10].

Proposition 6. If a cooperative game v ∈ ΓN is superadditive, then its Lovász
extension lv ∈ ∆N is weakly superadditive.

Proposition 7. If a cooperative game v ∈ ΓN is convex, then its Lovász extension
lv ∈ ∆N is convex.

Proposition 8. A cooperative game v ∈ ΓN is convex if and only if its Lovász
extension lv ∈ ∆N is strongly superadditive.
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5. COOPERATIVE FUZZY GAMES EXTENDED FROM COOPERATIVE
GAMES UNDER RESTRICTIONS ON COALITIONS

In this section we take two approaches to cooperative fuzzy games extended from
ordinary cooperative games with restrictions on coalitions. We show sufficient con-
ditions under which these obtained games in two approaches coincide.

We consider a cooperative game v ∈ ΓN with an FCS F . In order to deal with
both restrictions on coalitions and partial cooperations of players, we would like to
extend the game v to a cooperative fuzzy game and also to restrict the game under
the FCS. We may consider two approaches:

1. First we define the restricted game vF and then extend it to a cooperative
fuzzy game.

2. First we extend v to a cooperative fuzzy game and then define its restricted
game.

For the second approach, we have to consider a fuzzy set system F (F) corre-
sponding to the FCS F as follows:

F (F) = {s ∈ [0, 1]n | supp s ∈ F}.

Lemma 1. For any s, t ∈ [0, 1]n, the following hold:

supp (s ∨ t) = (supp s) ∪ (supp t),
supp (s ∧ t) = (supp s) ∩ (supp t).

P r o o f .

i ∈ supp (s ∨ t) ⇔ (s ∨ t)i > 0⇔ max{si, ti} > 0⇔ i ∈ supp s or i ∈ supp t

⇔ i ∈ (supp s) ∪ (supp t).

i ∈ supp (s ∧ t) ⇔ (s ∧ t)i > 0⇔ min{si, ti} > 0⇔ i ∈ supp s and i ∈ supp t

⇔ i ∈ (supp s) ∩ (supp t). ¤

Proposition 9. If F is an FCS, then the corresponding F (F) is an FFCS.

P r o o f . Observe that ∅ ∈ F and i ∈ F , ∀ i ∈ N from the definition of FCS.

F1. For α ∈ [0, 1],

supp (αei) = supp 0 = ∅ ∈ F if α = 0,
supp (αei) = {i} ∈ F if α > 0.
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F2. Let s ∈ [0, 1]n and t ∈ F (F) such that t ≤ s. There exists T ∈ CF (supp s)
such that supp t ⊆ T . We show that t ≤ s|T and s|T ∈ CF (F)(s). We have t ≤ s|T
since supp t ⊆ T and t ≤ s. Hence we show that s|T ∈ F (F) and s|T is maximal in
order to show s|T ∈ CF (F)(s). Since supp s|T = T ∈ F , we have s|T ∈ F (F). Now
suppose that s|T ∈ F (F) is not maximal. Then,

∃ s′ ∈ F (F) : s|T < s′ ≤ s, supp s|T 6= supp s′

⇔ ∃ s′ ∈ [0, 1]n : supp s′ ∈ F , supp (s|T ) ⊂ supp s′ ⊆ supp s.

This contradicts T ∈ CF (supp s) from supp (s|T ) = T . Therefore, s|T ∈ F (F) and
s|T is maximal. ¤

Proposition 10. If F is an PS, then the corresponding F (F) is an PFS.

P r o o f . By Proposition 9, the corresponding F (F) is an FFCS if F is an FCS.
Let s, t ∈ F (F) such that s∧t 6= 0. We have supp s, supp t ∈ F and supp s∩supp t =
supp (s ∧ t) 6= ∅ by Lemma 1, and we have supp s ∪ supp t = supp (s ∨ t) ∈ F from
assumption and Proposition 1. Therefore, we have s∨ t ∈ F (F), and therefore F (F)
is a PFS by Proposition 3. ¤

Lemma 2. Let F (F) be the FFCS corresponding to an FCS F . For any s ∈ [0, 1]n,
let CF (supp s) = {I1, . . . , Il}.
Then the set of all F(F)-vectors of s is given by

CF (F)(s) = {s|I1 , . . . , s|Il}.

P r o o f . We first show that s|Ik ∈ CF (F)(s) for k ∈ {1, . . . , l}. We have s|Ik ∈
F (F) from supp (s|Ik) = Ik ∈ F . Suppose that s|Ik ∈ F (F) is not maximal. We
have

∃ s′ ∈ F (F) : s|Ik < s′ ≤ s, supp s|Ik 6= supp s

⇔ ∃ s′ ∈ [0, 1]n : supp s′ ∈ F , supp (s|Ik) ⊂ supp s′ ⊆ supp s.

Since supp (s|Ik) = Ik, this contradicts the maximality of Ik. Therefore, we have
s|Ik ∈ F (F) and s|Ik is maximal.

We show that for t ∈ CF (F)(s) there exists k ∈ {1, . . . , l} satisfying that t = s|Ik .
We have supp t ∈ F from t ∈ F (F). Then there exists k ∈ {1, . . . , l} satisfying that
supp t ⊆ Ik since supp t ⊆ supp s by t ≤ s and Ik is an F-component of supp s.
Moreover, we have

t = t|Ik ≤ s|Ik ≤ s,
and by the definition of F (F)-vector, we have t = s|Ik . Therefore,

CF (F)(s) = {s|I1 , . . . , s|Il}. ¤
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Lemma 3. Let F be a PS. For any s ∈ [0, 1]n, let

CF (supp s) = {I1, . . . , Il}.
Then the following holds:

{T ∈ F | ∅ 6= T ⊆ supp s} = {T ∈ F | T 6= ∅, ∃ 1k ∈ {1, . . . , l} : T ⊆ Ik}.

P r o o f . (⊇) Suppose that there exists a unique k ∈ {1, . . . , l} satisfying that
T ⊆ Ik for T ∈ F . Since (N,F) is a PS and CF (supp s) = {I1, . . . , Il}, we have
T ⊆ Ik ⊆ supp s. Therefore, we have

{T ∈ F | ∅ 6= T ⊆ supp s} ⊇ {T ∈ F | T 6= ∅, ∃ 1 k ∈ {1, . . . , l} : T ⊆ Ik}.
(⊆) Let T ∈ F such that ∅ 6= T ⊆ supp s. There exists k ∈ {1, . . . , l} satisfying that
T ⊆ Ik since CF (supp s) = {I1, . . . , Il}. In order to prove that this k is unique, we
suppose k1, k2 ∈ {1, . . . , l} such that T ⊆ Ik1 ,T ⊆ Ik2 and k1 6= k2. Then we have

Ik1 ∩ Ik2 ⊇ T 6= ∅.
But this contradicts that {I1, . . . , Il} is a partition of supp s since (N,F) is a PS.
Therefore, we have

{T ∈ F | ∅ 6= T ⊆ supp s} ⊆ {T ∈ F | T 6= ∅, ∃ 1 k ∈ {1, . . . , l} : T ⊆ Ik}. ¤

Let v ∈ ΓN be a superadditive game, F be a PS on N and ξ be a W -extension
of v ∈ ΓN . For s ∈ [0, 1]n, let CF (supp s) = {I1, . . . , Il}. Since ξvF is a W -extension
of vF , we have, by Proposition 5,

ξvF (s) =
∑

T⊆supp s

dT (vF )ξuT (s|T ).

Notice that dT (vF ) = 0 for T 6∈ F by Theorem 1 since F is a PS, and we have

ξvF (s) =
∑

T∈F,T⊆supp s

dT (vF )ξuT (s|T ).

Then we have

ξvF (s) =
l∑

j=1

∑

T∈F ,T⊆Ij
dT (vF )ξuT (s|T ). (1)

On the other hand, suppose ξv is strongly superadditive. Now we have CF (F)(s) =
{s|I1 , . . . , s|Il} by Lemma 2 since CF (supp s) = {I1, . . . , Il}. F (F) is a PFS since
F is a PS and Proposition 10. Notice that F (F) is an FFCS and a PFS and ξv is
strongly superadditive. Then, from Proposition 4, we have

(ξv)F (F)(s) =
∑

t∈CF (F)(s)

ξv(t) =
∑

t∈CF (F)(s)

∑

T⊆N
dT (v)ξuT (t)

=
l∑

j=1

∑

T⊆N
dT (v)ξuT (s|Ij ).
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Therefore, by Proposition 5, we have

(ξv)F (F)(s) =
l∑

j=1

∑

T⊆supp s|Ij

dT (v)ξuT (s|Ij ).

Notice that supp s|Ij = Ij and (s|Ij )|T = s|T for T ⊆ supp s|Ij , and we have

(ξv)F (F)(s) =
l∑

j=1

∑

T⊆Ij
dT (v)ξuT (s|T ). (2)

Therefore, (1) and (2) are generally different. We consider sufficient conditions for
the equality of these two values. In order to show sufficient conditions, we introduce
subcomplete system as follows.

Definition 12. An FCS F is said to be subcomplete if it satisfies

T ∈ F , S ⊆ T ⇒ S ∈ F .

A subcomplete FCS is simply written as SCS.

Lemma 4. If v ∈ ΓN is superadditive and F is a PS and an SCS, then for any
T ∈ F

dT (vF ) = dT (v)

P r o o f . Since (N,F) is an SCS and vF (S) = v(S) for S ∈ F , we have

dT (vF ) =
∑

S⊆T
(−1)|T |−|S|vF (S) =

∑

S⊆T
(−1)|T |−|S|v(S) = dT (v). ¤

Theorem 2. Let ξ be a W -extension of a cooperative game v ∈ ΓN and F (F)
be the FFCS corresponding to an FCS F . If v is superadditive, ξv is strongly
superadditive and F is an SCS and a PS, then

ξvF = (ξv)F (F).

P r o o f . Since F is an SCS, T ⊆ Ij and Ij ∈ F , we have T ∈ F . Then, from (1),
we have

ξvF (s) =
l∑

j=1

∑

T∈F ,T⊆Ij
dT (vF )ξuT (s|T ) =

l∑

j=1

∑

T⊆Ij
dT (vF )ξuT (s|T ). (3)

From (2) and (3), we have

(ξv)F (F)(s) =
l∑

j=1

∑

T⊆Ij
dT (v)ξuT (s|T ) = ξvF (s). ¤
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