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Fabrizio Durante, José Juan Quesada–Molina and Carlo Sempi

We characterize some bivariate semicopulas and, among them, the semicopulas satisfying
a Lipschitz condition. In particular, the characterization of harmonic semicopulas allows
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stochastic processes are given.
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1. INTRODUCTION

A (bivariate) semicopula is a function from the unit square [0, 1]2 into the unit
interval [0, 1] that is increasing in each argument and which has neutral element 1.
For the first time, this term was used by B. Bassan and F. Spizzichino ([8]) in their
investigations on the bivariate notion of aging. Instead, the study of semicopulas in
the context of aggregation operators can be found in [15] and [11].

Note that, in the context of fuzzy theory, semicopulas are often used under the
name of conjunctors, an extension of a boolean conjunction from {0, 1} to the whole
interval [0, 1] (see, e. g., [4]). Recently, in fuzzy preference modelling, conjunctors are
used to define a general notion of transitivity for fuzzy relations and, in particular,
some special classes of 1-Lipschitz conjunctors are considered ([5, 6]). A semicopula
is also a generalization of the concepts of copula and quasi-copula, which are largely
used in statistics (see [24]).

These two sources, fuzzy theory and statistics, motivate the problems here pre-
sented. Sections 2 and 3 are devoted, respectively, to the characterization of some
basic semicopulas, which are also t-norms ([18]), and of the class of k-Lipschitz semi-
copulas; in particular, a new class of 1-Lipschitz semicopulas (i. e. quasi-copulas) is
constructed, generalizing a family already used in the study of cycle-transitivity of
fuzzy relations ([7]). The characterization of harmonic semicopulas will also induce
new results in the study of dependence between random variables (subsection 2.1).

Finally, (Section 5), we speculate about the definition of multivariate semicopu-
las. In particular, we present two interesting connections between semicopulas and,
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respectively, the theory of stochastic processes and that of fuzzy measures.

2. BASIC PROPERTIES AND CHARACTERIZATIONS

A function S : [0, 1]2 → [0, 1] is a semicopula if, and only if, it satisfies the two
following conditions:

S(x, 1) = S(1, x) = x for all x in [0, 1]; (1)

S(x, y) ≤ S(x′, y′) for all x ≤ x′ and y ≤ y′. (2)

In other words, a semicopula is a binary aggregation operator with neutral element 1
and, consequently, annihilator 0. Important examples of semicopulas are the func-
tions M , Π and W , given by

M(x, y) = min{x, y}, Π(x, y) = xy, W (x, y) = max{x + y − 1, 0}.

A semicopula S is 1-Lipschitz if, and only if, for all x, x′, y, y′ in [0, 1],

|S(x, y)− S(x′, y′)| ≤ |x− x′|+ |y − y′|. (3)

A 1-Lipschitz semicopula is called a quasi-copula, a concept introduced by C. Alsina,
R.B. Nelsen and B. Schweizer (see [2]) in order to characterize binary operations
on distribution functions (=d. f.’s) that can be derived from operations on random
variables defined on the same probability space. Quasi-copulas were characterized
in [16] and, now, they are used both in finding pointwise best-possible bounds in the
set of d. f.’s with given marginals ([23]) and in the study of cycle-transitivity between
two random variables (see [5, 6]). Notice that M , Π and W are quasi-copulas and
that, for every quasi-copula Q, one has

W (x, y) ≤ Q(x, y) ≤ M(x, y) for every (x, y) ∈ [0, 1]2. (4)

A semicopula S is called copula if it satisfies the moderate growth property, namely
for all points x, x′, y and y′ in [0, 1] with x ≤ x′ and y ≤ y′,

S(x′, y′) + S(x, y) ≥ S(x, y′) + S(x′, y).

In particular, one proves that every copula is also a quasi-copula. The great im-
portance of copulas in statistics stems from Sklar’s Theorem: given two continuous
random variables (=r. v.’s) X and Y with joint d.f. H and marginal d.f.’s FX and
FY , there exists a unique copula C such that H(x, y) = C(FX(x), FY (y)) for every
x and y in R (see [22] for more details).

At a first glance, the definition of semicopula might appear somewhat more gen-
eral than actually is. In this sense, it will be shown in this section that condition
(1) is quite restrictive and that it allows to characterize some basic semicopulas.
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Proposition 1. Let S be a semicopula. The following statements are equivalent:

(a) S is concave;

(b) S is super-homogeneous, viz. S(λx, λy) ≥ λS(x, y) for all x, y and λ in [0, 1];

(c) S is idempotent, viz. S(x, x) = x for every x ∈ [0, 1];

(d) S = M .

P r o o f . If S is concave, then S(λx, λy) = S(λ(x, y) + (1 − λ)(0, 0)) ≥ λS(x, y),
and (b) holds. If S is super-homogeneous, then S(x, x) ≥ xS(1, 1) = x, which
together with S(x, x) ≤ S(x, 1) = x, leads to (c). If S is idempotent, then M(x, y) =
S(M(x, y),M(x, y)) ≤ S(x, y) and, since S(x, y) ≤ min{S(x, 1), S(1, y)} = M(x, y),
this implies S = M . Finally, it is clear that M is concave. 2

Proposition 2. Let S be a semicopula. The following statements are equivalent:

(a) S is convex and 1-Lipschitz;

(b) S is a function of the sum of its arguments, i. e. S(x, y) = F (x + y) for some
function F from [0, 2] into [0, 1];

(c) S = W .

P r o o f . (a) =⇒ (b) Suppose that S is convex and 1-Lipschitz. If x+y ≤ 1, define
λ := y/(x + y), which is in [0, 1]; then (x, y) = λ(0, x + y) + (1− λ)(x + y, 0). Now,
since S is convex,

0 ≤ S(x, y) ≤ λS(0, x + y) + (1− λ)S(x + y, 0) = 0;

therefore, S(x, y) = 0. If x + y ≥ 1, define λ := (1 − y)/[2 − (x + y)], which is in
[0, 1], in order to obtain (x, y) = λ(1, x + y− 1) + (1− λ)(x + y− 1, 1). Again, since
S is convex,

S(x, y) ≤ λS(1, x + y − 1) + (1− λ)S(x + y − 1, 1) = x + y − 1,

and, since it is 1-Lipschitz,

S(1, 1)− S(x, y) ≤ 1− x + 1− y.

Therefore S(x, y) = x + y − 1, and (b) holds.
(b) =⇒ (c) Suppose that there exists a function F from [0, 2] into [0, 1] such

that S(x, y) = F (x + y). If t is in [0, 1], then F (t) = S (0, t) = 0, and if t is
in [1, 2], then F (t) = S(1, t − 1) = t − 1. Therefore, F (t) = max{0, t − 1}, and
S(x, y) = F (x + y) = max{x + y − 1, 0} = W (x, y).

Finally, it is clear that W is convex and 1-Lipschitz. 2
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Proposition 3. The following properties are equivalent for a semicopula S:

(a) S is positively homogeneous with respect to one variable, viz. for every x, y,
λ in [0, 1], either S(x, λy) = λS(x, y) or S(λx, y) = λS(x, y);

(b) S has separate variables, viz. there exist two functions F1 and F2 defined from
[0, 1] into [0, 1] such that S(x, y) = F1(x) · F2(y);

(c) S has linear sections in both the variables;

(d) S = Π.

P r o o f . Without loss of generality assume that S is homogeneous with respect
to the first variable; then

S(x, y) = xS(1, y) = xy;

therefore (a) implies (b).
Let S be a semicopula with separate variables. Notice that one has both F1(1) 6= 0

and F2(1) 6= 0 since F1(1)F2(1) = S(1, 1) = 1. Then, from (1), for all x ∈ [0, 1]

S(1, x) = x = F1(1)F2(x) and S(x, 1) = x = F1(x)F2(1).

Therefore
S(x, y) = F1(x) · F2(y) =

xy

F1(1)F2(1)
= xy.

Now, suppose that (b) holds and let S(x, y) = F1(x) · F2(y) be a semicopula.
From S(1, 1) = 1, it follows that F1(1) = F2(1) = 1 and, hence, S(x, 1) = F1(x) = x.
Therefore, for every a ∈ [0, 1], one has S(x, a) = F1(x) · F2(a) = F2(a) · x, viz. the
horizontal section of S at the point a is linear. The same result holds for the vertical
section of S.

If S has linear sections in both the variables, then S(x, a) = ax for every a and
x in [0, 1], viz. S = Π. Finally, Π obviously satisfies (a). 2

2.1. Superharmonic and subharmonic semicopulas

Let Ω be an open subset of R2. A twice continuously differentiable function F : Ω →
R is said to be harmonic if

∆F (x, y) :=
∂2F (x, y)

∂x2
+

∂2F (x, y)
∂y2

= 0 for all (x, y) ∈ Ω.

Moreover, such a function F is said to be superharmonic (resp. subharmonic) if
∆F ≤ 0 (resp. ∆F ≥ 0). For more details on harmonic function theory, see [3].
Here two important results for harmonic functions are recalled.

Theorem 1. (Maximum-minimum principle for harmonic functions)
Let Ω be a connected open subset of R2 and F a harmonic function on Ω. If F has
either a maximum or a minimum on Ω, then F is constant on Ω.
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Theorem 2. Let Ω be a connected open subset of R2 and F a superharmonic
(respectively, subharmonic) function on Ω. If F has a minimum (respectively, a
maximum) on Ω, then it is constant on Ω.

Proposition 4. The only harmonic semicopula is Π.

P r o o f . It is easily shown that Π is harmonic. Suppose that there exists another
harmonic semicopula F and let (x0, y0) be a point in ]0, 1[2 such that Π(x0, y0) 6=
F (x0, y0). Now, G := F − Π is a harmonic function that vanishes on the boundary
of [0, 1]2. Therefore, G has either a maximum or a minimum on ]0, 1[2, and, in view
of the maximum-minimum principle for harmonic functions, G is constant, and this
constant is equal to zero, viz. F = Π. 2

Corollary 1. If S is a superharmonic (resp. subharmonic) semicopula, then, for
every (x, y) ∈ [0, 1]2, S(x, y) ≥ Π(x, y) (resp. S(x, y) ≤ Π(x, y)).

P r o o f . If S is a superharmonic semicopula, then G := S − Π is also superhar-
monic; moreover, it vanishes on the boundary of [0, 1]2. Therefore, S(x, y)−Π(x, y) ≥
0, for every (x, y) in [0, 1]2, because, otherwise, Theorem 2 would imply S = Π. A
similar argument holds for subharmonic semicopulas. 2

This simple remark turns out to be important when one restricts one’s attention
to copulas

S(x′, y′) + S(x, y) ≥ S(x, y′) + S(x′, y).

In view of Sklar’s Theorem, a copula can be uniquely associated to a continuous ran-
dom pair (X,Y ) and describes its dependence properties (see [22] for more details),
as asserted below.

Proposition 5. Let X and Y be continuous r. v.’s with copula C. Then the
following statements are equivalent:

(a) X and Y are positively quadrant dependent (shortly, PQD), viz. for every
(x, y) in R2, P (X ≤ x, Y ≤ y) ≥ P (X ≤ x)P (Y ≤ y);

(b) C(x, y) ≥ Π(x, y) for every (x, y) ∈ [0, 1]2.

Proposition 6. Let X and Y be continuous r. v.’s with copula C. Then the
following statements are equivalent:

(a) Y is stochastically increasing in X (shortly SI(Y |X)), viz. the mapping x 7→
P (Y > y|X = x) is an increasing function for all y;

(b) the mapping x 7→ C(x, y) is concave for every y ∈ [0, 1].
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Proposition 7. Let X and Y be continuous r. v.’s with copula C. Then the
following statements are equivalent:

(a) X is stochastically increasing in Y (shortly SI(X|Y )), viz. the mapping y 7→
P (X > x|Y = y) is an increasing function for all x;

(b) the mapping y 7→ C(x, y) is concave for every x ∈ [0, 1].

By obvious modifications of the above inequalities, analogous results can also be
given for the symmetric concepts of negative quadrant dependence (shortly, NQD)
and stochastical decreasingness (briefly, SD).

Proposition 8. Let (X,Y ) be a continuous random pair with copula C. If C is
superharmonic, then (X,Y ) is positively quadrant dependent. Analogously, if C is
subharmonic, then (X,Y ) is negatively quadrant dependent.

Proposition 9. Let (X,Y ) be a continuous random pair with a twice-differentiable
copula C.

(a) If Y is stochastically increasing in X (briefly, SI(Y |X)) and if X is stochasti-
cally increasing in Y (briefly, SI(X|Y )), then C is superharmonic.

(b) If Y is stochastically decreasing in X (briefly, SD(Y |X)) and if X is stochas-
tically decreasing in Y (briefly, SD(X|Y )), then C is subharmonic.

P r o o f . In view of Propositions 6 and 7, the property SI(Y |X) is equivalent
to the concavity of the function x 7→ C(x, y) for every y ∈ [0, 1], and SI(X|Y ) is
equivalent to the concavity of the function y 7→ C(x, y) for every x ∈ [0, 1]. Because
C is twice differentiable, it follows that ∂2

xxC(x, y) ≤ 0 and ∂2
yyC(x, y) ≤ 0, from

which ∆C(x, y) ≤ 0. The proof of part (b) is analogous. 2

This fact allows to introduce the concepts of super- and sub-harmonicity in the
scheme of bivariate dependence concepts.

SI(Y|X) & SI(X|Y) =⇒ Superharmonicity =⇒ PQD(X,Y)

SD(Y|X) & SD(X|Y) =⇒ Subharmonicity =⇒ NQD(X,Y)

The converse implications in the above schemes are, in general, false.

Example 1. Consider the class of copulas given by Cfg(x, y) = xy + λf(x) g(y),
where f and g are suitable functions and λ > 0 (see [25]). One has

∆Cfg(x, y) = λ(f ′′(x) g(y) + f(x) g′′(y)).
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If f(t) = t(1− t)2 and g(t) = t(1− t), then Cfg is a PQD copula, but

∆Cfg(x, y) = λ
[
(6x− 4)y(1− y)− 2x(1− x)2

]

is (strictly) positive on the set {(x, y) ∈ [0, 1]2 : x = 1} and it is (strictly) negative
on the set {(x, y) ∈ [0, 1]2 : 0 ≤ x < 2/3}; thus Cfg is neither superharmonic nor
subharmonic.

Analogously, one can find two functions f and g such that Cfg is superharmonic,
but f and g are not both concave and, thus, Cfg is not SI(Y |X) and SI(X|Y ).

3. k–LIPSCHITZ SEMICOPULAS

A semicopula S is said to be k-Lipschitz if there exists a constant k such that, for
all x, x′, y and y′ in [0, 1],

|S(x, y)− S(x′, y′)| ≤ k (|x− x′|+ |y − y′|) . (5)

Notice that one necessarily has k ≥ 1, as can easily be seen from the inequality
S(1, 1)−S(1, x) = 1−x ≤ k(1−x) for all x ∈ [0, 1]. The k-Lipschitz property ensures
the stability of an aggregation operator, in the sense that, roughly speaking, small
input errors give small output errors. This property has recently been studied, in
the case of triangular norms, by several authors inspired by an open problem posed
in [1] (see also [21] and [17]).

For every k-Lipschitz semicopula S, the following bounds hold (see [20]):

max{0, min{x, y} − k(1−max{x, y})} ≤ S(x, y) ≤ M(x, y). (6)

Obviously, for k = 1, i. e. for quasi-copulas, one obtains inequalities (4).
In general, several results about quasi-copulas can be extended, with slight mod-

ifications, to the class Sk of k-Lipschitz semicopulas. In particular:

(a) Sk is convex;

(b) Sk is compact under the topology of uniform convergence;

(c) Sk is a complete lattice with respect to the pointwise ordering.

Below a characterization of k-Lipschitz semicopulas is given.

Theorem 3. Let S be a semicopula. If the mappings x 7→ S(x, y) and y 7→
S(x, y) are differentiable on [0, 1] except at countably many points, then the following
statements are equivalent:

(a) S is a k-Lipschitz semicopula;

(b) S satisfies the following two conditions:

(b1) S is continuous;
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(b2) for every (x, y) in [0, 1]2 in which S admits first-order partial derivatives

0 ≤ ∂xS(x, y) ≤ k and 0 ≤ ∂yS(x, y) ≤ k.

By using Theorem 3, when k = 1, another characterization of quasi-copulas is
obtained.

The following two lemmas will be needed for the proof of Theorem 3 (see, respec-
tively, page 333 and 337 of [28]).

Lemma 1. Let f : [a, b] → R be given. If f is continuous on [a, b] and differentiable
except at countably many points of [a, b], and f ′ is Lebesgue integrable on [a, b], then
f is absolutely continuous on [a, b].

Lemma 2. Let f : [a, b] → R be given. The following statements are equivalent:

(a) for some k ∈ R, |f(x)− f(y)| ≤ k|x− y| for all x, y ∈ [a, b];

(b) f is absolutely continuous on [a, b] and |f ′(t)| ≤ k on [a, b] for some k ∈ R.

P r o o f o f T h e o r em 3. The implication (a) =⇒ (b) is trivial.
In order to prove (b) =⇒ (a), let Sy(t) := S(t, y) be the horizontal section of S at

y ∈ [0, 1] and Sx(t) := S(x, t) be the vertical section of S at x ∈ [0, 1]. The functions
Sx and Sy are continuous, differentiable on [0, 1] except at countably many points
and their derivatives are bounded; therefore, by Lemma 1, it follows that they are
absolutely continuous. But, now, if Sx and Sy are absolutely continuous and their
derivatives are bounded from above by k, Lemma 2 ensures that Sx and Sy are
Lipschitz with constant k. Therefore, for every (x, y) and (x′, y′) in [0, 1]2, one has

|S(x, y)− S(x′, y′)| ≤ |S(x, y)− S(x′, y)|+ |S(x′, y)− S(x′, y′)|
≤ |Sy(x)− Sy(x′)|+ |Sx′(y)− Sx′(y′)|
≤ k (|x− x′|+ |y − y′|) ,

which is the desired assertion. ¤

By simple differentiations, Theorem 3 provides also the characterizations of two
construction methods for k-Lipschitz semicopulas.

Proposition 10. Let S be a k-Lipschitz semicopula and let h : [0, 1] → [0, 1] be
an increasing bijection. The transform of S by h is the function Sh defined on [0, 1]2

by
Sh(x, y) := h−1 (S(h(x), h(y))) . (7)

Suppose that Sh admits first derivatives except at countably many points. Then Sh

is a k-Lipschitz semicopula if, and only if, a. e. on [0, 1]2

h′(x) · ∂xS(h(x), h(y)) ≤ k · h′ (Sh(x, y)) ,

h′(y) · ∂yS(h(x), h(y)) ≤ k · h′ (Sh(x, y)) .
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Proposition 11. Let A and B be k-Lipschitz semicopulas. Let H be an idempo-
tent binary aggregation operator and let F be the composition of A and B through
H defined by

F (x, y) := H(A(x, y), B(x, y)) for all (x, y) ∈ [0, 1]2. (8)

Suppose that F admits first derivatives except at countably many points. Then F
is k-Lipschitz if, and only if, a. e. on [0, 1]2

0 ≤ ∂xH(A(x, y), B(x, y)) · ∂xA(x, y) + ∂yH(A(x, y), B(x, y)) · ∂xB(x, y) ≤ k,

0 ≤ ∂xH(A(x, y), B(x, y)) · ∂yA(x, y) + ∂yH(A(x, y), B(x, y)) · ∂yB(x, y) ≤ k.

4. A NEW CLASS OF QUASI–COPULAS

In this section, we obtain a characterization of a large class of quasi-copulas, depend-
ing on two univariate functions, that includes a subclass of Archimedean t-norms
(see [18]).

The construction of new families of aggregation operators with desirable proper-
ties is often useful in real applications, where it is useful to have at disposal a large
class of aggregation operators, depending on some parameters that can be fitted to
real data. In particular, this new class generalizes a family used in [7] for the study
of fuzzy preferences.

Denote by Φ the class of all functions ϕ : [0, 1] → [0, +∞] that are continuous
and strictly decreasing, and by Ψ the class of all functions ψ : [0, 1] → [0,+∞] that
are continuous, decreasing and such that ψ(1) = 0. Moreover, set Φ0 = Φ ∩Ψ.

The pseudo-inverse of a function ϕ of Φ is defined by ϕ[−1](t) := ϕ−1(t) if t <
ϕ(0), and by ϕ[−1](t) := 0 otherwise. It can be proved that, for all t in [0, 1],
ϕ[−1] (ϕ(t)) = t, and, for all t ≥ 0, ϕ

(
ϕ[−1](t)

)
= min{t, ϕ(0)}. If ϕ(0) = +∞, then

the pseudo-inverse of ϕ coincides with its inverse, viz. ϕ[−1] = ϕ−1.
For all (ϕ, ψ) ∈ Φ×Ψ, one introduces the function Qϕ,ψ : [0, 1]2 → [0, 1] defined

by
Qϕ,ψ(x, y) := ϕ[−1] (ϕ(x ∧ y) + ψ(x ∨ y)) , (9)

where x ∧ y := min{x, y} and x ∨ y := max{x, y}.
It is easily proved that, for all x ∈ [0, 1],

Qϕ,ψ(x, 1) = ϕ[−1] (ϕ(x)) = x = Qϕ,ψ(1, x)

and Qϕ,ψ is increasing in each place, namely it is always a semicopula. Below we shall
investigate under which conditions on ϕ and ψ, Qϕ,ψ is 1-Lipschitz, and, therefore,
a quasi-copula.

Theorem 4. Let ϕ and ψ belong to Φ and to Ψ, respectively, and let Qϕ,ψ be
the function defined by (9). Then Qϕ,ψ is a quasi-copula if, and only if, the two
following statements hold:
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(a) for every r ≤ s and t ∈
[
0,

(
ψ ◦ ϕ[−1]

)
(r)

]
, one has

ϕ[−1](r + t)− ϕ[−1](s + t) ≤ ϕ[−1](r)− ϕ[−1](s);

(b) for every r ≤ s and t ≥
(
ϕ ◦ ψ[−1]

)
(r), one has

ϕ[−1](r + t)− ϕ[−1](s + t) ≤ ψ[−1](r)− ψ[−1](s).

P r o o f . It suffices to show that conditions (a) and (b) are equivalent to the
Lipschitz condition for Q := Qϕ,ψ.

Assume, first, that x1 < x2 ≤ y; then the inequality

Q(x2, y)−Q(x1, y) ≤ x2 − x1 (10)

is equivalent to

ϕ[−1] (ϕ(x2) + ψ(y))− ϕ[−1] (ϕ(x1) + ψ(y)) ≤ x2 − x1

= ϕ[−1](ϕ(x2))− ϕ[−1](ϕ(x1)).

By setting r := ϕ(x2), s := ϕ(x1), t := ψ(y), one has t ∈
[
0,

(
ψ ◦ ϕ[−1]

)
(r)

]
and

r ≤ s; moreover, the last inequality is equivalent to (a).
Next assume y ≤ x1 < x2; then inequality (10) is equivalent to

ϕ[−1] (ϕ(y) + ψ(x2))− ϕ[−1] (ϕ(y) + ψ(x1)) ≤ x2 − x1

= ψ[−1](ψ(x2))− ψ[−1](ψ(x1)).

By setting r := ψ(x2), s := ψ(x1), t := ϕ(y), one has t ≥
(
ϕ ◦ ψ[−1]

)
(s) and r ≤ s.

Because of the arbitrariness of s ≥ r, it follows that t ≥
(
ϕ ◦ ψ[−1]

)
(r) and the last

inequality is equivalent to condition (b).
The final case, x1 ≤ y ≤ x2, follows from the two previous cases, since

Q(x2, y)−Q(x1, y) = Q(x2, y)−Q(y, y) + Q(y, y)−Q(x1, y)
≤ x2 − y + y − x1 = x2 − x1,

which concludes the proof. 2

Although Theorem 4 characterizes quasi-copulas of type (9), conditions (a) and
(b) might be somewhat impractical. However, these conditions are equivalent to the
convexity of ϕ, when ϕ = ψ, as is shown by the following result.

Corollary 2. Let ϕ belong to Φ0 and let Qϕ,ϕ be a function of type (9). Then
Qϕ,ϕ is a quasi-copula if, and only if, ϕ is convex.

P r o o f . By Theorem 4, Qϕ,ϕ is a quasi-copula if, and only if, for every r ≤ s and
for every t ≥ 0, one has

ϕ[−1](r + t)− ϕ[−1](s + t) ≤ ϕ[−1](r)− ϕ[−1](s),
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which can be written in the form

ϕ[−1](r + t) + ϕ[−1](s) ≤ ϕ[−1](s + t) + ϕ[−1](r). (11)

Now, set α := t/(s + t− r), so that

r + t = α (s + t) + (1− α) r and s = (1− α) (s + t) + α r.

If ϕ is convex, so is ϕ[−1], and therefore

ϕ[−1](r + t) + ϕ[−1](s)

= ϕ[−1](α(s + t) + (1− α) r) + ϕ[−1]((1− α)(s + t) + αr)

≤ αϕ[−1](s + t) + (1− α)ϕ[−1](r) + (1− α)ϕ[−1](s + t) + αϕ[−1](r)

= ϕ[−1](s + t) + ϕ[−1](r).

Conversely, if (11) holds, then putting, for all a, b ≥ 0,

r := a, t :=
b− a

2
s :=

a + b

2

yields

2ϕ[−1]

(
a + b

2

)
≤ ϕ[−1](a) + ϕ[−1](b),

viz. ϕ[−1] is Jensen-convex; thus, because ϕ[−1] is continuous, it follows that ϕ[−1]

is convex, and hence so is ϕ. 2

In this way, one obtains the well-known fact that an Archimedean quasi-copula
is necessarily a copula (see [22]). Moreover, note that some results on a similar class
of copulas were given in [14].

A “more tractable” sufficient condition that ensures that Qϕ,ψ is a quasi-copula
is given here.

Proposition 12. Let ϕ and ψ belong to Φ and to Ψ, respectively. If ϕ is convex,
then, for the function Qϕ,ψ defined by (9), the following statements are equivalent

(a) Qϕ,ψ is a quasi-copula;

(b) for every λ ∈ [ϕ(1), ϕ(0)] the function ρλ :
[
ϕ[−1](λ), 1

]
→ R defined by

ρλ(t) := ϕ[−1] (λ + ψ(t))− t is decreasing.

P r o o f . In order to show that Q := Qϕ,ψ is 1-Lipschitz, assume, first, x1 ≤ x2 ≤
y. Then the inequality

Q(x2, y)−Q(x1, y) ≤ x2 − x1 (12)
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is equivalent to

ϕ[−1] (ϕ(x2) + ψ(y)) + ϕ[−1](ϕ(x1)) ≤ ϕ[−1] (ϕ(x1) + ψ(y)) + ϕ[−1](ϕ(x2)).

Set
s1 := ϕ(x2) + ψ(y), s2 := ϕ(x1), t1 := ϕ(x1) + ψ(y), t2 := ϕ(x2),

and α := (t2 − s1)/(t2 − t1) in order to obtain

s1 = αt1 + (1− α)t2 and s2 = (1− α)t1 + αt2;

therefore, since ϕ[−1] is convex, (12) is satisfied. In this case, the Lipschitz condition
is a consequence of the convexity of ϕ alone.

Next assume y ≤ x1 ≤ x2; then inequality (12) is equivalent to

ϕ[−1] (ϕ(y) + ψ(x2))− ϕ[−1] (ϕ(y) + ψ(x1)) ≤ x2 − x1;

viz. condition (b).
The final case, x1 ≤ y ≤ x2, follows from the two previous cases. 2

Example 2. Take ϕ(t) = 1 − t and ψ(t) = α(1 − t) with α ∈ [0, 1]. For every
λ ∈ [0, 1], the function ρλ of the previous proposition, given, for every t ∈ [1− λ, 1],
by

ρλ(t) = max{0, 1− λ− α(1− t)} − t,

is decreasing. Then one obtains the interesting class of quasi-copulas (see [7])

Qϕ,ψ(x, y) = max {0, x ∧ y − α(1− x ∨ y)} .

Notice that the lower bound in (6) belongs to this class.

Example 3. Let δ : [0, 1] → [0, 1] be an increasing function such that δ(1) = 1,
δ(t) ≤ t for all t ∈ [0, 1] and |δ(t) − δ(s)| ≤ 2|t − s| for all t, s ∈ [0, 1]. Moreover,
suppose that the function t 7→ t − δ(t) is decreasing, take ϕ(t) = 1 − t and ψ(t) =
t− δ(t). For every λ ∈ [0, 1], the function ρλ of the previous proposition is given, for
every t ∈ [1− λ, 1], by

ρλ(t) = max{0, 1− λ− t + δ(t)} − t;

by assumption, it is decreasing. The corresponding class of quasi-copulas

Qϕ,ψ(x, y) = max{0, δ(x ∨ y)− x ∨ y + x ∧ y}

coincides with the family of MT -quasi-copulas (that are also copulas), characterized
and studied in [13].



Semicopulas: Characterizations and Applicability 299

Example 4. Take the functions

ϕ(t) := − ln t and ψ(t) := − ln
(
t + t2 − t3

)
.

For every λ ∈ [0, +∞] the function ρλ : [exp(−λ), 1] → R is given by

ρλ(t) := exp(−λ)
(
t + t2 − t3

)
− t.

Now, (ϕ,ψ) is in Φ×Ψ and ρλ is decreasing, therefore Theorem 4 ensures that the
function Qϕ,ψ, given by (9), is a quasi-copula. Notice that Qϕ,ψ is not a copula, as
shown in [12], where Qϕ,ψ was expressed in a slightly different form.

5. MULTIVARIATE SEMICOPULAS: APPLICATIONS

A function S : [0, 1]n → [0, 1] is said to be an n-semicopula (n ≥ 3) if it satisfies the
following two conditions:

(a) S(x1, x2, . . . , xn) = xi for xi in [0, 1] (i = 1, 2, . . . , n), and xj = 1 for all j 6= i;

(b) S(x1, x2, . . . , xn) is increasing in each place.

This definition is a direct generalization of the concept of n-copulas and has also a
curious application in fuzzy measures.

For every n ≥ 2, let B(Rn
) be the class of Borel sets in Rn

. A mapping ν :
B(Rn

) → [0, 1] is called a fuzzy measure if it is monotone, viz. ν(A) ≤ ν(B) for
all Borel sets A ⊆ B, and normalized, namely ν(∅) = 0 and ν(Rn

) = 1. A fuzzy
measure ν is called supermodular if, for all Borel sets A and B

ν(A ∪B) + ν(A ∩B) ≥ ν(A) + ν(B).

Given a fuzzy measure ν, the distribution function associated with ν is the function
Fν : Rn → R given by

Fν(x1, . . . , xn) = ν ([−∞, x1]× · · · × [−∞, xn]) .

Moreover, denote by Fνi the marginal d.f. associated to νi, where νi is the ith
projection of ν (i = 1, 2, . . . , n). Notice that, due to the lack of additivity, a fuzzy
measure is not completely characterized by its associated d. f.. Reformulating a
result of M. Scarsini (see [26]) through the concept of multivariate semicopula yields
the following result.

Theorem 5. Let ν be a supermodular fuzzy measure on the space (Rn
,B(Rn

)),
Fν its associated d. f., and Fνi , (i = 1, 2, . . . , n), the marginal d. f.’s associated to the
projections ν1, ν2, . . . , νn of ν. Then there exists a semicopula Sν : [0, 1]n → [0, 1]
such that, for every (x1, . . . , xn) ∈ Rn

Fν(x1, . . . , xn) = Sν (Fν1(x1), . . . , Fνn(xn)) .

In particular, if ν is a probability measure, then S is a copula.
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Thus, in some sense, a semicopula links the d. f. of a fuzzy measure to its marginal
d. f.’s.

Now, we discuss n-semicopulas in the context of aggregation operators. It is
known that a global aggregation operator may be represented by a family of n-
ary aggregation operators {An : [0, 1]n → [0, 1]}n∈N where, in general, An and
Am (n 6= m) need not be related (see [9]). In this way, a family of semicopulas
{Sn : [0, 1]n → [0, 1]}n∈N is, obviously, a global aggregation operator, but it need
not have the neutral element property, because Sn(x1, . . . , xn−1, 1) need not be equal
to Sn−1(x1, . . . , xn−1). Here a different definition of global semicopula is proposed.

Let n ∈ N, n ≥ 2. Let {i1, i2, . . . , ik} be a nonempty set of k indices of {1, 2, . . . , n}
(1 ≤ k ≤ n) and let Sn be an n-semicopula. The k-marginals of Sn (1 ≤ k < n) are
the

(
n
k

)
semicopulas Sn

i1,...,ik
: [0, 1]k → [0, 1] defined, for every (y1, . . . , yk) ∈ [0, 1]k

by
Sn

i1,...,ik
(y1, . . . , yk) = Sn(x1, . . . , xn),

where x1, . . . , xn in [0, 1] are defined by

xj =

{
yj , if j ∈ {i1, . . . , ik};
1, if j /∈ {i1, . . . , ik}.

Clearly, the n 1-marginals of Sn are all equal to the identity on [0, 1]. In general, for
k ≥ 2, the k-marginals of Sn need not be equal to each other, but they are when Sn

is commutative.

Definition 1. A family of commutative semicopulas {Sn : [0, 1]n → [0, 1]}n∈N is
called a global semicopula if S1 = id[0,1] and, for every n ≥ 2, Sn−1 is the (n − 1)-
marginal semicopula of Sn.

Analogous definitions can be given for the new concepts of global quasi-copula
and global copula.

In this way, a global semicopula is a global aggregation operator with neutral
element 1 and annihilator 0.

In practice, it is not difficult to construct a global semicopula. It suffices to take
a commutative 2-semicopula S and construct the family {Sn : [0, 1]n → [0, 1]}n∈N in
such a way that S1 = id[0,1], and, for every n ≥ 2,

Sn(x1, . . . , xn) := S(Sn−1(x1, . . . , xn−1), xn).

This method can be also used for quasi-copulas, but not for copulas, because it is not
simple to construct a copula starting from the marginals (see [27] for more details).

The concept of a global copula has an interesting use in a probabilistic context.
Consider a stochastic process {Xn}n∈N in which all the random variables are con-
tinuous. In view of Sklar’s Theorem, a (unique) k-dimensional copula Ck can be
associated to any choice of k r. v.’s Xi1 , . . . , Xik

. In particular, if the r. v.’s of the
process are exchangeable, then the copula Ck is commutative and it does not depend
on the choice of the r. v.’s. Moreover, Ck−1 is the (k − 1)-marginal copula of Ck.
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Conversely, if {Cn : [0, 1]n → [0, 1]}n∈N is a global copula, in view of the Kolmo-
gorov compatibility Theorem (see [19]), we can construct an exchangeable stochastic
process {Xn}n∈N (where each r. v. Xn is uniformly distributed on [0, 1]) such that,
for every n ∈ N, Cn is the copula associated to any choice of n r. v.’s of the process.

Thus a one-to-one correspondence between global copulas and exchangeable stochas-
tic processes is established.
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Best-possible bounds on sets of bivariate distribution functions. J. Multivariate Anal.
90 (2004), 348–358.

[24] R.B. Nelsen: Copulas and quasi-copulas: an introduction to their properties and
applications. In: Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular
Norms (E. P. Klement and R. Mesiar, eds.), Elsevier, Amsterdam 2005, pp. 391–413.
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Fixed Marginals and Related Topics (L. Rüschendorf, B. Schweizer, and M.D. Taylor,
eds.), Institute of Mathematical Statistics (Lecture Notes – Monograph Series Volume
28), Hayward 1996, pp. 307–318.

[27] B. Schweizer and A. Sklar: Probabilistic Metric Spaces. North Holland, New York
1983. 2nd edition: Dover Publications, Mineola, New York 2005.

[28] K.R. Stromberg: An Introduction to Classical Real Analysis. Chapman & Hall, Lon-
don 1981.

Fabrizio Durante and Carlo Sempi, Dipartimento di Matematica “Ennio De Giorgi”,
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