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1. INTRODUCTION

The publication of open problems sometimes had a great impact on the development
of several areas of mathematics. Maybe the most famous was the formulation of
D. Hilbert’s problems published in [13]. In the domain of fuzzy sets, fuzzy logic and
related areas several open problems were published in monographs, for example in
[6, 17, 30]. A paper devoted purely to open problems was [20] which has influenced
the study of several problems related to triangular norms, for example in [5, 14].
Among recently published open problems, recall the problems stated in [2] (some of
them were solved in the meantime, see [22, 28]) and problems collected at the 24th
Linz Seminar on Fuzzy Set Theory 2003 (“Triangular Norms and Related Operators
in Many-Valued Logics” held on February 4–8, 2003 in Linz, Austria) in [18] (again
some of them were already solved, see [12, 15, 27]). The aim of this paper is the
presentation of open problems posed during the conference FSTA 2006 (“Eighth
International Conference on Fuzzy Set Theory and Applications” held from January
30 to February 3, 2006 in Liptovský Ján, Slovakia). Before presenting those problems
in detail, we will introduce some basic notions and terminology used in this paper.

Triangular norms are, on the one hand, special semigroups and, on the other
hand, solutions of some functional equations [1, 17, 29, 30]. This mixture quite
often requires new approaches to answer questions about the nature of triangular
norms.
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A triangular norm (t-norm for short) T : [0, 1]2 → [0, 1] is an associative, commu-
tative, non-decreasing function such that 1 acts as a neutral element [29]. Observe
that each continuous Archimedean t-norm T can be represented by means of a con-
tinuous additive generator [17, 19], i. e., a strictly decreasing continuous function
t : [0, 1]→ [0,∞] with t(1) = 0 such that

T (x, y) = t(−1)(t(x) + t(y)),

where the pseudo-inverse t(−1) : [0,∞]→ [0, 1] in this special case is given by

t(−1)(u) = t−1(min(u, t(0))).

A function I : [0, 1]2 → [0, 1] is called a (fuzzy) implication (see [4, Definition 1]
or [10, Chapter 1]) if it is non-increasing in its first component, non-decreasing in
its second component and satisfies I(1, 0) = 0 and, for each x ∈ [0, 1], the property
I(0, x) = I(x, 1) = 1.

A (two-dimensional) copula (first mentioned in [31], for an excellent survey see
[26]) is a function C : [0, 1]2 → [0, 1] such that C(0, x) = C(x, 0) = 0 and C(1, x) =
C(x, 1) = x for all x ∈ [0, 1], and C is 2-increasing, i. e., for all x1, x2, y1, y2 ∈ [0, 1]
with x1 ≤ x2 and y1 ≤ y2 for the volume VC of the rectangle [x1, x2] × [y1, y2] we
have

VC([x1, x2]× [y1, y2]) = C(x1, y1)− C(x1, y2) + C(x2, y2)− C(x2, y1) ≥ 0. (1)

Copulas play a key role in the analysis of bivariate distribution functions with given
marginals. The basic result in this context is Sklar’s Theorem [31, 32] showing that
the joint distribution of a random vector and the corresponding marginal distribu-
tions are linked by some copula.

A (two-dimensional) quasi-copula (introduced in [3] and conveniently character-
ized in [11]) is a function Q : [0, 1]2 → [0, 1] such that Q(0, x) = Q(x, 0) = 0 and
Q(1, x) = Q(x, 1) = x for all x ∈ [0, 1], Q is non-decreasing (in each component),
and Q is 1-Lipschitz. Obviously, each copula is a quasi-copula but not vice versa.
The set of quasi-copulas is a lattice-theoretic completion of the set of copulas in the
sense that each quasi-copula is the supremum of a suitable set of copulas.

For each n ∈ N \ {1}, an n-copula is a non-decreasing mapping C : [0, 1]n → [0, 1]
such that

(i) C(x1, . . . , xn) = 0 whenever min(x1, . . . , xn) = 0;

(ii) C(x1, . . . , xn) = xj whenever min(x1, . . . , xn) = xj and, for all i 6= j, xi = 1;

(iii) for all (x1, . . . , xn), (y1, . . . , yn) ∈ [0, 1]n such that xi ≤ yi, i = 1, 2, . . . , n, the
C-volume of [x1, y1]× · · · × [xn, yn] is non-negative, i. e.,

∑
e∈{−1,1}n

(−1)card({i|ei=−1}) · C(z1,e1 , . . . , zn,en) ≥ 0,

where zi,1 = yi and zi,−1 = xi. For more details about copulas see [26].
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2. STRICT t-NORMS

For a strict t-norm T let FT be the smallest set of all functions from [0, 1] to [0, 1]
containing the identity function and being closed under T , the standard negation n
given by n(x) = 1 − x, and under limits of comonotone sequences. It was shown
in [7] that for the product TP, FTP

equals the class of all Borel measurable functions
from [0, 1] to [0, 1]. This is no more true for the Hamacher product TH given by

TH(x, y) =
xy

x+ y − xy

whenever (x, y) 6= (0, 0), as well as for all so-called nearly Hamacher t-norms, i. e.,
strict t-norms being isomorphic to TH by means of an isomorphism which generates
also the standard negation n.

Problem 2.1. (D. Butnariu, E. P. Klement, R. Mesiar, and M. Navara) Is there
a strict t-norm T such that FT 6= FTP

and FT 6= FTH? If FT = FTH for some strict
t-norm T , is T then necessarily nearly Hamacher?

3. LIPSCHITZ t-NORMS

Problem 3.1. (R. Mesiar) Characterize all t-norms which are 1-Lipschitz (or,
generally, k-Lipschitz with k ≥ 1) with respect to the Lp-norm for p ∈]1,∞[.

Observe that in the case p = 1, the 1-Lipschitz property of an Archimedean
t-norm is equivalent to the convexity of its additive generator, see [23] and [17, 26].

Conjecture 3.2. An Archimedean t-norm T is 1-Lipschitz with respect to the Lp-
norm if and only if each of its additive generators is a p-power of a convex function.

4. EXTENSIONS OF DISCRETE t-NORMS

Given a discrete t-norm T on the set In = {0, 1
n ,

2
n , . . . , 1} (see [9, 17]), one can

extend it to a t-norm on [0, 1] by a piecewise constant extension

T ?(x, y) =

{
min(x, y) if max{x, y} = 1,
T

(
bxnc
n , byncn

)
elsewhere. .

Denote τ?n the set of all such extensions of all discrete t-norms on In and put

τ? =
⋃

n∈N
τ?n.

Problem 4.1. (B. De Baets, P. Sarkoci) What is the closure of the set τ? with
respect to the norm of uniform convergence? In particular, are the sets of all strict
t-norms, of all continuous t-norms and of all t-norms inside?
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5. INTERVAL SEMIGROUPS

A mapping T : [0, 1]2 → [0, 1] is called a triangular subnorm (t-subnorm, for short)
if it fulfills the following properties: (i) associativity; (ii) commutativity; (iii) non-
decreasing monotonicity; (iv) T ≤ min. Recently, an ever increasing number of
papers regarding various aspects of t-subnorms has appeared in literature, as evi-
dence of their importance in many other related topics (see, for instance, the problem
of construction of left-continuous t-norms).

A continuous t-subnorm T is Archimedean if 1n → 0, where xn denotes the usual
n-power of x ∈ [0, 1]. This property allows a first sharp classification of the class
of continuous Archimedean t-subnorms into two subclasses, the non idempotent, for
which 1n 6= 0 for every n ∈ N, and the idempotent otherwise.

In a more general algebraic context, adopting the notation x ∗ y = T (x, y), we
deal with linearly ordered semigroups of the kind S = (I, ∗,≤), with 0 as annihilator
but no neutral elements, where I = [0, 1]. Such an algebraic structure will be
called an interval semigroup: in the sequel, it is intended that S is a continuous
Archimedean interval semigroup. We say that a non-decreasing mapping f : I → R
is a multiplicative generator of S if x ∗ y = f (−1)(f(x) · f(y)) for all x, y ∈ I, where
f (−1) denotes the pseudo-inverse of f . Recently, the best characterization for non
nilpotent S has been formulated in terms of the diagonal d(x) = x2.

Theorem 5.1. Let S be non nilpotent. Then it admits a continuous multiplicative
generator if and only if d is strictly increasing on [0, 1]2.

Problem 5.2. (R. Ghiselli Ricci) Characterize the nilpotent interval semigroups
which admit a continuous multiplicative generator.

Problem 5.3. (R. Ghiselli Ricci) Characterize the nilpotent interval semigroups
which exclusively admit non continuous multiplicative generators.

Problem 5.4. (R. Ghiselli Ricci) Characterize the non nilpotent interval semi-
groups which do not admit any multiplicative generator.

We emphasize that explicit examples of interval semigroups belonging to the
subclasses mentioned in Problems 5.3 and 5.4 have been provided, for example,
in [21].

6. COPULAS

Problem 6.1. (C. Sempi) Each 3-copula C induces three marginal 2-copulas
C12, C23, and C13 given by C12(x, y) = C(x, y, 1), C23(y, z) = C(1, y, z), and C13(x, z)
= C(x, 1, z). The triplet (C12, C23, C13) is then called compatible. For a given triplet
of 2-copulas (C,D,E), find a characterization ensuring its compatibility. Similarly,
for a fixed 2-copula E, find all pairs of 2-copulas (C,D) such that the triplet (C,D,E)
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is compatible. Moreover, for fixed 2-copulas C,D, identify all 2-copulas E such that
the triplet (C,D,E) is compatible.

Observe that for all 2-copulas C and D, the triplet (C,D,C ∗D) is compatible,
where C ∗D is the product of copulas introduced in [8], see also [17, 26].

Problem 6.2. (C. Sempi) Copulas generated by means of additive generators are
called Archimedean copulas. Each associative 2-copula C : [0, 1]2 → [0, 1] is Archi-
medean whenever C(x, x) < x for all x ∈]0, 1[. Is there an algebraic characterization
for Archimedean 3-copulas (or, generally, for n-copulas with n > 2)?

Problem 6.3. (C. Sempi) Replacing property (iii) of copulas by the 1-Lipschitz
property, i. e.,

(iii’) for all (x1, . . . , xn), (y1, . . . , yn) ∈ [0, 1]n

|(Q(x1, . . . , xn)−Q(y1, . . . , yn)| ≤
∑n

i=1
|xi − yi|,

(and keeping properties (i) and (ii)), the class of n-quasi-copulas is defined. Gen-
erated quasi-copulas are called Archimedean quasi-copulas and, for n = 2, Archi-
medean quasi-copulas are necessarily copulas (in general, n-copulas form a proper
subclass of n-quasi-copulas for all n = 2, 3, . . . ). Is there an algebraic characteriza-
tion for Archimedean 3-quasi-copulas (or, generally, for n-quasi-copulas with n > 2)?

Problem 6.4. (C. Sempi) Each n-copula C can be represented by means of n
measure preserving transformations ϕi : [0, 1]→ [0, 1], i = 1, . . . , n, via

C(x1, . . . , xn) = λ(ϕ1
−1([0, x1]) ∩ · · · ∩ ϕn−1([0, xn])),

where λ is the standard Lebesgue measure on the Borel subsets of [0, 1]. Are there
any particular properties of an n-copula C which are represented by means of n
ergodic (or n weakly mixing) transformations?

Problem 6.5. (C. Sempi) Is there a norm or topology on [0, 1]2 such that the
product ∗ of copulas introduced in [8] is jointly continuous?

7. SEMICOPULAS AND QUASI–COPULAS

A mapping S : [0, 1]2 → [0, 1] is called a semicopula (conjunctor) if it is non-
decreasing in both coordinates and if 1 is the neutral element of S, i. e., S(x, 1) =
S(1, x) = x for all x ∈ [0, 1]. Observe that each semicopula which is 1-Lipschitz
(with respect to the L1-norm) is a quasi-copula, and, moreover, it is 2-Lipschitz
with respect to the Chebyschev norm L∞.
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Problem 7.1. (A. Mesiarová)
(i) Characterize all associative semicopulas which are 2-Lipschitz with respect

to L∞.

(ii) Characterize all quasi-copulas which are exactly 2-Lipschitz with respect to
L∞, i. e., which are not Lipschitz with respect to L∞ for any constant c < 2.

(iii) Similarly, for each constant c ∈ [1, 2], characterize all quasi-copulas which are
exactly c-Lipschitz with respect to L∞.

8. FUZZY IMPLICATIONS

Problem 8.1. (M. Baczyński, J. Balasubramaniam) Let I be a fuzzy implication
and T be a t-norm.

(i) For a given (continuous) t-norm T , characterize all fuzzy implications which
satisfy the law of importation with respect to T , i. e., for all x, y, z ∈ [0, 1]

I(x, I(y, z)) = I(T (x, y), z).

(ii) Since T is commutative, the law of importation implies the exchange principle,
i. e., for all x, y, z ∈ [0, 1]

I(x, I(y, z)) = I(y, I(x, z)).

Is the converse also true, i. e., does the exchange principle imply that there
exists a t-norm such that the law of importation holds? If yes, is the t-norm
uniquely determined? If not, give an example and characterize all fuzzy im-
plications for which the converse is true.

9. MEANS

Let a = (a1, . . . , an) be an n-dimensional vector of positive real numbers, n ∈ N.
Consider the quasi-arithmetic mean defined by

Mf (a) = f−1
( 1
n

∑n

k=1
f(ak)

)
,

where f :]0,∞[→ R is a continuous and strictly monotone function.

Problem 9.1. (O. Hutńık) Find all pairs (f, g), (u, v) such that

Mf (a)−Mg(a) ≤Mu(a)−Mv(a).

In connection with the generalized weighted quasi-arithmetic means in integral
form we introduce the generalized weighted mean operator defined in (3) and state
the following general mean-type inequality problem:
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Problem 9.2. (O. Hutńık)

(iii) Let p > 0, 0 < q <∞ and define W :]0,∞[→ R by

W (x) =
∫ x

0

w(s) ds,

where w :]0,∞[→ R is a positive Lebesgue integrable function.

Find necessary and sufficient conditions on the positive measurable functions
u, v (weights) and establish a class of functions g (a real continuous and strictly
monotone function with its inverse g−1) such that the following general mean-
type inequality

( ∫ ∞

0

u(x)
(
[Mg

wf ](x)
)q dx

) 1
q ≤ C

( ∫ ∞

0

v(x)f(x)p dx
) 1
p

, f ≥ 0, (2)

holds for a positive finite constant C, where

[Mg
wf ](x) = g−1

( 1
W (x)

∫ x

0

w(t)g(f(t)) dt
)

(3)

denotes the generalized weighted mean operator of a positive Lebesgue inte-
grable function f :]0,∞[→ R.

(iv) Estimate the best possible constant C in (2).

Let L+
1 ([a, b]) be the vector space of all real positive Lebesgue integrable functions

on [a, b] with a, b ∈ R and a < b. In what follows, ‖p‖[a,b] denotes the finite L1-norm
of a function p ∈ L+

1 ([a, b]).
Let (p, f) ∈ L+

1 ([a, b])× L+
1 ([a, b]) such that f : [a, b]→ [α, β] and ϕ : [α, β]→ R

is a real continuous and strictly monotone function. The generalized weighted quasi-
arithmetic mean M[a,b],ϕ(p, f) of a function f with respect to a weight function p is
given by

M[a,b],ϕ(p, f) = ϕ−1
( 1
‖p‖[a,b]

∫ b

a

p(x)ϕ(f(x)) dx
)
,

where ϕ−1 is the inverse function to the function ϕ.

Problem 9.3. (O. Hutńık) Determine all those strictly monotone and continuous
functions ϕ,ψ : [α, β]→ R for which the equation

M[a,b],ϕ(p, f) +M[a,b],ψ(p, g) = p(a)f(a) + p(b)g(b)

holds for every continuous functions f, g on [a, b].
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10. FUZZY RELATIONS

Let A be the set of all symmetric matrices defined on the real vector space Rn, such
that for each A ∈ A we have AA = A. Let I be the identity matrix and let 0 be the
zero matrix.

Each element A ∈ A has the information about a measurable system for a
“yes”/“no” random experiment. It means it has Boolean information. If we take
two such elements A,B ∈ A we have information about two Boolean systems (i. e.
two measurable systems).

A fuzzy relation s : A×A → [0, 1] is called an s-map [24, 25, 16] if

(i) s(I, I) = 1;

• if A,B ∈ A such that AB = BA = 0, then s(A,B) = 0;

(ii) if A,B ∈ A such that AB = BA = 0, then for each C ∈ A

s(A+B,C) = s(A,C) + s(B,C),
s(C,A+B) = s(C,A) + s(C,B).

If s(A,B) = s(B,A) then we can find one probability space for two different
measurable systems. It means A,B are “virtually compatible”. For example, we
cannot study the problem of causality between these measurable systems, in this
case [16].

Problem 10.1. (O. Nánásiová) Is the fuzzy relation s necessarily symmetric, i. e.,
s(A,B) = s(B,A) for all A,B ∈ A?

11. MV-ALGEBRAS

Problem 11.1. (G. Jenča) Characterize all bounded chains which are carriers
of MV-algebras. Is it enough to require the existence of an involution of the given
chain? Is the property of a bounded chain to be a carrier of an MV-algebra a first
order property?

12. EFFECT ALGEBRAS

A partial algebra (E;⊕, 0, 1) is called an effect algebra if 0, 1 are two distinct elements
and ⊕ is a partially defined binary operation on E which satisfies the following
conditions for any a, b, c ∈ E:

(Ei) b⊕ a = a⊕ b if a⊕ b is defined,

(Eii) (a⊕ b)⊕ c = a⊕ (b⊕ c) if one side is defined,

(Eiii) for every a ∈ E there exists a unique b ∈ E such that a⊕b = 1 (we put a′ = b),

(Eiv) if 1⊕ a is defined then a = 0.
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Let for a, b ∈ E: a ≤ b if and only if there is c ∈ E with a ⊕ c = b (then we write
c = b ª a). If (E,≤) is a lattice (complete lattice) then E is called a lattice effect
algebra (complete effect algebra). We write a↔ b if and only if a∨b = a⊕(bª(a∧b)).
A maximal subset B ⊆ E such that a↔ b for all a, b ∈ B is called a block of E .

Set
S(E) = {x ∈ E | x ∧ x′ = 0},
B(E) =

⋂
{B ⊂ E | B a block of E},

C(E) = S(E) ∩ B(E).

Then S(E), B(E), C(E) are sub-lattices and sub-effect algebras of E.

Problem 12.1. (Z. Riečanová) Describe the family of all lattice (complete) effect
algebras with one of the following properties:

(i) C(E) = S(E),

(ii) C(E) = B(E),

(iii) C(E) = S(E) = B(E).

For instance, we have shown that (i) holds for an Archimedean atomic lattice
effect algebra E if and only if E is a subdirect product of finite chains, from which
the existence of (o)-continuous states (probabilities) on E easily follows [35].
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