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Jan Ámos V́ı̌sek

The consistency of the least trimmed squares estimator (see Rousseeuw [14] or Hampel
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INTRODUCTION AND NOTATIONS

Although the least trimmed squares were introduced among the first robust estima-
tors with high breakdown point (Rousseeuw [14] or Hampel et al. [8]), proofs of
their consistency and derivation of the asymptotic representation of Bahadur type
and asymptotic normality were only sketched or carried out under special circum-
stances, usually for simple regression. Moreover, the methods used for it did not
allow to study sensitivity of the estimator with respect to the deletion of one or
several points (for a result describing it see Vı́̌sek [29]). The approach employed
here enable us to perform such studies (for the analogy for M -estimators see Vı́̌sek
[21] and [31]) and, due to the possibility of being applied uniformly for all “cutting
levels”, it will also allow to prove consistency and asymptotic normality for the least
weighted squares, for the definition of the least weighted squares see again Vı́̌sek [29].
To be able to introduce and discuss relevant problems, let us start with notations.

Let N denote the set of all positive integers, R the real line and Rp the p-
dimensional Euclidean space. Moreover, for any set A let Ao denote the interior of
the set (in the topology implied by Euclidean metric). We shall consider for any
n ∈ N the linear regression model

Yi = xT
i β0 + ei, i = 1, 2, . . . , n (1)

where Yi and xi = (xi1, xi2, . . . , xip)T are values of response and of explanatory
variables for the ith case, respectively. β0 is the vector of true regression coefficients
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and ei’s represent random fluctuations1 of Yi’s from the mean value EYi. (To be
complete, let us add that of course xT

i β =
∑p

j=1 xijβj .) The word true means
that for any n ∈ N data are assumed to be generated by the regression model
Yi = xT

i β0 + ei, i = 1, 2, . . . , n.

Throughout the paper we shall assume that the random variables are defined on
a basic probability space (Ω,A, P ) (other assumptions are given below).

Denoting for any n ∈ N successively Y (n) = (Y1, Y2, . . . , Yn)T, X(n) = (x1, x2, . . .
. . . , xn)T and e(n) = (e1, e2, . . . , en)T the response variable, the design matrix and
disturbances (i. e. the vector of random fluctuations), we can rewrite (1) into the
form

Y (n) = X(n)β0 + e(n) (2)

which will be sometimes more convenient. In what follows we shall omit an indication
of the dimension of matrix and of vectors which would presumably unnecessarily
burden the notation. The indication of the dimension will be used only in the
situations when a misinterpretation may appear. Let us notice that in the case
when the intercept is included in the model, the first coordinates of all vectors xi’s
are assumed to be equal to 1.

For any β ∈ Rp let us put ri(β) = Yi − xT
i β, i. e. ri(β) denotes the ith residual

with respect to β ∈ Rp. In other words, we shall consider the residuals as the
function of β ∈ Rp. We emphasize it because sometimes the residuals are assumed
in a restricted sense to be ri = Yi − xT

i β̂ where β̂ is the estimator in question. Of
course, we have ri(β) = ri(β, ω), i. e. residuals depend also on ω. Finally the order
statistics of squared residuals will be denoted by r2

(i)(β), i = 1, 2, . . . , n. To be more
explicit, it means that we have for any β ∈ Rp

0 ≤ r2
(1)(β) ≤ r2

(2)(β) ≤ · · · ≤ r2
(n)(β).

Now, let us make one exception from the commonly used notation. Since in what
follows we shall use for the description of sets somewhat complicated expressions con-
taining moreover indices, we shall write (in many cases) I{the property describing
the set A} instead of traditional notation I{the property describing the set A}. Finally,
let us recall that the least trimmed squares estimator is usually given as

β̃(LTS,n,h) = argmin
β∈Rp

h∑

i=1

r2
(i)(β) (3)

where n
2 ≤ h ≤ n. (It is commonly accepted that when we speak about the least

trimmed squares estimator we use only the least trimmed squares. In what follows
we shall do the same.)

It is known (and after all it is straightforward) that by selecting the value of h
we can control the level of robustness of estimator, namely its breakdown point. Of

1Recently, ei is frequently called “error term” which however may tempt to the interpretation
that ei is the error of measurement of response variable. Such interpretation is however justifiable
only sometimes, e. g. in technical applications (see Van Huffel [19]) but not in economics and social
sciences (see Vı́̌sek [30]). In econometrics ei’s are usually denoted as disturbances.
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course, for h = n the estimator β̃(LTS,n,h) coincides with the ordinary least squares
β̂(LS,n).

In the applications we have usually an idea about the magnitude of the regres-
sion coefficients. The idea may stem from the framework of given problem, from a
common idea about magnitudes of coefficients in similar cases or from the data in
question.

It may be formally expressed so that we have an idea about a compact set, the
true value of regression coefficients is to be inside. (Of course, this set may be
assumed to be very large.) As we shall see later, without this assumption we have
to impose more restrictive assumptions on the distribution of disturbances. So, in
what follows the definition of the least trimmed squares will be considered in the
form:

Definition 1. For a compact set K such that the vector of the true regression
coefficients β0 ∈ Ko the estimator given as

β̂(LTS,n,h) = argmin
β∈K

h∑

i=1

r2
(i)(β) (4)

will be called the least trimmed squares (LTS).

Remark 1. Clearly, β̂(LTS,n,h) depends on K. Nevertheless, we shall prove that
β̂(LTS,n,h) is, for any K, consistent and hence asymptotically “nearly” independent
of the set K. Moreover, as we have already said, we (at least implicitly) assume that
K is “very large” and hence it does not influence β̂(LTS,n,h) too much or not at all.
That is why K did not appear in notation used for the least trimmed squares.

It is clear that for given i the squared residual appears in the sum on the right
hand side of (4) iff r2

i (β) ≤ r2
(h)(β), so that we can write equivalently

β̂(LTS,n,h) = argmin
β∈K

n∑

i=1

r2
i (β) · I

{
r2
i (β) ≤ r2

(h)(β)

}
(5)

= argmin
β∈K

n∑

i=1

(Yi − xT
i β)2 · I

{
r2
i (β) ≤ r2

(h)(β)

}
.

Now, denote G(z) the distribution function of e2
1. For any α ∈ (0, 1), u2

α will be the
upper α-quantile of G(z), i. e.

P (e2
1 > u2

α) = 1−G(u2
α) = α. (6)

Further, denote by [a]int the integer part of a and for any n ∈ N put

hn = [(1− α)n]int. (7)



4 J. Á. VÍŠEK

Moreover, for any a, b ∈ R we shall denote (a, b)ord = (min{a, b},max{a, b}) and the
same will be used for the closed intervals. Finally, put Qn = 1

n

∑n
i=1 xix

T
i and for

an arbitrary α ∈ (0, 1) Qn(α) = 1
n

∑n
i=1 xix

T
i I

{
r2
i (β0) ≤ u2

α

}
.

Prior to continuing the discussion on the least trimmed squares it is useful to give
the assumptions which will be used in the most assertions.

Assumptions A
The sequences {xi}∞i=1 (xi ∈ Rp) is a fix sequence of nonrandom vectors from Rp.
Further, the sequence {ei}∞i=1 (ei ∈ R) is a sequence of independent and identically
distributed random variables. The distribution function F (z) of random fluctuation
e1 is symmetric and absolutely continuous with a bounded density f(z) which is
strictly decreasing on R+. The density is positive on (−∞,∞) and has bounded in
absolute value the first and the second derivative. The second derivative is further
Lipschitz of the first order. Moreover,

n∑

i=1

‖xi‖4 = O(n) and Ee4
1 = κ4 ∈ (0,∞). (8)

Finally,
lim

n→∞
Qn = Q (9)

where Q is a regular matrix (and convergence is of course assumed coordinatewise).

Remark 2. From Assumptions A it follows that for any fix α ∈ (0, 1
2 )

E
[
e1I

{
e2
1 ≤ u2

α

}]
= 0. (10)

More generally, for any set, say B(e2
1), which is determined by e2

1, we have Ee1I{B(e2
1)}

= 0, since B(e2
1) is symmetric around zero.

Remark 3. It will be clear from what follows that the assumption of positivity of
the density f(z) on (−∞,∞) is only the technical assumption. In fact, what we need
in proofs is that the distribution function is strictly increasing from zero to one on
one interval, say (−a, a), so that the density is (strictly) positive on (−a, a) (where
a can be infinite). From it then follows that the α-quantile (for any α ∈ [0, 1] ) is
continuous in α ∈ (0, 1).

Remark 4. It follows from Assumptions A that we shall consider the setup with
nonrandom explanatory variables (or carriers, if you want). The theory for the
setup with random explanatory variables requires some modifications what concerns
the assumptions (orthogonality and sphericality conditions) as well as what concerns
some steps in the proofs, see Vı́̌sek [26]. As it can be seen from Vı́̌sek [23, 24, 26]
some proofs are simpler for random-carriers-framework, some are more complicated.
In the case of the least trimmed squares the proof in the framework with random
carriers appeared to be simpler than the proof for determinstic explanatory variables.
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The absolute continuity of F seems at a first glance rather strong assumption.
Nevertheless, let us realize that for the (ordinary) least squares we usually assume
(strict) normality of disturbances since otherwise the (ordinary) least squares are
optimal2 only in the class of linear estimators. In other words, if we do not ask for
normality of disturbances, out of class of linear estimators we can meet estimators
which are better than the least squares. Since the restriction on the class of linear
estimators may be, at least, impractical, if not drastic (for more details see Hampel
et al. [8]), we should assume that the disturbances are normally distributed. But
the assumption of normality is (much) stronger than the assumption of absolute
continuity.3

We shall see later that β̃(LTS,n,h) coincides with the ordinary least squares β̂(LS,h)

applied on appropriate subsample (of size h) of data. Taking into account that
β̂(LTS,n,h) asymptotically coincides with β̃(LTS,n,h), we conclude that the normality
of residuals is plausible for β̂(LTS,n,h) due to the same reasons as for the ordinary
least squares. From this standpoint the absolute continuity of F does not seem to
be (very) restrictive.

Further, any study of order statistics assumes the absolute continuity of the un-
derlying distribution, since without this assumption we have got into some technical
troubles as the probability that two order statistics attain the same value need not
be zero. The same appears in our study.

Let us turn our attention to the assumption that the density is bounded and has
bounded in absolute value the first and second derivative everywhere. As we shall
see in the next, we need to estimate the probability (for t ∈ Rp, ‖t‖ < M)

P
(
ei ∈ (uα, uα + n−

1
2 xT

i t)ord
)

(11)

Then it is clear that some assumptions on ‖xi‖ and on F (z) are (probably) necessary
(or even inevitable?). If we assume that for some K < ∞

sup
i∈N

‖xi‖ < K, (12)

it is evidently sufficient to assume existence of bounded derivatives of density in
the neighborhood of −uα and of uα (and the same is true about the positivity of
the density). However, the assumption (12) is sometimes considered as inadmissibly
restrictive while the assumptions of type (8) are accepted. Then, i. e. under (8),
the norms ‖xi‖, i = 1, 2, . . . , n are not uniformly bounded and hence to be able
to achieve the equality P (ei ∈ (uα, uα + n−

1
2 xT

i t)ord) = ‖xi‖O(n−
1
2 ), we need some

assumption(s) about F (z) to be fulfilled on the whole support of F (z). Of course,
under (12) as well as under (8), it is possible to estimate probability (11), nevertheless
in the former case it is straightforward while in the latter it requires rather involving
considerations.

We have included assertion which hints that from the practical point of view, the
difference between (8) and (12) need not be considerable, see Lemma A.2. Moreover,

2In the sense that they guarantee minimal variance of estimators of regression coefficients.
3Of course, in the applications we try to reach the normality of residuals by adding some

explanatory variables, transforming them etc. Such approach has of course also some philosophical
consequences which are beyond the scope of this paper, see Prigogine & Stengers [12, 13].
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the results in Chatterjee, Hadi [4], Zvára [33] or Vı́̌sek [21, 22] and [28] indicate that
in the case when the norm of some explanatory vectors is out of control, we cannot
guarantee anything about subsample sensitivity, i. e. we cannot say how large is the
norm of β̂(LTS,n,h) − β̂(LTS,n−1,h,`) where β̂(LTS,n−1,h,`) denotes the least trimmed
squares evaluated for data from which the `th observation was deleted, see Vı́̌sek
[31]. That is why we shall also assume an alternative version of assumptions.

Assumptions B
The sequences {xi}∞i=1 (xi ∈ Rp) is a fix sequence of nonrandom vectors from Rp.
Moreover, (9) holds for some regular matrix Q. Further for any n ∈ N

max
1≤i≤n, 1≤j≤p

|xij | = O(1). (13)

The sequence {ei}∞i=1 (ei ∈ R) is a sequence of independent and identically distributed
random variables with absolutely continuous symmetric distribution function F (z).
There is a neighbourhood of uα in which the distribution F (z) has a bounded density
f(z) which is positive and has bounded in absolute value the first and the second
derivative. The second derivative is further Lipschitz of the first order. Moreover,
the density f(z) is strictly decreasing on R+ and Ee4

1 = κ4 ∈ (0,∞).

First of all, we shall look for normal equations for β̂(LTS,n,h). So denoting

ρ(β) =
n∑

i=1

(Yi − xT
i β)2 · I

{
r2
i (β) ≤ r2

(h)(β)

}
, (14)

(see (5)), we shall study

∂ρ(β)
∂β

=
n∑

i=1

[
−2(Yi−xT

i β)xi I
{

r2
i (β)≤r2

(h)(β)
}

+(Yi−xT
i β)2

∂

∂β
I
{

r2
i (β)≤r2

(h)(β)
}]

.

(15)
Let us find for j ∈ {1, 2, . . . , p}

∂

∂βj
I
{

r2
i (β) ≤ r2

(h)(β)
}

= lim
∆→0

I
{

r2
i (β(∆,j)) ≤ r2

(h)(β
(∆,j))

}
− I

{
r2
i (β) ≤ r2

(h)(β)
}

∆
(16)

where
β(∆,j) = (β1, β2, . . . , βj−1, βj + ∆, βj+1, . . . , βp)T. (17)

Let us realize that the residuals ri(β)’s are continuous and linear (and hence
monotone) functions of any given coordinate of β provided the other coordinates
and ω are kept fixed (ω is not given in the notation explicitly but, as we have
already recalled it, the residuals of course depend on it).

For the order statistics r2
(h)(β)’s the situation is somewhat more complicated4.

They are also continuous in any coordinate of β. It follows from the fact that
4 Please, realize that the vector of order statistics, r2

(i)
(β), i = 1, 2, . . . , n, represents permutation

of squared residuals r2
i (β), i = 1, 2, . . . , n and the order of indices depends on β as well as on ω.
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minimum of a finite set of continuous functions is continuous. Moreover, under
Assumptions A or B, the set An = {ω : e(1) < e(2) < . . . e(n)} has probability equal
to 1. As the probability that there is an index, say j0, such that e(j0) = 0 is equal
to 0, also the set Bn = {ω : e2

(1) < e2
(2) < . . . e2

(n)} has probability 1. Let us fix
an ω ∈ Bn and denote by i0 such index that e2

i0
= e2

(h) = r2
(h)(β

0). Then there is
δω > 0 such that for any |∆| < δω and any j ∈ {1, 2, . . . , n}

r2
(h)(β

(∆,j)) =
(
Yi0 − xT

i0β
(∆,j)

)2

.

In other words, for given ω ∈ Bn there is a neighborhood of β ∈ Rp in which the hth
order statistic among the squared residuals is represented by “one fix index”. We
shall need both these facts, the continuity of order statistics and stability of indices,
for the analysis of the limit in (16).

What concerns the shape of order statistics of squared residuals (considered as
the function of one coordinate of β), it is easy to prove that for any given β̃ there
is a neighbourhood of β̃ so that the given order statistic is either convex or concave
or monotone but we shall not need it.

First of all, let us observe that the ratio in the limit (16) will be nonzero only if
for all ∆ (see (17)) from a neighborhood of zero

I
{

r2
i (β(∆,j0)) ≤ r2

(h)(β
(∆,j0))

}
6= I

{
r2
i (β) ≤ r2

(h)(β)
}

. (18)

Now, let us observe that if i is the index for which r2
i (β) = r2

(h)(β), (18) does not hold,
of course (see the remark a few lines above, saying that hth order statistic among
the squared residuals is represented by “one fix index”). In all other cases, i. e. when
i is not an index for which r2

i (β) = r2
(h)(β), (18) means that (let us repeat, for all ∆

from a neighborhood of zero) either r2
i (β(∆,j0)) ≤ r2

(h)(β
(∆,j0)) and r2

i (β) > r2
(h)(β) or

r2
i (β(∆,j0)) > r2

(h)(β
(∆,j0)) and r2

i (β) ≤ r2
(h)(β). The first eventuality is impossible

at all, because of the continuity of r2
i (β) and of r2

(h)(β) in βj0which implies that
there is a δ0 > 0 so that for all |∆| < δ0 we have r2

i (β(∆,j0)) > r2
(h)(β

(∆,j0)). The
second one is possible for some ∆ > 0 only if r2

i (β) = r2
(h)(β) but this appear only

with probability zero (due to the assumption of absolute continuity of underlying
distribution function of disturbances). We conclude that ∂

∂βj
I{r2

i (β) ≤ r2
(h)(β)} = 0

a. e. Since the sum in (15) contains finite number of terms, we have

n∑

i=1

[
(Yi − xT

i β)2 · ∂

∂βj
I
{

r2
i (β) ≤ r2

(h)(β)
}]

= 0 a. e.

and finally

1
2

∂ρ(β)
∂β

= −
n∑

i=1

[
(Yi − xT

i β)xi · I
{

r2
i (β) ≤ r2

(h)(β)
}]

a. e. (19)
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We shall prove that it means that β̃(LTS,n,h) can be found among solutions of

n∑

i=1

[
(Yi − xT

i β)xi · I
{

r2
i (β) ≤ r2

(h)(β)
}]

= 0, (20)

i. e. that at the point given as the solution of the extremal problem (3) the relation
(20) holds. Notice please that whenever we prove that the estimator given by (4) is
consistent (i. e. it exists and converges in probability to β0), it also solves (20).

It is nearly immediately clear that a solution of the extremal problem (3) exists
but we shall clarify it in details since it will hint that β̃(LTS,n,h) can be considered,
similarly as β̂(LS,n), to be projection of a response variable into the corresponding
p-dimensional subset generated by the column of a design matrix.

First of all, let us realize that we have
(
n
h

)
possible subsamples of the size h from

a set of size n.
Let us recall (once again) that ri(β) = ri(β, ω), i. e. that the residuals depend

not only on β ∈ Rp but also on ω ∈ Ω. Now, let us fix an ω0 ∈ Ω and an h-tuple of
indices i1, i2, . . . , ih. Then, let us apply the ordinary least squares on the data Y (h) =
(Yi1(ω0), Yi2(ω0), . . . , Yih

(ω0))T, X(h) = (xi1 , xi2 , . . . , xih
)T and find the estimate of

regression coefficients, say β̂(LS,h,i1,i2,...,ih). Finally, let us evaluate corresponding
sum of squares, say S(ω0, i1, i2, . . . , ih). Keeping ω0 fixed, we shall repeat this for
all h-tuples and we obtain

(
n
h

)
sums of squares of type S(ω0, i1, i2, . . . , ih). Finally

we select that h-tuple of indices, for which the corresponding sum of squares is the
smallest. It is clear that we have established by this way the value of β̃(LTS,n,h) at
ω0, say β̃(LTS,n,h)(ω0). Repeating this for all ω ∈ Ω we obtain the solution of the
extremal problem (3). In other words, we have proved assertion:

Assertion 1. There is always a solution of (3).

Now, let us define a mapping a : Ω → {1, 2, . . . , n}h so that a(ω) = (i1, i2, . . . , ih)T

is the point of Carthesian product {1, 2, . . . , n}h for which

min
β∈Rp

∑

i∈a(ω)

(Yi(ω)− xT
i β)2 = min

β∈Rp

h∑

i=1

r2
(i)(β, ω). (21)

Further, let us denote by Y (a) = Y (a(ω)) and X(a) = X(a(ω)) corresponding h-
dimensional subvector of the vector Y and corresponding submatrix of the matrix
X containing all rows of matrix X indices of which fall into the set a(ω). Fi-
nally, denote also by e(a) = e(a(ω)) corresponding subvector of disturbances and by
β̂(LS,h)(Y (a), X(a)) = β̂(LS,h)(Y (a(ω)), X(a(ω))) the least squares estimator evalu-
ated just for subpopulation [Y (a(ω)), X(a(ω))]. Then it is clear that

β̂(LS,h)(Y (a(ω)), X(a(ω))) = β̃(LTS,n,h)(ω)

where we have denoted β̃(LTS,n,h)(ω) the value of β̃(LTS,n,h) at the point ω. But
β̂(LS,h)(Y (a(ω)), X(a(ω))) is the solution of normal equations

XT(a)X(a)β = XT(a)Y (a)
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which coincide with the equations given in (20), so that, the equation in (20) has
a solution as well. Moreover, we obtain (in the case that XT(a)X(a) is regular,
otherwise we have to employ some pseudoinverse)

β̃(LTS,n,h) − β0 =
(

1
n

XT(a)X(a)
)−1 1

n
XT(a)e(a) (22)

which indicates that β̃(LTS,n,h) can have similar properties as β̂(LS,h).
The snag is that

(
n
h

)
is for large n too large, so that for the practical evaluation

this way is not feasible, except of the situations when n ≤ 20. We shall return to the
problems with evaluability of β̃(LTS,n,h) at the Conclusions at the end of Part III of
paper.

Prior to considering technicalities, let us stress that β̃(LTS,n,h) share with other
estimators which are based on “geometry” of data, the scale- and regression-equiv-
ariance. This represents a substantial distinction from e. g. M -estimators which, in
order to achieve the scale- and regression-equivariance, have to utilize the studentized
residuals, studentized by an estimator of the scale of disturbances. Due to the fact
that this scale estimator, say σ̂n, has to be scale-equivariant and regression-invariant
(in order to achieve the scale- and regression-equivariance of the M -estimator β̂M

n ,
see e. g. Bickel [2] or Jurečková and Sen [7]), it need not be very simple to evaluate
σ̂2

n (although it is not impossible, see again Jurečková and Sen [7] or Vı́̌sek [25]) and
hence also evaluation of β̂M

n may be rather complicated.
Another advantage of β̂(LTS,n,h) is that it can serve as preliminary estimator

of regression coefficients in the situation when we have no idea about the level
of contamination of data and we need to estimate it. Then using this preliminary
estimate of regression coefficients, we can estimate density of residuals and employing
it we finally estimate contamination level, see Rubio and Vı́̌sek [17]. An alternative
way to this is to increase successively h by 1 in every step, starting of course with
[n
2 ]+[p+1

2 ] (see Rousseeuw & Leroy [15]), and to stop this process when the estimate
of scale5 of disturbances begins to increase steeply. For more details about this
diagnostic approach see Vı́̌sek [27]. More details of the topic we shall offer in the
conclusions.

The last but not least, the least trimmed squares have simple realiable algorithm
for evaluating the good approximation to the exact value of the estimator. We shall
discuss the problem in details at the end of paper, see also Vı́̌sek [20] and [28].

Of course, we should admit that the least trimmed squares can be rather sensitive
to the deletion of an observation, i. e. the difference between the estimator evaluated
for the all n observations and the estimator evaluated after deleting one observation
can be rather large (see Vı́̌sek [26], consult also Vı́̌sek [21] and [31]). We shall also
return to the problem at the conclusions.

In the proofs of the next theorems, lemmas and assertions some further notations
(for constants, probabilities, sets etc.) will be used. Throughout the paper it will
be assumed that they are valid only within given proof.

5The scale estimate is of course assumed to be based on residuals with indices in a(ω).
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CONSISTENCY OF LEAST TRIMMED SQUARES

Now we are going to discuss and to prove the consistency of β̂(LTS,n,h). The least
trimmed squares are based on the same principle as the (ordinary) least squares
(OLS) but applied only on a subset of data. That is why the estimator itself is
not linear. It implies that we cannot expect that any proof of its consistency will
be so simple as for OLS. There are two ways how to study the consistency of the
estimator. The first one follows the idea of the uniform law of large numbers (see
e. g. Andrews [1]). That is way we shall discuss in details. The second one utilizes
the asymptotic linearity of the second derivative of objective function and it proves
(only?) an existence of

√
n-consistent solution of equation (20)6. For details of this

approach see Rubio and Vı́̌sek [16].
As we have seen the least trimmed squares select (at every ω ∈ Ω) only some

subsample of data. Then we can imagine a mixture (or blend or composition or . . . ,
as you want to call it) of two populations created in such a way that the estimator
cannot be consistent. After all, very similar problem was addressed also for M -
estimators and it appeared that some assumption on the structure of the points in
the factor space seems to be inevitable, see e. g. Liese & Vajda [10]. What we need
is a “regular” behavior of the points at which the information about the underlying
regression model is available to guarantee the unique solution of the corresponding
extremal problem and the consistency of solution, see Lemma 3 bellow. For the
ordinary least squares the uniqueness is implied by geometry of the problem and the
consistency by the assumption (9), see Dhrymes [6]. To see that for β̂(LTS,n,h) the
assumption (9) need not be sufficient, let as recall that the ordinary least squares
coincides with β̃(LTS,n,h) for h = n. Then (3) can be written as

β̂(LS,n) = arg min
β∈Rp

n∑

i=1

r2
i (β) · I

{
r2
i (β) ≤ r2

(n)(β)
}

= argmin
β∈Rp

n∑

i=1

r2
i (β).

So, we observe that for the the ordinary least squares I{r2
i (β) ≤ r2

(n)(β)} is equal
to 1 independently of xi’s and of β ∈ Rp while for the least trimmed squares (for
h < n) I{r2

i (β) ≤ r2
(h)(β)} depends on xi’s as well as on β ∈ Rp. In other words,

it seems that for the ordinary least squares it is sufficient to have an assumption on
something like the “second moments” of xi’s while for the least trimmed squares we
need to know something more. A reasonable possibility seems to be to assume that
{xi}∞i=1 resembles sampling from a distribution. So, let us consider for any x ∈ Rp

1
n

n∑

i=1

I {xi ≤ x} (23)

where of course we assume the inequality to be fulfilled coordinatewise7. Inter-
preting (23) for a while as the empirical distribution function of x1, x2, . . . , xn, i. e.

6The question mark behind the word only indicates following. Taking into account that we look
for β̂(LTS,n,h) by an iterative resampling algorithm (see Rousseeuw, Leroy [15] or Vı́̌sek [20, 28]),

we cannot claim that we have at hand really β̂(LTS,n,h) but only better or worse approximation to
β̂(LTS,n,h) (given as solution of (4)). Then, from the practical point of view, in fact both approaches
give the same justification for employing the estimator.

7Of course, one can conjecture that (9) already implies that the sums in (23) stabilize for n →∞.
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considering x1, x2, . . . , xn to be a sampling from a hypothetical distribution, we may
assume our deterministic sequence to be selected so that the sum in (23) converges
to a distribution function H(x) (say) at the all points of its continuity.

So, let us assume, for a while, that xi’s are i.i.d. random vectors. Then

sup
x∈Rp

∣∣∣∣∣
1
n

n∑

i=1

I {xi ≤ x} −H(x)

∣∣∣∣∣ = Op(n−
1
2 ), (24)

see e. g. Csőrgő and Révész [5]. Moreover, if X ∈ Rp be a random variable with
distribution function H(x), then, denoting for any β ∈ Rp H(β)(t), t ∈ R the
distribution function of the random variable XT(β − β0), we have

sup
t∈R

∣∣∣∣∣
1
n

n∑

i=1

I
{
xT

i (β − β0) ≤ t
}
−H(β)(t)

∣∣∣∣∣ = Op(n−
1
2 ). (25)

It hints that in the case when xi’s are deterministic, it may seem adequate to ask
for the same (or an analogous) behaviour as given in (25).

Moreover, we have already recalled (when discussing Assumptions A and B) that
the assumption (8) implies that, except of an arbitrary small fraction of observations,
all xi’s fall into a compact set. All these arguments support the idea that the below
given Assumptions C can be reasonable.

Now, for any β ∈ Rp and any δ ∈ (0, 1) put B(β, δ) =
{

β̃ ∈ Rp : ‖β̃ − β‖ < δ
}

,
i. e. B(β, δ) is a ball with the center β and radius δ.

Assumptions C

There are distribution functions H(β)(t), t ∈ R, β ∈ Rp such that for any compact
set W ⊂ Rp

sup
β∈W

sup
t∈R

∣∣∣∣∣
1
n

n∑

i=1

I
{
xT

i (β − β0) ≤ t
}
−H(β)(t)

∣∣∣∣∣ = O(n−
1
2 ). (26)

Remark 5. Recently it was found that when Xi’s are i.i.d. the first supremum in
(26) can be taken over Rp, see Vı́̌sek (2005).

Now we are going to give an assertion. Although it is (very) simple, since the
proof of it is just a straightforward computation, we shall need it later.

However, that is not true. It is sufficient to consider two sequences of i.i.d. random variables, say

{X(1)
i }∞i=1 and {X(2)

i }∞i=1 with EX
(1)
1 = EX

(2)
1 and varX

(1)
1 = varX

(2)
1 but with F

X
(1)
1

6= F
X

(2)
1

.

Then there is a set of probability 1 on which both empirical distribution functions converge to the

theoretical ones. Selecting a point ω0 of this set and putting xi = X
(1)
1 (ω0) for some indices and

xi = X
(2)
1 (ω0) for others we conclude the counterexample.
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Assertion 2. Let Assumptions A or B and C be fulfilled and let X ∈ Rp be a
random variable with distribution function H(x). Moreover, let X be independent
from the sequence {ei}∞i=1 and H

(β)
e (z) denote the distribution function of e1 −

XT(β − β0). Then for any compact set W

sup
β∈W

sup
z∈R

∣∣∣∣∣
1
n

n∑

i=1

I {ri(β) ≤ z} −H(β)
e (z)

∣∣∣∣∣ = Op(n−
1
2 ) (27)

where, of course, ri(β) = ei − xT
i (β − β0). Moreover, the distribution H

(β)
e (z) is

absolutely continuous and strictly increasing.
For any compact set W and any δ > 0 such that W \B(β0, δ) 6= ∅ there is γδ > 0

and n0 ∈ N such that for all n > n0

inf
β∈W\B(β0,δ)

1
n

n∑

i=1

[
xT

i (β − β0)
]2

> γδ. (28)

P r o o f . The assertion (27) follows from the fact that ri(β) = ei − xT
i (β − β0)

and from that we have assumed that X is independent from the sequence {ei}∞i=1.
Then also XT(β − β0) for β 6= β0 is independent from the sequence {ei}∞i=1.

Finally, the absolute continuity and strict monotonicity of H
(β)
e (z) is due to the

same properties of F (z) (the distribution of disturbances).
The second part of the assertion follows from the fact that Q is regular and hence

positive definite. It implies that

τδ = min
β∈W\B(β0,δ)

(β − β0)TQ(β − β0) > 0.

Notice that due to the fact that the set W \ B(β0, δ) is compact we can write min
instead of inf which in turn is the reason why the min is strictly positive. Then
putting

d = max
β,β̃∈W

∥∥∥β − β̃
∥∥∥ , (29)

let us find n0 ∈ N so that

‖Q− 1
n

XTX‖ = max
`,j∈{1,2,...,p}

|q`j −
1
n

n∑

i=1

xi`xij | < 1
2τδ · d−2.

Finally, taking into account that

XTX =
n∑

i=1

xix
T
i ,

the proof follows for γδ = 1
2τδ. 2
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Remark 6. Let us notice that in contrast to the assumptions on the disturbances,
e. g. that they are independent and identically distributed, which can be checked
at least a posteriori by the well-known diagnostic tools, the assumptions on the
explanatory variables, as (8) or (26) cannot be (usually8) verified at all. Then (26)
gives only a hint for which character of data we may expect reasonable results.

Now, let us put
G(β)(z) = H(β)

e (
√

z)−H(β)
e (−√z), (30)

i. e. G(β)(z) is the distribution function of
[
ei −XT(β − β0)

]2. Moreover, let for
any β ∈ Rp and any α ∈ [0, 1] u2

α(β) be the upper α-quantile of the d.f.

G(β)(z), i. e. G(β)(u2
α(β)) = 1− α. (31)

Since the crucial role in the definition of β̂(LTS,n,h) plays r2
(hn)(β), the next lemma

gives the idea about it (for hn see (7)).

Lemma 1. Let α ∈ (0, 1
2 ) and let Assumptions A or B and C be fulfilled. Then

for any ε > 0 there is K(ε) < ∞ and nε ∈ N such that for all n > nε

P

(
sup
β∈K

∣∣∣r2
(hn)(β)− u2

α(β)}
∣∣∣ < n−

1
2 K(ε)

)
> 1− ε.

P r o o f . At first, we shall show that for any ε > 0 there is Kε < ∞ so that

P

(
sup
β∈K

[
r2
(hn)(β)− u2

α(β)
]

< n−
1
2 ·Kε

)
> 1− 1

2ε. (32)

Since H
(β)
e (z) is absolutely continuous and strictly monotone, there is a positive

density h
(β)
e (z) almost everywhere. Now, due to the fact that α ∈ (0, 1

2 ) there is
δ > 0 and L

h
(β)
e

> 0 so that

inf ess
z∈(u2

α(β)−δ,u2
α(β)+δ)

h(β)
e (z) > L

h
(β)
e

. (33)

According to (27), for already fixed ε there is K(1) < ∞ and n(1) ∈ N so that for
all n > n(1) there is a set Bn such that P (Bn) > 1− 1

4ε and for all ω ∈ Bn

sup
β∈K

sup
z∈R

∣∣∣∣∣
1
n

n∑

i=1

I {ri(β) ≤ z} −H(β)
e (z)

∣∣∣∣∣ < n−
1
2 K(1). (34)

Let us put
Kε = 2

K(1)

L
h
(β)
e

+ 1. (35)

8Of course, there are situations when the design of experiment allows to check such assumptions.
E. g. in some situations we can decide at which point we shall carry out the experiment. Then we
may give a rule by which we select systematically points from the factor space in such a way that
(26) holds.
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According to (34) (and according to the previous lines), for any ω ∈ Bn and any

z ∈ R (and hence also for zn = −
√

u2
α(β) + n−

1
2 Kε)

sup
β∈K

∣∣∣∣∣
1
n

n∑

i=1

I

{
ri(β)≤−

√
u2

α(β)+n−
1
2 Kε

}
−H(β)

e

(
−

√
u2

α(β)+n−
1
2 Kε

)∣∣∣∣∣<n−
1
2 K(1)

as well as for zn =
√

u2
α(β) + n−

1
2 Kε

sup
β∈K

∣∣∣∣∣
1
n

n∑

i=1

I

{
ri(β)≤

√
u2

α(β)+n−
1
2 Kε

}
−H(β)

e

(√
u2

α(β)+n−
1
2 Kε

)∣∣∣∣∣ < n−
1
2 K(1),

i. e.

sup
β∈K

∣∣∣∣∣
1
n

n∑

i=1

I
{

r2
i (β) ≤ u2

α(β)+n−
1
2 Kε

}

−
[
H(β)

e

(√
u2

α(β) + n−
1
2 Kε

)
−H(β)

e

(
−

√
u2

α(β)+n−
1
2 Kε

)]∣∣∣∣ < 2n−
1
2 ·K(1).

(36)
It means that due to (33) for any n > n(1), any β ∈ K and any ω ∈ Bn

1
n

n∑

i=1

I
{

r2
i (β) ≤ u2

α(β) + n−
1
2 Kε

}
≥ 1− α + n−

1
2 L

h
(β)
e

Kε − 2n−
1
2 ·K(1).

Taking into account (35), we conclude that there is K(2) > 0 such that

n(1− α) + n
1
2 K(2) ≤

n∑

i=1

I
{

r2
i (β) ≤ u2

α(β) + n−
1
2 Kε

}
.

In other words, it means that for all n > n(1) on the set Bn, we have for all β ∈ K
more than hn = [(1 − α)n] of the squared residuals r2

i (β)’s smaller than u2
α(β) +

n−
1
2 Kε. But it implies that for β ∈ K, the hnth order statistics among r2

i (β)’s are
smaller than u2

α(β)+n−
1
2 Kε. Since it holds for all n > n(1) on the set of probability

at least 1− ε, simultaneously for all β ∈ K, we have proved (32). The proof of

P

(
sup
β∈K

[
u2

α(β)− r2
(hn)(β)

]
< n−

1
2 ·Kε

)
> 1− 1

2ε.

can be carried out along similar lines. 2

Remark 7. It may be of interest that Lemma 1 can be proved without Assumption
C but then the proof is considerably more complicated, including Skorohod embeding
into Wiener process in a similar way as it will be employed in the proof of the next
lemma. As however we shall need Assumption C in what follows, we gave the proof
in this, simpler form.
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Lemma 2. Let α ∈ (0, 1
2 ) and let Assumptions A or B be fulfilled and K be a

compact subset of Rp, β0 ∈ Ko. Then

sup
β∈K

∣∣∣∣∣
1
n

n∑

i=1

(
r2
i (β)I

{
r2
i (β) ≤ u2

α(β)
}
− E

[
r2
i (β)I

{
r2
i (β) ≤ u2

α(β)
}]

)∣∣∣∣∣ → 0

a. s. as n → ∞. (37)

P r o o f . First of all, similarly as in (29), let us put (throughout this proof)

d = max
β,β̃∈W

∥∥∥β − β̃
∥∥∥ . (38)

For any β ∈ Rp and any δ ∈ (0, 1) put

r2∗
i (β, δ) = sup

β̃∈B(β,δ)∩K
r2
i (β̃)I

{
r2
i (β̃) ≤ u2

α(β̃)
}

and
r2
i∗(β, δ) = inf

β̃∈B(β,δ)∩K
r2
i (β̃)I

{
r2
i (β̃) ≤ u2

α(β̃)
}

.

Let us recall once again that

ri(β̃) = Yi − xT
i β̃ = ri(β0)− xT

i (β̃ − β0) = ei − xT
i (β̃ − β0). (39)

Since xT
i (β − β0) does not depend on ω ∈ Ω, (39) hints that r2∗

i (β, δ) as well as
r2
i∗(β, δ) are measurable and hence random variables. Then the inequalities

0 ≤ r2
i∗(β, δ) ≤ r2∗

i (β, δ)

and (recalling (38))

r2∗
i (β, δ) = sup

β̃∈B(β,δ)∩K
r2
i (β̃)I

{
r2
i (β̃) ≤ u2

α(β̃)
}
≤ 2

(
e2
i + d2‖xi‖2

)

imply that Er2∗
i (β, δ) and Er2

i∗(β, δ) exist and that

max
{
var

(
r2∗
i (β, δ)

)
, var

(
r2
i∗(β, δ)

)}
≤ 4

(
Ee4

i + d4‖xi‖4
)
.

Moreover, since (a + b)4 ≤ 8(a4 + b4)

Er4
i (β̃) ≤ 8

[
Ee4

i + ‖xi‖4
∥∥∥β̃ − β0

∥∥∥
4
]
≤ 8

[
κ4 + d4 ‖xi‖4

]
. (40)

Now taking into account (8) and employing the strong law of large numbers (an
appropriate version can be found e. g. in Breiman [3]), we find that the law holds
pointwise for the sequence

{
r2∗
i (β, δ)

}∞
i=1

, i. e. for any fix β ∈ K and any fix δ ∈ (0, 1)

1
n

n∑

i=1

(
r2∗
i (β, δ)− Er2∗

i (β, δ)
)
→ 0 a. s. as n →∞ (41)

and the same is true for r2
i∗(β, δ). Further, from ri(β̃) = Yi−xT

i β̃ = ri(β)−xT
i (β̃−β)

it follows that ∣∣∣ri(β̃)
∣∣∣ ≤ |ri(β)|+ ‖xi‖

∥∥∥β̃ − β
∥∥∥ (42)
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and hence

r2
i (β̃) ≤ r2

i (β) + 2 |ri(β)| ‖xi‖
∥∥∥β̃ − β

∥∥∥ + ‖xi‖2
∥∥∥β̃ − β

∥∥∥
2

. (43)

Applying (42) on β and β0 and plugging such upper bound of |ri(β)| into (43), we
obtain

E
∣∣∣r2

i (β̃)− r2
i (β)

∣∣∣ ≤ 2
{
E|ei|+ ‖xi‖ ·

∥∥β − β0
∥∥}
‖xi‖ ·

∥∥∥β̃ − β
∥∥∥ + ‖xi‖2

∥∥∥β̃ − β
∥∥∥

2

.

(44)

To be able to find an upper bound of |Er2∗
i (β, δ)− Er2

i (β)I{r2
i (β) ≤ u2

α(β)}|, we

need to consider in more details the mutual relation of u2
α(β̃) and u2

α(β).

Let us fix an ε > 0 and denote W (s) the Wiener process. Further, let us find
K(1) < ∞ such that

P

(
sup

0≤s≤2
|W (s)| > K(1)

)
< 1

2ε, (45)

see e. g. Breiman (1968) or Csöőrgő, Révész (1981). Finally, let us denote for
α ∈ (0, 1) and β ∈ Rp

v
(α)
i (β) = I

{
r2
i (β) ≤ u2

α(β)
}
− EI

{
r2
i (β) ≤ u2

α(β)
}

.

Recalling that ri(β) = ei − xT
i (β − β0), we conclude that v

(α)
i (β) are independent

r.v.’s. Due to the fact that we have assumed that the support of F (x) is the whole R,
we have for any α ∈ (0, 1) and for all i ∈ N , a

(α)
i (β) = EI

{
r2
i (β) ≤ u2

α(β)
}
∈ (0, 1).

Then in the case when r2
i (β) ≤ u2

α(β) we have v
(α)
i (β) = 1− a

(α)
i (β) > 0 otherwise

v
(α)
i (β) = −a

(α)
i (β) < 0. Now, let {Wi(s)}∞i=1 be a sequence of independent Wiener

processes and let

τ
(α)
i (β) = time for Wi(s) to exit the interval (−a

(α)
i (β), 1− a

(α)
i (β)).

Then applying Lemma A.1 we obtain

v
(α)
i (β) =D Wi(τ

(α)
i (β))

and

n−
1
2

n∑

i=1

v
(α)
i (β) =D n−

1
2

n∑

i=1

Wi(τ
(α)
i (β)) =D Wn

(
n−1

n∑

i=1

τ
(α)
i (β)

)
. (46)

Further, let us define a sequence of i.i.d. r.v.’s {Vi}∞i=1

Vi = time for Wi(s) to exit the interval (−1, 1)

and applying Lemma A.1 once again we have EVi = 1 for all i. Moreover, since for
any β ∈ K (−a

(α)
i (β), 1− a

(α)
i (β)) ⊂ (−1, 1), we have

n−1
n∑

i=1

τ
(α)
i (β) ≤ n−1

n∑

i=1

Vi (47)
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for all β ∈ K and any ω ∈ Ω. Now, for ε > 0 (which was fixed at the beginning
of the proof), employing the law of large numbers on the sequence {Vi}∞i=1 of i.i.d.
r.v.’s, let us find n(1) ∈ N such that for any n > n(1), putting

Cn =

{
ω ∈ Ω : n−1

n∑

i=1

Vi > 2

}
, (48)

we have
P (Cn) < 1

2ε. (49)

Notice, please that Cn does not depend on β ∈ K. It implies that due to (47) and
(48) for any ω ∈ Cc

n and any n > n(1)

n−1
n∑

i=1

τ
(α)
i (β) ≤ 2. (50)

Taking into account (46), (49) and Portnoy [11], we have for any n > n(1)

P

(
n−

1
2 sup

β∈K

∣∣∣∣∣
n∑

i=1

v
(α)
i (β)

∣∣∣∣∣ > K(1)

)

= P

({
n−

1
2 sup

β∈K

∣∣∣∣∣
n∑

i=1

v
(α)
i (β)

∣∣∣∣∣ > K(1)

}
∩ Cc

n

)
+ P (Cn)

≤ P

({
n−

1
2 sup

β∈K

∣∣∣∣∣
n∑

i=1

Wi(τ
(α)
i (β))

∣∣∣∣∣ > K(1)

}
∩ Cc

n

)
+ 1

2ε

= P

({
sup
β∈K

∣∣∣∣∣Wn(n−1
n∑

i=1

τ
(α)
i (β))

∣∣∣∣∣ > K(1)

}
∩ Cc

n

)
+ 1

2ε.

Employing now (45) and (50), we obtain

P

({
sup
β∈K

∣∣∣∣∣Wn(n−1
n∑

i=1

τ
(α)
i (β))

∣∣∣∣∣ > K(1)

}
∩ Cc

n

)
+ 1

2ε

≤ P

({
sup

0≤s≤2
|W (s)| > K(1)

}
∩ Cc

n

)
+ 1

2ε < ε

so that

1
n

sup
β∈K

∣∣∣∣∣
n∑

i=1

[
I

{
ri(β) ≤ u2

α(β)
}
− EI

{
r2
i (β) ≤ u2

α(β)
]}

∣∣∣∣∣ ≤ n−
1
2 K(1) (51)

with probability at least 1− ε. Now, similarly as we have derived (36), we can find
K(2) < ∞ so that

∣∣∣∣∣
1
n

n∑

i=1

I
{
r2
i (β) ≤ u2

α(β)
}
−

[
H(β)

e (uα(β))−H(β)
e (−uα(β))

]∣∣∣∣∣ < n−
1
2 K(2), (52)
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again with probability at least 1− ε. Since

G(β)(u2
α(β)) = H(β)

e (uα(β))−H(β)
e (−uα(β)),

taking into account (51) and (52) we may conclude that there is a constant K(3) < ∞
so that

1
n

∣∣∣∣∣
n∑

i=1

EI
{
r2
i (β) ≤ u2

α(β)
}
−G(β)(u2

α(β))

∣∣∣∣∣ ≤ n−
1
2 K(3). (53)

(Notice please that the last inequality does not contain any random term.) As
G(β)(u2

α(β)) = 1− α = G(β̃)(u2
α(β̃)), (53) implies that for K(4) = 2 ·K(3)

1
n

∣∣∣∣∣
n∑

i=1

[
EI

{
r2
i (β) ≤ u2

α(β)
}
− EI

{
r2
i (β̃) ≤ u2

α(β̃)
}]∣∣∣∣∣ < n−

1
2 K(4)

which may be written as

1
n

∣∣∣∣∣
n∑

i=1

[
P

(
r2
i (β) ≤ u2

α(β)
)
− P

(
r2
i (β̃) ≤ u2

α(β̃)
)]∣∣∣∣∣ < n−

1
2 K(4). (54)

As ri(β) = ei − xT
i (β − β0), r2

i (β) ≤ u2
α(β) is equivalent to

[
ei − xT

i (β − β0)
]2 ≤

u2
α(β) which gives

−uα(β) + xT
i (β − β0) ≤ ei ≤ uα(β) + xT

i (β − β0).

Then of course,

P
(
r2
i (β) ≤ u2

α(β)
)

= F (uα(β) + xT
i

(
β − β0

)
)− F (−uα(β) + xT

i

(
β − β0

)
) (55)

and similarly for P
(
r2
i (β̃) ≤ u2

α(β̃)
)
. Due to the assumption that the density ex-

ist everywhere, we can find point ui so that ui ∈ (ai, ãi)ord where ai = uα(β) +

xT
i

(
β − β0

)
and ãi = uα(β̃) + xT

i

(
β̃ − β0

)
and

F
(
uα(β) + xT

i

(
β − β0

))
− F

(
uα(β̃) + xT

i (β̃ − β0)
)

= f(ui)
[
uα(β)− uα(β̃) + xT

i

(
β − β̃

)]
(56)

and ũi so that ũi ∈ (bi, b̃i)ord where bi = −uα(β) + xT
i

(
β − β0

)
and b̃i = −uα(β̃) +

xT
i

(
β̃ − β0

)
and

F (−uα(β) + xT
i

(
β − β0

)
)− F (−uα(β̃) + xT

i

(
β̃ − β0

)
)

= f(ũi)
[
uα(β̃)− uα(β) + xT

i

(
β − β̃

)]
. (57)
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Now, taking into account (54), (55), (56) and (57), we arrive at

1
n

∣∣∣∣∣
n∑

i=1

{
[f(ui)+f(ũi)] ·

[
uα(β)−uα(β̃)

]
+[f(ui)− f(ũi)]xT

i

(
β−β̃

)}∣∣∣∣∣ < 2n−
1
2 K(4)

which yields

−2n−
1
2 K(4) − 1

n

n∑

i=1

[f(ui)− f(ũi)] xT
i

(
β − β̃

)

<
1
n

n∑

i=1

[f(ui) + f(ũi)] ·
[
uα(β)− uα(β̃)

]

< − 1
n

n∑

i=1

[f(ui)− f(ũi)]xT
i

(
β − β̃

)
+ 2n−

1
2 K(4).

Since −|a| ≤ a ≤ |a| and
∣∣∣∣∣
1
n

n∑

i=1

[f(ui)− f(ũi)]xT
i

(
β − β̃

)∣∣∣∣∣ ≤
1
n

n∑

i=1

∣∣∣∣f(ui)− f(ũi)
∣∣∣∣ ·

∣∣∣xT
i

(
β − β̃

)∣∣∣ ,

we have

−2 · n− 1
2 K(4) − 1

n

n∑

i=1

|f(ui)− f(ũi)|
∣∣∣xT

i

(
β − β̃

)∣∣∣

<
1
n

[
uα(β)− uα(β̃)

]
·

n∑

i=1

[f(ui) + f(ũi)]

<
1
n

n∑

i=1

|f(ui)− f(ũi)|
∣∣∣xT

i

(
β − β̃

)∣∣∣ + 2 · n− 1
2 K(4).

It means that

1
n

∣∣∣uα(β)−uα(β̃)
∣∣∣

n∑

i=1

[f(ui)+f(ũi)] ≤
1
n

n∑

i=1

∣∣∣f(ui)−f(ũi)
∣∣∣·

∣∣∣xT
i

(
β−β̃

)∣∣∣+2 n−
1
2 K(4).

(58)
Now

f(ui) = f(uα(β)) + f ′(vi)xT
i

(
β − β̃

)
(59)

and
f(ũi) = f(uα(β)) + f ′(ṽi)xT

i

(
β − β̃

)
(60)

where vi and ṽi were appropriately selected (similarly as ui and ũi a few lines above).
Denoting the upper bound of the absolute value of the derivative f ′ by Uf ′ , we get
from (59) and (60)

1
n

n∑

i=1

∣∣∣f(ui)− f(ũi)
∣∣∣ ·

∣∣∣xT
i ·

(
β − β̃

)∣∣∣ ≤ 1
n

n∑

i=1

∣∣∣f ′(vi)− f ′(ṽi)
∣∣∣ ·

[
xT

i ·
(
β − β̃

)]2
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≤ 2
n

Uf ′

n∑

i=1

[
xT

i ·
(
β − β̃

)]2

≤ Uf ′

∥∥∥β − β̃
∥∥∥

2

· 2
n

n∑

i=1

‖xi‖2 (61)

and
1
n

n∑

i=1

[
f(ui) + f(ũi)

]
≥ 2 · f(uα(β))− Uf ′

∥∥∥β − β̃
∥∥∥

2 2
n

n∑

i=1

‖xi‖2. (62)

Since we have assumed that f(z) is positive everywhere, we have f(uα(β)) > 0.
Moreover, due to (8) there is a constant K(5) and n(2) ∈ N,n(2) > n(1) such that
for all n > n(2) we have

1
n

n∑

i=1

‖xi‖2 < K(5).

Let us put δ0 = min
{

1
2

f(uα(β))
Uf ·K(5) , 1

}
and consider any positive δ < δ0. Then for any

β, β̃ ∈ Rp such that
∥∥∥β − β̃

∥∥∥ < δ, we have

Uf ′

∥∥∥β − β̃
∥∥∥

2 2
n

n∑

i=1

‖xi‖2 ≤ f(uα(β))

and hence (62) gives

1
n

n∑

i=1

[
f(ui) + f(ũi)

]
≥ f(uα(β)). (63)

Now taking into account (58), (61) and (63) we conclude that

∣∣∣uα(β)− uα(β̃)
∣∣∣ ≤ f−1(uα(β))

{
2K(5)Uf ′

∥∥∥β − β̃
∥∥∥

2

+ 2n−
1
2 K(4)

}
.

Since the left hand side of the previous inequality does not depend on n, we conclude
that there is a constant K(6) < ∞ such that for all

∥∥∥β − β̃
∥∥∥ < δ (remember, we have

considered δ ∈ (0, 1))
∣∣∣uα(β)− uα(β̃)

∣∣∣ ≤ K(6)
∥∥∥β − β̃

∥∥∥
2

. (64)

Now,

r2
i (β) ≤ u2

α(β) ⇔ − uα(β) ≤ ri(β) ≤ uα(β) ⇔

⇔ − uα(β) + xT
i ·

(
β − β0

)
≤ ei ≤ uα(β) + xT

i ·
(
β − β0

)
.

Hence I
{

r2
i (β̃) ≤ u2

α(β̃)
}
6= I

{
r2
i (β) ≤ u2

α(β)
}

appears when either

ei ∈
(
−uα(β) + xT

i ·
(
β − β0

)
,−uα(β̃) + xT

i ·
(
β̃ − β0

))
ord

(65)

or
ei ∈

(
uα(β) + xT

i ·
(
β − β0

)
, uα(β̃) + xT

i ·
(
β̃ − β0

))
ord

. (66)
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As we have assumed the density f(z) to be bounded (say by Bf ), we conclude from
(64), (65) and (66) that there is a constant K(7) < ∞ such that for any pair β, β̃
such that ‖β − β̃‖ < δ

P
(
I

{
r2
i (β̃)≤u2

α(β̃)
}
6=I

{
r2
i (β)≤u2

α(β)
})
≤Bf

{
‖xi‖

∥∥∥β−β̃
∥∥∥ + K(7)

∥∥∥β−β̃
∥∥∥

2
}

.

(67)
Further, we have
[
I

{
r2
i (β̃) ≤ u2

α(β̃)
}
−I

{
r2
i (β)≤u2

α(β)
}]2

=
∣∣∣I

{
r2
i (β̃)≤u2

α(β̃)
}
− I

{
r2
i (β)≤u2

α(β)
}∣∣∣

and hence
∣∣∣∣E

{
r2
i (β̃)I

{
r2
i (β̃) ≤ u2

α(β̃)
}}

− E

{
r2
i (β)I

{
r2
i (β) ≤ u2

α(β)
}}∣∣∣∣

≤ E
{∣∣∣r2

i (β̃)− r2
i (β)

∣∣∣ · I
{
r2
i (β) ≤ u2

α(β)
}}

+ E
{

r2
i (β̃) ·

∣∣∣I
{

r2
i (β̃) ≤ u2

α(β̃)
}
− I

{
r2
i (β) ≤ u2

α(β)
}∣∣∣

}

≤ E
{∣∣∣r2

i (β̃)− r2
i (β)

∣∣∣ · I
{
r2
i (β) ≤ u2

α(β)
}}

+
{

Er4
i (β̃)·E

∣∣∣I
{

r2
i (β̃)≤u2

α(β̃)
}
−I

{
r2
i (β)≤u2

α(β)
}∣∣∣
} 1

2
.

Now recalling that

E

∣∣∣∣I
{

r2
i (β̃)≤u2

α(β̃)
}
−I

{
r2
i (β)≤u2

α(β)
}∣∣∣∣=P

(
I
{

r2
i (β̃)≤u2

α(β̃)
}
6=I

{
r2
i (β)≤u2

α(β)
})

,

taking into account that and (67) together with (40) and (44), we conclude that
there is a constant K(9) such that for any β ∈ K and β̃ ∈ K, ‖β − β̃‖ < δ
∣∣∣∣E

{
r2
i (β̃)I

{
r2
i (β̃) ≤ u2

α(β̃)
}}

− E
{
r2
i (β)I

{
r2
i (β) ≤ u2

α(β)
}}∣∣∣∣

≤ K(9)

[
‖xi‖ + ‖xi‖2 + ‖xi‖3 + ‖xi‖4

]
·
∥∥∥β̃ − β

∥∥∥ . (68)

But (68) implies that there is a constant K(10) such that for any β ∈ K and any
δ < δ0 we have

∣∣∣∣Er2∗
i (β, δ)−E

{
r2
i (β)I

{
r2
i (β)≤u2

α(β)
}}∣∣∣∣≤K(10)

[
‖xi‖+‖xi‖2+‖xi‖3+‖xi‖4

]
δ.

Now taking into account assumption (8), we conclude that for any ε > 0 there is a
δ′ε ∈ (0, 1) so that

sup
n∈N

∣∣∣∣∣
1
n

n∑

i=1

(
Er2∗

i (β, δ′ε)− E
[
r2
i (β)I

{
r2
i (β) ≤ u2

α(β)
}]

)∣∣∣∣∣ < ε. (69)
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Along similar lines we can obtain for the same ε and some δ′′ε ∈ (0, 1) so that

sup
n∈N

∣∣∣∣∣
1
n

n∑

i=1

(
Er2

i∗(β, δ′′ε )− E
[
r2
i (β)I

{
r2
i (β) ≤ u2

α(β)
}]

)∣∣∣∣∣ < ε. (70)

Let us put δε = min {δ′ε, δ′′ε }. Employing now the inequalities (69) and (70), we
obtain for given ε and δε

1
n

n∑

i=1

E
[
r2
i (β)I

{
r2
i (β) ≤ u2

α(β)
}]
− ε ≤ 1

n

n∑

i=1

Er2
i∗(β, δε)

≤ 1
n

n∑

i=1

Er2∗
i (β, δε) ≤

1
n

n∑

i=1

E
[
r2
i (β)I

{
r2
i (β) ≤ u2

α(β)
}]

+ ε. (71)

(Notice please that δε does not depend on β but we shall not need it.) Now, for
given ε the system of the balls {B(β, δε), β ∈ K} represents an open cover of the
compact set K. Hence there is a finite subsystem, say {B(β`, δε), ` = 1, 2, . . . , L}
which also covers K. For any β ∈ B(β`, δε) we have

1
n

n∑

i=1

(
r2
i (β)I

{
r2
i (β) ≤ u2

α(β)
}
− E

[
r2
i (β)I

{
r2
i (β) ≤ u2

α(β)
}])

≤ 1
n

n∑

i=1

(
r2∗
i (β`, δε)− Er2

i∗(β`, δε)
)

≤ 1
n

n∑

i=1

(
r2∗
i (β`, δε)− Er2∗

i (β`, δε)
)

+ 2ε (72)

and
1
n

n∑

i=1

(
r2
i (β)I

{
r2
i (β) ≤ u2

α(β)
}
− E

[
r2
i (β)I

{
r2
i (β) ≤ u2

α(β)
}])

≥ 1
n

n∑

i=1

(
r2
i∗(β`, δε)− Er2∗

i (β`, δε)
)

≥ 1
n

n∑

i=1

(
r2
i∗(β`, δε)− Er2

i∗(β`, δε)
)
− 2ε. (73)

Now for any β ∈ K (72) and (73) give

min
1≤`≤L

{
1
n

n∑

i=1

(
r2
i∗(β`, δε)− Er2

i∗(β`, δε)
)
}
− 2ε

≤ 1
n

n∑

i=1

(
r2
i (β)I

{
r2
i (β) ≤ u2

α(β)
}
− E

[
r2
i (β)I

{
r2
i (β) ≤ u2

α(β)
}])

≤ max
1≤`≤L

{
1
n

n∑

i=1

(
r2∗
i (β`, δε)− Er2∗

i (β`, δε)
)
}

+ 2ε.

Taking into account (41) (and the same fact as (41) for r2
i∗(β, δ)), we conclude the

proof. 2
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Corollary 1. Let assumptions of Lemma 1 and 2 are fulfilled. Then

sup
β∈K

∣∣∣∣∣
1
n

n∑

i=1

(
r2
i (β)I

{
r2
i (β) ≤ r2

(hn)(β)
}
− E

[
r2
i (β)I

{
r2
i (β) ≤ u2

α(β)
}]

)∣∣∣∣∣ → 0

in probability as n →∞.

The proof follows immediately from Lemma 1 and 2. 2

Lemma 3. Let α ∈ (0, 1
2 ) and let Assumptions A or B be fulfilled and K be a

compact subset of Rp, β0 ∈ Ko. Then for any δ > 0 there is nδ ∈ N and γδ > 0
such that for any n > nδ

min
β∈K−B(β0,δ)

1
n

n∑

i=1

E
[
r2
i (β)I

{
r2
i (β) ≤ u2

α(β)
}]
− E

[
r2
1(β

0)I
{
r2
1(β

0) ≤ u2
α

}]
> γδ.

(74)

P r o o f . Let us denote the boundary of B(β0, δ) by Bb(β0, δ), i. e. Bb(β0, δ) =
B̄(β0, δ) \B(β0, δ) where B̄(β0, δ) is the closure of B(β0, δ).

The idea of proof is as follows. Firstly to show that there is a δ∗ ∈ (0, 1) such
that for any 0 < δ < δ∗ there is a γδ > 0 such that

min
β∈Bb(β0,δ)

1
n

n∑

i=1

E
[
r2
i (β)I

{
r2
i (β) ≤ u2

α(β)
}]
−E

[
r2
1(β

0)I
{
r2
1(β

0) ≤ u2
α

}]
> γδ > 0.

Secondly, we show that the expression 1
n

∑n
i=1 E

[
r2
i (β)I

{
r2
i (β) ≤ u2

α(β)
}]

is not
decreasing when we move along any direction from β0. Let us make the first step.
Please, keep in mind that we consider δ∗ ∈ (0, 1) and hence for any δ ∈ (0, δ∗) and
any β ∈ Bb(β0, δ) we have

∥∥β − β0
∥∥k

<
∥∥β − β0

∥∥ for any k > 1.

Throughout the first part of the proof let us write ∆i instead of xT
i

(
β − β0

)
. We

have
1
n

n∑

i=1

E
[
r2
i (β)I

{
r2
i (β) ≤ u2

α(β)
}]
− E

[
r2
1(β

0)I
{
r2
1(β

0) ≤ u2
α

}]

=
1
n

n∑

i=1

E
{[

r2
i (β)− r2

i (β0)
]
I

{
r2
i (β0) ≤ u2

α

}}
(75)

+
1
n

n∑

i=1

E
{
r2
i (β)

[
I

{
r2
i (β) ≤ u2

α(β)
}
− I

{
r2
i (β0) ≤ u2

α

}]}
. (76)

Let us try to evaluate the expression in (75) and let us recall that ri(β0) = ei and
ri(β) = ei −∆i. Then due to (10)

E
{[

r2
i (β)− r2

i (β0)
]
I

{
r2
i (β0) ≤ u2

α

}}
= E

{[
∆2

i − 2∆iei

]
I

{
r2
i (β0) ≤ u2

α

}}

= (1− α)∆2
i = (1− α)

(
xT

i

(
β − β0

) )2

. (77)



24 J. Á. VÍŠEK

Now, let us turn to (76). We shall find a lower bound of

E
{
r2
i (β)

[
I

{
r2
i (β)≤u2

α(β)
}
−I

{
r2
i (β0)≤u2

α

}]}
=

∫

B
(1)
i

r2
i (β)dP (ω)−

∫

B
(2)
i

r2
i (β)dP (ω)

(78)
where

B
(1)
i =

{
ω ∈ Ω : I

{
r2
i (β) ≤ u2

α(β)
}
− I

{
r2
i (β0) ≤ uα

}
= 1

}

and
B

(2)
i =

{
ω ∈ Ω : I

{
r2
i (β) ≤ u2

α(β)
}
− I

{
r2
i (β0) ≤ uα

}
= −1

}
.

To be able to evaluate integrals in (78) we need to make an idea about B
(1)
i , B

(2)
i

and uα(β). Let us start with uα(β).
We are going to show that due to the fact that H

(β)
e (z) is the convolution of F (z)

and H(β)(t) (see Assumptions A or B and C, and also Assertion 2), the interval
(−uα, uα) is shorter for any α ∈ (0, 1) and any β ∈ Rp than (−uα(β), uα(β)),
i. e. u2

α ≤ u2
α(β). First of all, let us recall that u2

α was defined as the upper α-
quantile of the d.f. G(z), i. e. α = 1 − G(u2

α) = P
(
e2
1 > u2

α

)
= P (e1 < −uα) +

P (e1 > uα) = α, see (6). Similarly, u2
α(β) was given as the upper α-quantile of

G(β)(z), i. e. G(β)(u2
α(β)) = 1− α. In other words, see (30) and (31) H

(β)
e (uα(β))−

H
(β)
e (−uα(β)) = 1− α. As we have said

H(β)
e (z) =

∫ −∞

−∞
F (z − t)dH(β)(t)

and hence we look for such a value uα(β) that

∫ −∞

−∞
[F (uα(β)− t)− F (−uα(β)− t)] dH(β)(t) = 1− α.

Let us recall that f(z) is symmetric around 0, strictly decreasing on R+ and F (uα)−
F (−uα) = 1− α. Then for any a ∈ (0, uα) we have

F (a)− F (−a) < 1− α

and hence for any t ∈ R

F (a− t)− F (−a− t) < 1− α

(after all, the last inequality is immediately visible from a picture of density f). But
it means that for any a ∈ (0, uα)

∫ −∞

−∞
[F (a− t)− F (−a− t)] dH(β)(t) <

∫ −∞

−∞
(1− α)dH(β)(t) = 1− α

and hence uα(β) ≥ uα.
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It immediately implies that |uα(β) − uα| = uα(β) − uα and then according to
(64) there is a constant K(1) ∈ (1,∞) and δ > 0 such that for any ‖β − β0‖ < δ

uα(β)− uα < K(1)
∥∥β − β0

∥∥2
. (79)

It allows to find a direct approximation to uα(β) − uα. Put δ̃ = min{[K(1)]−1, δ}
and in what follows assume only β ∈ Rp such that ‖β − β0‖ < δ̃. Then of course,
due to (79), |uα(β) − uα|k < |uα(β) − uα| < 1 for any k > 1. Employing (54) for
β̃ = β0 we obtain (for some K(2) < ∞)

1
n

∣∣∣∣∣
n∑

i=1

[
P

(
r2
i (β) ≤ u2

α(β)
)
− P

(
r2
i (β0) ≤ u2

α(β0)
)]

∣∣∣∣∣ < n−
1
2 K(2)

i. e.

1
n

∣∣∣∣∣
n∑

i=1

{F (uα(β) + ∆i)− F (−uα(β) + ∆i)− [F (uα)− F (−uα)]}
∣∣∣∣∣ < n−

1
2 K(2).

(80)
Let us consider at first

F (uα(β) + ∆i)− F (−uα(β) + ∆i)− [F (uα)− F (−uα)]

= F (uα(β) + ∆i)− F (uα)− [F (−uα(β) + ∆i)− F (−uα)] . (81)

We are going to utilize for z ∈ (uα, uα(β) + ∆i)ord the expansion

f(z) = f(uα) + f ′(uα)(z − uα) + 1
2f
′′(a1)(z − uα)2

where a1 = a1(z) ∈ (uα, z)ord and for z ∈ (−uα,−uα(β) + ∆i)ord

f(z) = f(uα)− f ′(uα)(z + uα) + 1
2f
′′(a2)(z + uα)2

where a2 = a2(z) ∈ (−uα, z)ord. Let us denote J1 the (upper) bound of the absolute
value of the second derivative of density, i. e.

J1 = sup
z∈R

|f ′′(z)| .

Then

F (uα(β)+∆i)−F (uα) = f(uα) [uα(β) + ∆i − uα]+ 1
2f
′(uα) [uα(β) + ∆i − uα]2+Ri

where

|Ri| = 1
2

∣∣∣∣∣

∫ uα(β)+∆i

uα

f
′′
(a1(z)) (z − uα)2 dz

∣∣∣∣∣

≤ 1
6
J1 [uα(β) + ∆i − uα]3 ≤ K(3)

{
|uα(β)− uα|3 + |∆i|3

}
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for some K(3) < ∞. Taking into account (8), (79) and (80), we can find K(4) < ∞
so that

1
n

∣∣∣∣∣
n∑

i=1

{
f(uα) [uα(β) + ∆i − uα] + 1

2f
′(uα) [uα(β) + ∆i − uα]2

−f(uα) [−uα(β) + ∆i + uα] + 1
2f
′(uα) [−uα(β) + ∆i + uα]2

}∣∣∣

< K(4) ·
∥∥β − β0

∥∥3
+ n−

1
2 K(2).

The last inequality may be written as

1
n

∣∣∣∣∣
n∑

i=1

{
2f(uα) [uα(β)− uα] + f ′(uα)

[
(uα(β)− uα)2 + ∆2

i

]}∣∣∣∣∣

< K(4) ·
∥∥β − β0

∥∥3
+ n−

1
2 K(2).

Taking into account that the derivative f ′(z) is bounded in absolute value and
employing (79) once again, we obtain from the previous line (for some K(5) < ∞;
remember that we consider only such β ∈ Rp that ‖β − β0‖ < δ̃)

1
n

∣∣∣∣∣
n∑

i=1

{
2 · f(uα) [uα(β)− uα] + f ′(uα)∆2

i

}
∣∣∣∣∣ < K(5)

∥∥β − β0
∥∥3

+ n−
1
2 K(2)

which, due to the fact that f(uα) > 0, finally gives for some K(6) < ∞
∣∣∣∣∣uα(β)− uα +

f ′(uα)
2f(uα)

· 1
n

n∑

i=1

∆2
i

∣∣∣∣∣ ≤ K(6)
{∥∥β − β0

∥∥3
+ n−

1
2

}
. (82)

Now, let us return to B
(1)
i and B

(2)
i . The event B

(1)
i appears whenever

{−uα(β) + ∆i ≤ ei ≤ uα(β) + ∆i} ∩ {{ei < −uα} ∪ {uα < ei}}

which is equivalent to

{−uα(β) + ∆i ≤ ei ≤ −uα} ∪ {uα ≤ ei ≤ uα(β) + ∆i} . (83)

Similarly for B
(2)
i we have

{
{ei < −uα(β) + ∆i} ∪ {uα(β) + ∆i < ei}

}
∩

{
− uα ≤ ei ≤ uα

}

which is again equivalent to

{−uα ≤ ei < −uα(β) + ∆i} ∪ {uα(β) + ∆i ≤ ei < uα} . (84)

First of all, let us assume that ∆i ≥ 0. Then, if uα(β)−uα < ∆i, the first interval in
(83) as well as the second interval in (84) are empty. For 0 < ∆i < uα(β)−uα both
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intervals in (83) are nonempty while both intervals in (84) are empty. For ∆i < 0
the situation is symmetric. Please, keep it in mind.

So, let us assume that ∆i ≥ 0. Then similarly as in previous for uα ≤ z ≤ uα+∆i

let us write the density f(z) as

f(z) = f(uα) + f ′(uα) · (z − uα) +
1
2
f ′′(a3) · (z − uα)2

where a3 = a3(z), uα ≤ a3 ≤ z and define ∆∗
i by uα(β)+∆i = uα +∆∗

i . Then (79)
implies that for ‖β − β0‖ < δ̃

∆i −K(1) ·
∥∥β − β0

∥∥2 ≤ ∆∗
i = uα(β)− uα + ∆i ≤ ∆i + K(1) ·

∥∥β − β0
∥∥2

. (85)

A chain of routine steps in evaluation of the integral
∫

B
(1)
i

r2
i (β)dP (ω) leads to the

conclusion that for some K(7) < ∞ (remember that ri(β) = ei −∆i)

∫

B
(1)
i

r2
i (β)dP (ω)≥

∫ uα+∆∗
i

uα

(z−∆i)
2
[
f(uα)+f ′(uα) · (z−uα)−J1 · (z−uα)2

]
dz

≥ f(uα)
[
u2

α∆∗
i − uα∆2

i

]
+ 1

2f
′(uα)u2

α∆2
i −K(7) ·

∥∥β − β0
∥∥3

. (86)

(By the way, along similar lines, for the case when ∆i > uα(β)−uα, we can arrive
to the opposite inequality

∫

B
(1)
i

r2
i (β)dP (ω) ≤ f(uα)

[
u2

α∆∗
i − uα∆2

i

]
+ 1

2f
′(uα)u2

α∆2
i + K(7) ·

∥∥β − β0
∥∥3

.

But we shall not need it.)

Let us turn our attention to the integral over B
(2)
i . In this case we need to treat at

first the case of ∆i > uα(β)−uα, since then (as we have already mention it) the first
interval in (84) is nonempty while the second one is empty. In other words, it means
that B

(2)
i = {−uα ≤ ei < −uα(β) + ∆i} 6= ∅. Similarly as in the previous steps,

when we treated uα ≤ ei < uα(β) + ∆i, we have now for −uα ≤ ei < −uα(β) + ∆i

f(z) = f(−uα) + f ′(−uα) · (z + uα) +
1
2
f ′′(a4) · (z + uα)2

= f(uα)− f ′(uα) · (z + uα) +
1
2
f ′′(a4) · (z + uα)2

where −uα ≤ a4 ≤ z. Putting in this case −uα(β)+∆i = −uα +∆∗i, we have again
due to (79) for some K(8) < ∞

∆i −K(8) ·
∥∥β − β0

∥∥2 ≤ ∆∗i = uα − uα(β) + ∆i ≤ ∆i + K(8) ·
∥∥β − β0

∥∥2
(87)

and, carrying out again a chain of calculations, we arrive at
∫

B
(2)
i

r2
i (β)dP (ω)≤

∫ −uα+∆∗i

−uα

(z−∆i)
2
[
f(uα)−f ′(uα) · (z+uα)+J1 · (z+uα)2

]
dz
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≤ f(uα)
[
u2

α∆∗i + uα∆2
i

]
− 1

2f
′(uα)u2

α∆2
i + K(9) ·

{∥∥β − β0
∥∥3

+ n−
1
2

}

for some K(9) < ∞. Taking into account (86), we conclude that for some K(10) < ∞

−K(10) ·
∥∥β − β0

∥∥3

<

∫

B
(1)
i

r2
i (β)dP (ω)−

∫

B
(2)
i

r2
i (β)dP (ω)−f(uα)u2

α [∆∗
i −∆∗i]−f ′(uα)u2

α∆2
i+2·f(uα)uα∆2

i .

(88)
For the case when 0 < ∆i < uα(β)−uα both intervals in (84) are empty. Recalling

that for 0 < ∆i < uα(β)− uα even the first interval in (83) is nonempty and hence
repeating the previous lines, without estimating the integral over B

(2)
i , we conclude

that (88) holds also for 0 < ∆i < uα(β) − uα. Since the situation is symmetric in
∆i, we obtain the same result for the case when ∆i < 0.

So, we have

−K(10) ·
∥∥β − β0

∥∥3
<

1
n

n∑

i=1

{∫

B
(1)
i

r2
i (β)dP (ω)−

∫

B
(2)
i

r2
i (β)dP (ω)

}

−f(uα)u2
α

1
n

n∑

i=1

[∆∗
i −∆∗i]− f ′(uα)u2

α

1
n

n∑

i=1

∆2
i + 2 · f(uα)uα

1
n

n∑

i=1

∆2
i .

Now (82) and the equalities in (85) and (87) imply that there is a constant K(11) < ∞

−f ′(uα)
f(uα)

1
n

n∑

i=1

∆2
i−K(11)·

{∥∥β − β0
∥∥3

+ n−
1
2

}

≤ 1
n

n∑

i=1

(∆∗
i −∆∗i) ≤ −f ′(uα)

f(uα)
1
n

n∑

i=1

∆2
i + K(11) ·

{∥∥β − β0
∥∥3

+ n−
1
2

}
.

Finally, we arrive at

1
n

n∑

i=1

{∫

B
(1)
i

r2
i (β)dP (ω)−

∫

B
(2)
i

r2
i (β)dP (ω)

}

≥ −2 · f(uα)uα
1
n

n∑

i=1

∆2
i −K(12) ·

{∥∥β − β0
∥∥3

+ n−
1
2

}
(89)

for some K(12) < ∞.

So, taking into account (77) and (89), we conclude that

1
n

n∑

i=1

Er2
i (β)I

{
r2
i (β) ≤ u2

α(β)
}
−Er2

1(β
0)I

{
r2
1(β

0) ≤ u2
α

}

≥ 1
n

n∑

i=1

[
xT

i

(
β − β0

) ]2

·[(1− α)− 2 · f(uα)uα]+O(
∥∥β − β0

∥∥3
+n−

1
2 ).
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Since (due to the symmetry of F (z) and strict monotonicity of f(z) on R+) for any
α ∈ (0, 1) we have 1−α =

∫ uα

−uα
f(z)dz > 2·uαf(uα), we have (1−α)−2uαf(uα) > 0.

In other words, we have shown that there is a δ∗ > 0 such that for all 0 < δ < δ∗

there is nδ ∈ N and γδ > 0 such that for any n > nδ

min
β∈Bb(β0,δ)

1
n

n∑

i=1

Er2
i (β)I

{
r2
i (β) ≤ u2

α(β)
}
− Er2

1(β
0)I

{
r2
1(β

0) ≤ u2
α

}
> γδ.

So, the first part of the proof is done.
Now let us consider β(2) = β0 + λ

(
β(1) − β0

)
for λ > 1.

First of all we show that uα(β(1)) ≤ uα(β(2)). Let us recall that uα(β) is such a
point that H

(β)
e (uα(β))−H

(β)
e (−uα(β)) = 1− α. Moreover, let us recall that

H(β)
e (z) =

∫ ∞

−∞
H(β)(z − t)dF (t) =

∫ ∞

−∞
F (z − t)dH(β)(t).

Now employing Assumption C, we can find K(13) and n1 so that for all n > n1

sup
β∈K

sup
t∈R

∣∣∣∣∣
1
n

n∑

i=1

I
{
xT

i (β − β0) ≤ t
}
−H(β)(t)

∣∣∣∣∣ < n−
1
2 K(13).

Since β(2) − β0 = λ
(
β(1) − β0

)
, we have for all n > n1

sup
t∈R

∣∣∣∣H(β(1))(
t

λ
)−H(β(2))(t)

∣∣∣∣ (90)

≤ sup
t∈R

∣∣∣∣∣
1
n

n∑

i=1

I

{
xT

i (β(1) − β0) ≤ t

λ

}
−H(β(1))(

t

λ
)

∣∣∣∣∣

+ sup
t∈R

∣∣∣∣∣
1
n

n∑

i=1

I
{

xT
i (β(2) − β0) ≤ t

}
−H(β(2))(t)

∣∣∣∣∣ < 2n−
1
2 K(13).

Since (90) does not depend on n, we conclude H(β(1))( t
λ ) = H(β(2))(t) for t ∈ R.

Further, due to the fact that the density of disturbances f(z) is symmetric around
zero and strictly decreasing on R+, we are going to show that for any λ > 1 and
y ∈ R

F
(
uα(β(1))−λ · y

)
−F

(
−uα(β(1))−λ · y

)
<F

(
uα(β(1))−y

)
−F

(
−uα(β(1))−y

)
.

(91)
Consider at first that y > 0 and remember that uα(β) > 0. Then λ · y > y,

uα(β(1))− y > uα(β(1))− λ · y > −uα(β(1))− λ · y

and −uα(β(1)) − y > −uα(β(1)) − λ · y. Due to the fact that f(uα(β(1))) =
f(−uα(β(1))) and f(z) is strictly decreasing on R+, we conclude that

F (uα(β(1))− y)− F (uα(β(1))− λy) > F (−uα(β(1))− y)− F (−uα(β(1))− λy)



30 J. Á. VÍŠEK

(it is again immediately clear from the picture of density f), i. e. (91) holds. For
y < 0 the situation is symmetric. Then

∫ −∞

−∞

[
F (uα(β(1))− t)− F (−uα(β(1))− t)

]
dH(β(2))(t)

=
∫ −∞

−∞

[
F (uα(β(1))− t)− F (−uα(β(1))− t)

]
dH(β(1))(

t

λ
)

=
∫ −∞

−∞

[
F (uα(β(1))− λ · y)− F (−uα(β(1))− λ · y)

]
dH(β(1))(y)

≤
∫ −∞

−∞

[
F (uα(β(1))− y)− F (−uα(β(1))− y)

]
dH(β(1))(y) = 1− α.

(Notice that in the previous chain of modifications we used correctly the substitution
since (symbolically) dH(β(1))( t

λ ) = h(β(1))( t
λ ) · 1

λdt = h(β(1))(y)dy = dH(β(1))(y) and
that even the strict inequality is preserved – although we shall not need it.) But it
means that uα(β(1)) < uα(β(2)).

Finally let us recall that for any β ∈ Rp ri(β) = ei − xT
i

(
β − β0

)
and hence

r2
i (β) ≤ u2

α(β) is equivalent to

−uα(β) + xT
i

(
β − β0

)
≤ ei ≤ uα(β) + xT

i

(
β − β0

)
.

Then

Er2
i (β)I

{
r2
i (β) ≤ u2

α(β)
}

=
∫ uα(β)+xT

i (β−β0)

−uα(β)+xT
i (β−β0)

[
z − xT

i

(
β − β0

)]2
dF (z).

It means that

1
n

n∑

i=1

E

{
r2
i (β(2))I

{
r2
i (β(2)) ≤ u2

α(β(2))
}
− r2

i (β(1))I
{

r2
i (β(1)) ≤ u2

α(β(1))
}}

=
1
n

n∑

i=1

{∫ uα(β(2))

−uα(β(2))

y2f(y+xT
i (β(2)−β0))dy−

∫ uα(β(1))

−uα(β(1))

y2f(y+xT
i (β(1)−β0))dy

}

=
1
n

n∑

i=1





∫ −uα(β(1))

−uα(β(2))

y2f(y+xT
i (β(2)−β0)dy+

∫ uα(β(2))

uα(β(1))

y2f(y+xT
i (β(2)−β0)dy

(92)

+
∫ uα(β(1))

−uα(β(1))

y2
[
f(y + xT

i

(
β(2) − β0

)
)− f(y + xT

i

(
β(1) − β0

)
)
]
dy





. (93)

Both integrals in (92) are nonnegative. Now let us write

f(y + xT
i

(
β(2) − β0

)
)− f(y + xT

i

(
β(1) − β0

)
)
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= f ′(y + xT
i

(
β(1) − β0

)
) · xT

i

(
β(2) − β(1)

)
+

1
2
f ′′(ξi)

[
xT

i

(
β(2) − β(1)

)]2

where ξi ∈
(
y + xT

i

(
β(2) − β0

)
, y + xT

i

(
β(1) − β0

))
ord

was appropriately selected.
Further

f ′(y +xT
i (β(1)−β0)) ·xT

i (β(2)−β(1)) = f ′(y)xT
i (β(2)−β(1))+

1
2
f ′′(ζi)

[
xT

i (β(2)−β(1))
]2

where ζi ∈
(
y, y + xT

i

(
β(2) − β(1)

))
ord

was again appropriately selected. Now

∫ uα(β(1))

−uα(β(1))

y2f ′(y)dy = 0 (94)

so that to finish the proof we have to cope with

[f ′′(ζi) + f ′′(ξi)]
[
xT

i

(
β(2) − β(1)

)]2

.

It can be written as
2f ′′(y)

[
xT

i

(
β(2) − β(1)

)]2

+

[
(f ′′(ζi)− f ′′(y)) + (f ′′(ξi)− f ′′(y))

] [
xT

i

(
β(2) − β(1)

)]2

.

The last two terms, due to Assumptions A or B and due to (64), can be bounded
in absolute value by K(14) ·

[
xT

i

(
β(2) − β(1)

)]3
with K(14) < ∞. But it means that

there is a constant K(15) < ∞ so that
∣∣∣∣∣
1
n

n∑

i=1

∫ uα(β(1))

−uα(β(1))

y2 [f ′′(ζi)− f ′′(y) + f ′′(ξi)− f ′′(y)]
[
xT

i

(
β(2) − β(1)

)]2

dy

∣∣∣∣∣

≤ 2u3
α(β(1))K(15)(λ− 1)3

1
n

n∑

i=1

[
xT

i

(
β(1) − β0

)]3

. (95)

Finally, let us consider ∫ uα(β(1))

−uα(β(1))

y2f ′′(y)dy.

It is equal to
[
y2f ′(y)

]uα(β(1))

−uα(β(1))
− 2

∫ uα(β(1))

−uα(β(1))

yf ′(y)dy.

First of all, let us observe that the first term of the previous expression is equal to
zero. Due to the assumption that the distribution F is symmetric and the density
f(y) is decreasing on the positive part of the real line, the expression yf ′(y) is
negative (except of the value at point y = 0). It implies that

− 2
n

n∑

i=1

[
xT

i

(
β(1) − β0

)]2
∫ uα(β(1))

−uα(β(1))

yf ′(y)dy > 0 (96)
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and is of order (λ− 1)2. So, writing κ instead of λ− 1, we may conclude that (92),
(94), (95) and (96) imply that

lim
κ→0+

1
κ

E
[
r2
i (β(2))I

{
r2
i (β(2)) ≤ u2

α(β(2))
}
− r2

i (β(1))I
{

r2
i (β(1)) ≤ u2

α(β(1))
}]

= lim
κ→0+

1
κ

E
[
r2
i (κ(β(1) − β0) + β(1))×

× I
{

r2
i (κ(β(1) − β0) + β(1)) ≤ u2

α(κ(β(1) − β0) + β(1))
}

−r2
i (β(1))I

{
r2
i (β(1)) ≤ u2

α(β(1))
}]

≥ 0 (97)

for any β(1) ∈ K (notice that we have used in proof the relation (64) which holds, as
we can trace out from the proof of Lemma 2, for β ∈ K). In other words, derivative
of

E
[
r2
i (κ(β(1) − β0) + β(1))I

{
r2
i (κ(β(1) − β0) + β(1)) ≤ u2

α(κ(β(1) − β0) + β(1))
}]

as the function of κ is nonnegative at any β(1) ∈ K and κ = 0.
That concludes the proof. 2

Remark 8. Notice please, that it follows from the proof of Lemma 3 that γδ in
(74) does not depend on K.

Theorem 1. Let α ∈ (0, 1
2 ) and let Assumptions A or B and C hold and K be a

compact subset of Rp, β0 ∈ Ko. Then β̂(LTS,n,h) is consistent, i. e.

β̂(LTS,n,h) → β0 in probability as n →∞.

P r o o f . Let us put

In(β) =
1
n

n∑

i=1

r2
i (β)I

{
r2
i (β) ≤ r2

(hn)(β)
}

and

Jn(β) =
1
n

n∑

i=1

E
[
r2
i (β)I

{
r2
i (β) ≤ u2

α(β)
}]

.

Then we have for all ω ∈ Ω

In(β̂(LTS,n,h)) ≤ In(β0)

and hence for any δ > 0 we may write

1 = P
({

ω ∈ Ω : In(β̂(LTS,n,h)) ≤ In(β0)
})
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= P
({

ω ∈ Ω : In(β̂(LTS,n,h)) ≤ In(β0)
}
∩

{
ω ∈ Ω : β̂(LTS,n,h)) ∈ B(β0, δ)

})

+P
({

ω ∈ Ω : In(β̂(LTS,n,h)) ≤ In(β0)
}
∩

{
ω ∈ Ω : β̂(LTS,n,h)) ∈ K −B(β0, δ)

})

≤ P
({

ω ∈ Ω : β̂(LTS,n,h)) ∈ B(β0, δ)
})

+ P

({
ω ∈ Ω : inf

β∈K−B(β0,δ)
In(β) < In(β0)

})
.

It means that if for any ε > 0 there is n(1) such that for any n > n(1)

P

({
ω ∈ Ω : inf

β∈K−B(β0,δ)
In(β) < In(β0)

})
< ε,

also for all n > n(1)

P
({

ω ∈ Ω : β̂(LTS,n,h)) ∈ B(β0, δ)
})

> 1− ε.

On the other hand, we have

P

({
ω ∈ Ω : inf

β∈K−B(β0,δ)
In(β) < In(β0)

})

= P

({
ω ∈ Ω : inf

β∈K−B(β0,δ)
[In(β)− Jn(β) + Jn(β)] < In(β0)

})

≤ P

({
ω ∈ Ω : inf

β∈K−B(β0,δ)
[In(β)− Jn(β)] + inf

β∈K−B(β0,δ)
Jn(β) < In(β0)

})

≤ P

({
ω ∈ Ω : inf

β∈K
[In(β)− Jn(β)] + inf

β∈K−B(β0,δ)
Jn(β) < In(β0)

})

≤ P

({
ω ∈ Ω : − sup

β∈K
|In(β)− Jn(β)|

< In(β0)− Jn(β0) + Jn(β0)− inf
β∈K−B(β0,δ)

Jn(β)
})

≤ P

({
ω ∈ Ω : sup

β∈K
|In(β)− Jn(β)|

> inf
β∈K−B(β0,δ)

Jn(β)− Jn(β0)−
∣∣In(β0)− Jn(β0)

∣∣
})

. (98)

Due to Lemma 3 for our δ there are nδ ∈ N and γδ > 0 such that for n > nδ

inf
β∈K−B(β0,δ)

Jn(β)− Jn(β0) > γδ.

Now employing Corollary 1 for this γδ and for any ε > 0, we may find nε,γδ
> nδ

such that for all n > nε,γδ

P

({
ω ∈ Ω : sup

β∈K
|In(β)− Jn(β)| < 1

2γδ

})
> 1− ε. (99)

Notice, please, that (99) includes also In(β0) − Jn(β0). But it means that the
probability in (98) is at most equal to ε and the proof follows. 2
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Remark 9. Notice again that nε,γδ
may depend on the compact K but B(β0, δ)

inside of which β̂(LTS,n,h) appears for n > nε,γδ
with probability 1−ε is not influenced

by K.

The first part of paper offers the proof of consistency of β̂(LTS,n,h). The two others
(which will follow) bring

√
n-consistency and asymptotic representation of Bahadur

type which immediately implies asymptotic normality. At the end of them we will
give a discussion of results together with some considerations on the algorithms of
evaluating the estimator. A brief comment on the least weighted squares will be
given, too.

APPENDIX

Lemma A.1. (Štěpán [18], page 420, VII.2.8) Let a and b be positive numbers.
Further let ξ be a random variable such that P (ξ = −a) = π and P (ξ = b) = 1− π
(for a π ∈ (0, 1)) and Eξ = 0. Moreover let τ be the time for the Wiener process
W (s) to exit the interval (−a, b).Then

ξ =D W (τ)

where “=D” denotes the equality of distributions of the corresponding random vari-
ables. Moreover, Eτ = a · b = var ξ.

Remark A.1. Since the book of Štěpán [18] is in the Czech language we refer also
to Breiman [3] where however this simple assertion is not isolated. Nevertheless,
the assertion can be found directly in the first lines of the proof of Proposition 13.7
(page 277) of Breiman’s book. (See also Theorem 13.6 on page 276.)

Assertion A.1. Let ζ1 and ζ2 be (mutually) independent random variables and
u > 0. Then ζ1 · I {|ζ1| < u} and ζ2I {|ζ2| < u} are again independent random
variables.

P r o o f . is a straightforward computation. Let a1 and a2 be real numbers. Then

P (ζ1 · I {|ζ1| < u} ≤ a1, ζ2 · I {|ζ2| < u} ≤ a2)
= P (−u ≤ ζ1 ≤ min {a1, u} ,−u ≤ ζ2 ≤ min {a2, u})
= P (−u ≤ ζ1· ≤ min {a1, u}) · P (−u ≤ ζ2· ≤ min {a2, u})
= P (ζ1 · I {|ζ1| < u} ≤ a1) · P (ζ2 · I {|ζ2| < u} ≤ a2). 2

Lemma A.2. Let us have
∑n

i=1 ‖xi‖ = O(n). Then for any ∆ ∈ (0, 1] there is a
K∆ < ∞ such that denoting for any n ∈ N

mn = # {i : 1 ≤ i ≤ n, ‖xi‖ > K∆}

we have mn < ∆ · n (where “#A” denotes the number of elements of the set A).
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P r o o f . Due to the assumptions of lemma there is C such that for all n ∈ N we
have 1

n

∑n
i=1 ‖xi‖ < C. Fix ∆ ∈ (0, 1] and put K∆ = C

∆ + 1. Then

C >
1
n

n∑

i=1

‖xi‖ =
1
n





∑

{i:‖xi‖≤K∆}
‖xi‖+

∑

{i:‖xi‖>K∆}
‖xi‖



 >

1
n

mnK∆

and hence mn < n · C
K∆

< n ·∆. 2
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D. Martin, eds.), Springer–Verlag, New York 1983, pp. 231–246.

[12] I. Prigogine and I. Stengers: La Nouvelle Alliance. SCIENTIA 1977, Issues 5–12.
[13] I. Prigogine and I. Stengers: Out of Chaos. William Heinemann Ltd, London 1984.
[14] P. J. Rousseeuw: Least median of square regression. J. Amer. Statist. Assoc. 79 (1984),

871–880.
[15] P. J. Rousseeuw and A.M. Leroy: Robust Regression and Outlier Detection. Wiley,

New York 1987.
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[17] A.M. Rubio and J. Á. Vı́̌sek: Estimating the contamination level of data in the frame-

work of linear regression analysis. Qüestiió 21 (1997), 9–36.
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[27] J. Á. Vı́̌sek: The robust regression and the experiences from its application on estima-
tion of parameters in a dual economy. In: Proc. Macromodels’99, Rydzyna 1999, pp.
424–445.
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[30] J. Á. Vı́̌sek: A new paradigm of point estimation. In: Proc. Data Analysis 2000/II,
Modern Statistical Methods – Modelling, Regression, Classification and Data Mining
(K. Kupka, ed.), TRYLOBITE, Pardubice 2000, 195–230.
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[32] J. Á. Vı́̌sek:
√

n-consistency of empirical distribution function of residuals in linear
regression model. Probab. Lett., submitted.
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