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This work is concerned with observability in Discrete Event Systems (DES) modeled 
by Interpreted Petri Nets (IPN). Three major contributions are presented. First, a novel 
geometric characterization of observability based on input-output equivalence relations on 
the marking sequences sets is presented. Later, to show that this characterization is well 
posed, it is applied to linear continuous systems, leading to classical characterizations of 
observability for continuous systems. Finally, this paper translates the geometric characte
rization of observability into structural properties of the IPN. Thus, polynomial algorithms 
can be derived to check the observability in a broad class of IPN. 
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1. I N T R O D U C T I O N 

Observability [3] is an important property of structural representations of dynamic 
systems that allows, through an entity called observer, the computation of state 
variable values of dynamic systems that cannot be directly measured. Observers are 
used to estimate the system state in some structures of state feedback controllers 
as well as to introduce some redundancy in fault tolerant systems, among other 
applications. 

In the Discrete Event Systems (DES) area, the observability problem was first 
addressed using Finite Automata (FA) [14, 20]. Based on this representation, [18] 
reported a technique to build observers allowing state ambiguities. This approach 
allows determining the system state within some event sequences intervals (resilient 
observer). The same representation tool is used in [4, 11,12, 13, 23] to propose some 
techniques to control FA when only partial observation of the language accepted by 
the FA is available. Although FA is suitable for describing DES, its application is 
limited to small size systems, since this kind of models explicitly take into account 
all possible system states, resulting in quite large models when the size of the system 
grows, and its behavior is complex. 

In order to cope with the state explosion problem, research groups throughout the 
world are increasingly adopting Petri Nets (PN) as a modeling formalism for DES. 
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Petri nets provide clearer graphical descriptions and simple and sound mathematical 
support, allowing to represent causal relationships, process synchronization, resource 
allocation, and concurrence, inherent to DES behavior [6, 17]. 

The observability problem also has been studied from the PJV point of view. One 
of the earliest reported works on observability using PJV is [10]. In that paper, 
Ichikawa and Hiraishi divided the observability problem into two subproblems: the 
computation of the event sequence, and, using that sequence, the computation of 
the set of possible initial states. Giua and Seatzu [8] addressed the problem of 
computing the initial marking assuming that the firing transition sequence is fully 
known, and provided several notions of observability. Rivera et al. [22] introduced 
a definition for observability that exploits the input and output information of the 
live and cyclic Interpreted Petri Nets (IPN) and does not assume that the firing 
transition sequence is fully known. The authors also presented a new methodology 
for the design of observers using IPJV. 

More recently, [21] addressed the observability in IPN. That work exploited the 
input/output information of the IPN to design an IPJV observer for a DES. The 
observability definition proposed in this paper, however, does not characterize all 
observable IPN. Using the same model, Aguirre et al. [1] derived a characterization 
of observability based on IPN invariant marking sequences. The computation of 
marking invariants, however, is also a complex problem, limiting the application 
of the results presented in that paper. A drawback of the observability definition 
used in the last two works is that, when an observable IPN executes a T-semiflow 
infinitely often, then the computation of the actual marking cannot be carried out 
since the required information from the IPN evolution may be not obtained. 

The approach herein presented is based on an observability definition that con
siders the structure, finite input and finite output words of the IPN, avoiding the 
drawback presented in the definition introduced in [1]. Based on this new definition, 
a novel characterization of observability in IPJV is presented. This characterization 
is based on input-output equivalence relations on the marking sequences sets, de
noted Su, and the input-output trajectories set, denoted A(Q,Mn). Since these sets 
play a similar role that those played by invariant subspaces in linear systems, this 
characterization is said to be a geometric one. In order to prove that this character
ization is well posed, it is applied to linear continuous systems, leading to classical 
characterizations of observability for continuous systems. Moreover, it is a gen
eral characterization of observability and can be applied to other dynamic systems. 
Finally, since the geometric characterization leads to computational complex algo
rithms when it is applied to IPJV, this paper goes deeper and translates the geometric 
characterization into a structural one. The advantage of this new characterization 
is that polynomial algorithms can be derived to check the observability in a broad 
class of IPJV. Furthermore, the observer scheme presented in [21] can be applied to
gether with the observability concepts and characterizations herein presented. This 
observer scheme can be used in many applications, for instance in a state feedback 
controller [2], where the estimated state is needed. 

This paper is organized as follows. In Section 2, a formal definition of IPN and 
necessary notation are presented. Section 3 studies the observability problem for 
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IPN models, where a formal definition and some characterizations of observable IPN 
are presented. Section 4 presents the sequence and marking-detect ability properties 
which are used to derive a structural characterization of observable IPN. Section 5 
shows that the observer scheme presented in [21] can be used to find out the actual 
state of an observable IPN and introduces an example using the concepts and results 
herein introduced. Finally, conclusions and some directions for future work are 
presented in Section 6. 

2. INTERPRETED PETRI NETS 

This section presents the basic concepts and notation of PN and introduces the 
definition of IPN used in this paper. A review of PN is presented in [17]. For details 
about marked graphs, state machines and free choice PN, an interested reader can 
consult [5]. 

Definition 2 .1 . A Petri net structure G is a bipartite digraph represented by the 
4-tuple G = (P, T, I, O), where: 

• P = {pi,P2, • • • ,Pn} is a finite set of vertices called places, 
• T = {Ji, £2, • • • - tm} is a finite set of vertices called transitions, 
• I: PxT —> Z + is a function representing the weighted arcs going from places 

to transitions, where Z + is the set of nonnegative integers, and 
• O : P x T —r Z + is a function representing the weighted arcs going from 

transitions to places. 
The symbol mtj denotes the set of all places pi such that I(pi,tj) ^ 0 and *•• 

the set of all places pi such that 0(pi,tj) ^ 0. Analogously, %pi denotes the set 
of all transitions tj such that 0(pi,tj) ^ 0 and p* the set of all transitions tj 
such that I(pi,tj) ^ 0. Pictorially, places are represented by circles, transitions are 
represented by rectangles, and arcs are depicted as arrows. 

The pre-incidence matrix of G is C~ = [c^], where cjj = I(pi,tj), the post-
incidence matrix of G is C+ = [cj-], where cfj = 0(pi,tj), and the incidence matrix 
of G is C = C+ — C~. The marking function M : P —> Z + is a mapping from 
each place to the nonnegative integers representing the number of tokens (depicted 
as dots) residing inside each place. The marking of a PN is usually expressed as an 
n—entry vector. 

Definition 2.2. A Petri Net system or Petri Net (PN) is the pair IV = (G,M0), 
where G is a PN structure and Mo is an initial token distribution. 

In a PN system, a transition tj is enabled at marking Mk if Vpi 6 P, Mk(pi) > 
I(pi,tj). An enabled transition tj can be fired reaching a new marking Mk+i which 
can be computed as Mk+i = Mk + Cvk, where Vk(i) = 0, i ^ j , Vk(j) = 1, this 
equation is called the PN state equation. The reachability set of a PN, denoted as 
R(G,M0), is the set of all possible reachable marking from M0 firing only enabled 
transitions. 

This work uses Interpreted Petri Nets (IPN) [16], an extension to PN, since they 
allow to associate input and output signals to PN models. Formally IPN are defined 
as follows. 
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Definition 2.3. An Interpreted Petri Net (IPN) is the 4-tuple Q = (N,Y,,X,<p) 
where: 

• N = (G, Mo) is a PN system, 

• £ = {01,02, . . . ,ar} is the input alphabet of the net, where a; is an input 
symbol, 

• X : T —r £ U {s} is a labelling function of transitions with the following 
constraint: Vtj,tk G T, j ^ k, if Vp*, I(pi,tj) = I(pi,tk) ^ 0 and both 
X(tj) 7-- e, X(tk) ^ s, then X(tj) ^ X(tk). In this case e represents an internal 
system event. 

• cp : R(Q,Mo) —> (Z+)q is an output function that associates to each marking 
in R(Q,Mo) an output vector. Here q is the number of outputs. 

Remarks : 

2 .1 . In this work (Q, M0) will be used instead of Q = (N, E, A, ip) to emphasize the 
fact that there is an initial marking in an IPN. 

2.2. Attention is focused on the case when function (p is a q x n matrix, where q 
is the number of places representing measurable states in the DES and n is 
the number of places in the model (G, Mo). Each column of this matrix is an 
elementary or null vector. If the output symbol i is present (turned on) every 
time that M(pj) > 1, then ip(i,j) = 1, otherwise ip(i,j) = 0. 

2.3. Equivalent transitions are not allowed, i. e. it is assumed that V^, tj such that 
U T-= tj, X(U) = X(tj), it holds that C(-,i) ^ C(-,j). This is not a major 
constraint because those transitions are redundant. 

2.4. Notice that by definition of A, IPJVare deterministic [9] over labeled transitions, 
i.e. two transitions with the same associated input symbol (different from 
symbol e) cannot have the same input places. However, they can be non 
deterministic [9] over unlabeled transitions (those tj such that X(tj) = e). 

A transition tj G T of an IPN is enabled at marking Mk if Vpi G P, Mk(pi) > 
I(pi,tj). If X(tj) = a,i ŷ  e is present and tj is enabled, then tj must fire. If X(tj) = e 
and tj is enabled then tj can be fired. When an enabled transition tj is fired in 
a marking M^, then a new marking Mfc+i is reached. This fact is represented as 

Mk —'-> Mk+i and M^+i can be computed using the dynamic part of the state 
equation 

Mk+i =Mk + Cvk m 

Vk = <p(Mk) K } 

where C and Vk are defined as in PN and yk G (Z+) q is the fcth output vector of 
the IPN. 

Definition 2.4. A firing transition sequence of an IPN (Q,M0) is a transition 

sequence a = Utj . . . < * . . . such that M0 —̂> Mi —'-+ ... Mw ~^> . . . . 
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Definition 2.5. The set £(Q, M0) of all firing transition sequences is called the 

firing language, i. e. £(Q, M0) = {a\a = Utj . . . tk ... A M0 -^> Mx -^> . . . Mw -^ 

Definition 2.6. Let o = Utjtk . . . be a firing transition sequence. The Parikh vec
tor IT* : T —> (Z + ) m of o maps every transition t G T to the number of occurrences 
of t in o. 

According to functions A and tp, transitions and places of an IPN (Q, M0) can be 
classified as follows. 

Definition 2.7. If X(ti) ^ e, the transition U is said to be manipulated. Otherwise 
it is non manipulated. A place pi G P is said to be measurable if the ith column 
vector of (p is not null, i. e. cp(-, i) ^ 0. Otherwise it is non measurable. A place pi is 
said to be computable if it is measurable and V j , i ^ j , <p(-,i) ^ tp('ij)- Otherwise 
it is non computable. 

Notice that computable places are measurable and the marking of these places 
can be computed from the output (no other place, when it is marked, generates the 
same output value of function (p). 

Now, the following definitions relate the input and output symbol sequences with 
the firing transition sequences and the generated marking sequences. These concepts 
are useful in the study of the observability property since they are relating the input 
and output information of the IPN with the firing transition and marking sequences. 

Definition 2.8. A sequence of input-output symbols of (Q,M0) is a sequence 
u> = (a0,y0) (a\,y\) • • • (an,yn), where aj G £ U {e} and ai+i is the current input 
of the JPJV when the output changes from yi to yi+\. It is assumed that a0 = e, 
y0 = ip(M0) and (ai+\,yi+\) belongs to the sequence when: 

• (aij2/i) belongs to the sequence, 
• y{+i ^ y{, and 

• there exists no yj ^ yi, yj ^ y;+i occurring after the occurrence of yi and 
before the occurrence of y»+i. 

Definition 2.9. Let (Q,M0) be an JPJV. The set 

A(Q, M0) = {u> | u> is a sequence of input-output symbols} 

denotes the set of all sequences of input-output symbols of (Q,M0). The set of 
all input-output sequences of length greater or equal than k will be denoted by 
A*(Q,M0), i.e. Ak(Q,M0) = {u G A(Q,M0) | \u>\ > k}. 

Definition 2.10. If u> = (a0,y0) (ax,yi) • • • (an,yn) is a sequence of input-output 
symbols, then the firing transition sequence o G £(Q,M0) whose firing actually 
generates u> is denoted by ou. The set of all possible firing transition sequences that 
could generate the word u> is defined as 

n(u>) = {o\o G £(Q, M0) A the firing of o produces u}. 
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Definition 2.11. The set of all input-output sequences leading to an ending mark
ing in the IPN (markings enabling no transition or only self-loop transitions) is 
denoted by A^(Q,M 0 ) , i.e., 

Mj A if Mj -^> then AB(Q,M0) = {u> G A(Q,M 0) \3ae ft(u) such that M 0 

The prefix of a sequence s is another sequence s' such that there exists a sequence 
s" fulfilling that s = s's". The set of all prefixes of s is denoted by s. 

Definition 2.12. Let u = (ao,yo) («i)2/i) • • • (an,yn) G A(Q,M 0) be a sequence 
of input-output symbols. The marking sequences set corresponding to u is defined 
as 

5U, = {M 0 M 1 --- Mk\MteR(Q,Mo) A M 0 - ^ Mi ±>...±z>Mk 

A Ou = titj •••tm G tt(u)}. 

For instance, suppose that in the example of Figure 1 there exist two sensors, 
sensor one is turned on when place p\ is marked and sensor two is turned on when 
places P4 or p$ are marked. Then, the output function of the IPN is the matrix 

1 0 0 0 0 
0 0 0 1 1 <P = 

Notice that this matrix has two rows, because there exist two sensors. The 
element <p(hj) — 1 when sensor i is associated to place pj. 

A І 

0-
Pi 

t 
p 2 b P4 . 

i Pз b P 5
Ľ < 

Fig. 1. A non deterministic IPN. 

Thus, places pi, p± and ps are measurable, however, place p\ is the only com
putable place. Since all transitions are labeled, then all of them are manipulated. 
We obtain the following languages: 

£(Q,MQ) = {*1, *l*2j *1*3> *1*2*3> *l*3*2j *1*2*3*4> *1*3*2*4> *1*2*3*4*1, ••} 

*w.вд-{(«. !?])•(«• [»])(-Ш'('-[o])(-Ш(^])--} 
A-W.--W = {(«. [i]) (-. [•]). («. [à]) (-. [S]) (*. [ ? ] ) . - } ' 
Лв(Q,M 0 ) = {}. 
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Now, the following concept will be needed to characterize observable IPNs and 
establishes that, even when the precise marking of a place is unknown, it can belong 
to a conservative marking law. In other words, the location or state of the entities 
(resources, machines, buffer capacities, etc) that constitute the DES may be un
known; however the amount of those entities is known. Suppose, for instance that we 
do not know the marking in the example of Figure 1. However, from the P-semiflows 
of the net we have the conservative marking law lM(pi) + lM(p 2 ) + lM(p±) = 1. 
This work assumes that these conservative marking laws can be given arbitrarily (not 
only by the P-semiflows). This concept is analogous to that of "macro-markings" 
used in [7]. 

Definition 2.13. Let (Q,M0) be an IPN structure and M(pj) be any marking of 
a place pj in (Q, Mo). The set of s equations 

CML=\ J2YjM(Pj) = ki\i G [1,...,8] A 7 j e Z+ 

form a set of conservative marking laws (CML) if V7 .̂ 7-- 0 it holds that ki/*yl

k 

is an integer value and all non computable places pn are contained in at least one 
equation of the CML set. A CML is said to be binary (BCML) if it holds that Vi, j , 
7J G {0,1} and ki = 1. In addition, the CML can be rewritten as 

тм = к (2) 

where M is the marking vector, V is the matrix T[i,j] = 7] and K is the vector 
K(i) = k^ 

R e m a r k s : 

2.5. Hereafter Mo will denote the set of all possible initial markings fulfilling the 
stated CML, i. e. 

Mo = {M 0 | such that any M G R(Q,M0) fulfills the CML constraints}. (3) 

2.6. The notation px G e i } where e* G CML (ei G BCML) means that there exists 

an equation S j L i l\ ' M(Pj) = k^ named ei in the CML (in the BCML), such 

that 7/ ^ 0. 

Also, (Q,Mo) will denote an IPN where M 0 G Mo and it could be unknown. 
Notation M% will be used for a BCML. 
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3. OBSERVABILITY IN IPN 

Loosely speaking, a state representation of a dynamic system is said to be observable 
if the knowledge of its inputs, outputs, and structure suffices to uniquely determine 
its state. 

A deterministic and continuous time dynamic model, for instance 

x(t) = Ax(t) +Bu(t) 

y(t) = Cx(t), 

is said to be observable at t0, if there exists a finite time t\ such that the knowledge 
of the model structure (A,B,C), the input signal u(t) and the output signal y(t) 
over the interval t0 < t < t\ suffices to uniquely determine the initial state x(t0). 
Moreover, since the system is a deterministic one, then x(t) for all t > t0j can also 
be uniquely determined using the knowledge of x(t0) and u(t): over the interval 
t0<t< t\. 

When the dynamic model is non deterministic (i. e. when the solution of the 
model is not unique [19]), however, the knowledge of x(t0) and u(t) over the interval 
t0 <t <t\ does not guarantee the computation of x(t) for all t >t0. For instance, 
even if it is known that the initial marking of the JPJV depicted in Figure 1 is 
M0 = [ 1 0 0 0 0]T and that the input sequence a = abbcabbcabbc.. .ab is fired, it is 
not possible to determine if the reached marking is [0 1 0 0 1]T or [0 0 1 1 0]T . In 
this case, there exists no finite transition sequence a allowing to know the reached 
marking and all future reached markings of the JPJV. 

This fact leads to that, in the general case, the observability definition must be 
changed to ensure that the initial state x(t0) and all states x(t), t > t0 can be 
computed in a finite time or length of input firing words. 

Because of that, in the general case we can derive the following intuitive definition: 
A non deterministic dynamic model, for instance an JPJV, is observable at A:0, if there 
exists a finite integer k\ such that the knowledge of the model structure (C, A, ip) 
and the sequence of input-output symbols Uk for any k > k\ suffices to uniquely 
determine the state sequence over k0 < I < k (Mfc0...Mfc). The observability 
definition in JPJV can be formally proposed as follows. 

Definition 3.1. An JPJV given by (Q, M0), where M0 may be unknown, is observ
able if there exists an integer k < oo such that VcO G A*(Q, M0)UAB(Q, M0) it holds 
that the information provided by u and (Q,M0) suffices to uniquely determine the 
initial marking M0 and the marking M; reached by the firing of the underlying firing 
transition sequence a^. 

Therefore an JPJV is observable if for any sequence of input-output signals of 
length equal or greater than k and for any blocking sequence, the marking sequence 
reached by the system can be uniquely determined. 

Since the set Su contains the marking sequences generated by the same input-
output sequence u G Ak(Q, M0) U A^(Q, M0), then when \SW\ = 1 there exists only 
one marking sequence for the word u>. Thus the initial and the actual marking can 
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be computed from these marking sequence, leading to an observable IPN. This fact 
is formalized in the following result. 

Theorem 3 .1 . An IPN given by (Q,M0) is observable if and only if there exists 
an integer k < co such that VCJ G A*(Q,M0) U AB(Q,M0) it holds that |SW | = 1, 
where 5a; is the marking sequences set corresponding to u. 

P r o o f . (Sufficiency) Assume that there exists an integer k < oo such that 
VCJ G Ak(Q,M0)UAB(Q,M0) it holds that \Su,\ = 1, then a function * : A*(Q,M0)U 
A#(Q,M0) —• R(Q,Mo) x R(Q,M0) can be computed, where * fulfills the follow
ing: VCJ G A*(Q, M0)UAB(Q, M0) it holds that V(u, (Q, M0)) = (M0, M{) where M0 

is the initial marking and M{ is the marking reached by the firing of the underlaying 
firing transition sequence G^ . 

(Necessity) Suppose that there is no integer k < oo such that Vo; G A*(Q, M0) U 
A#(Q, M0) it holds that \SUJ\ = 1, then for any k there is at least one LJ G A*(Q, M0)U 
A#(Q,M0) such that \Su,\ ^ 1, therefore \Su,\ > 1. Assume further without lost of 
generality that S» = {71 = M{Mr - • Mfc • • • Mn , 7 2 = M/Mj • •-M^ • • • M^}. 

Since these sequences are different, then there must exist markings M&, M£ such 
that Mfc / M'k in 71, 72 respectively. Notice that when the initial marking of (Q, Mo) 
is Mjt or M£ then there exist two different values to assign to M0, or the function 
* cannot be obtained, a contradiction. ---

It is worth noting here that the previous theorem uses the input and output se
quences, but it does not use the structure of the model. Thus, this result can be 
applied to several dynamic system models. 

For instance, when the model is the linear differential state equation 

x(t) = Ax(t) + Bu(t), x(t0) = x0 
(4) 

y(t) = Cx(t) 

then, the system is observable if and only if there exists a finite t\ such that any 
pair of different state trajectories £i(£)> x2(t) can be distinguished using the input 
signals ixi(t), u2(t) and the output signals yi(t), y2(t), for t0 <t <h. To prove this 
fact, we use the solution to equation (4) given by 

x(t) = eAtx(t0) + [ eA^-^Bu(r)dr. 
Jto 

(5) 

If the same input is given for two different initial conditions xi(to), ^2(^0), then 
the following two possible solutions are found, respectively: 

xi(t) = eAt
Xl(t0) + [ eA^-T^Bu(T)dr 

jto (6) 

x2(t) = eAtx2(t0) + f eA^-T^Bu(T)dT. 
Jto 
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Now, if the output signals yi(t) and j/2(£), generated respectively by x±(t) and 
x2(t), are the same for every t > to, then 

Ceм

Xl(to) + C í eA^-т^Bu(т)dт = Ceмx2(t0) + C f eA^-т^Bu(т)dт 
Jto Jto 

(7) 

CeMx1(t0) - CeAtx2(t0) = 0. (8) 

Therefore 
CeM(Xl(to)-X2(to))=0. (9) 

Using Taylor series, equation (9) can be rewritten as 

c(l + At+ l-AH2 + ±AH3 + ... + ±Aktk + ...) (Xl(t0) - x2(t0)) = 0. (10) 

Since eAt = (l + At+ \A2t2 + ±A3t3 + ... + ±Aktk + . . .) is non singular [3], 
then, according to Theorem 3.1, the system is non observable if there exist at least 
two vectors xi(t0), x2(to) belonging to ker(C) n ker(CA) n • • • fl ker(CA n _ : L), or 
equivalently, the system is non observable if the rank of the matrix 

C 

CA n-1 

(11) 

is less than n. Thus, the continuous system is non observable if ker(C) fl ker(CA) C\ 
• • • fl ker(C-4 n - 1) ^ {0} or the rank of O is less than n. The converse can also be 
proved [24]. 

Notice that using Theorem 3.1, a structural characterization of the observability 
for those systems described by equation (4) was derived. Now, using a similar rea
soning, a structural characterization for observability in IPN models will be derived. 

Assume that an IPN is non observable, then there exist two initial markings 
M Q , MQ (not necessarily different because IPN could be, in the general case, non 
deterministic) such that when the same input 7 is given in both cases, two different 
sequences of markings sni = MQM1 • • • M ^ and s 2

2 = MQM? • • • M%2 (reached by 
the firing transition sequences <TI = t\t\ "'t\x and cr2 = t\t\ • • -£n2, respectively) 
are generated. Both of them generate the same output word <j) for every m , n2 > 0. 
Now, using the IPN state equation, it is equivalent to that for all a\ G o\ there exists 
a a'j €d~, i 7*= j , such that 

<P(M1+CP1) = V(MI + CP2) (12) 

or equivalently, ^ + ^ _ ^ + ^ = Q ( 1 3 ) 

In the case when ip and C are linear, the previous condition is equivalent to the 
following conditions: ^ _ ^ _ Q> ^ 

vctâ - P2) = 0, 
(14) 
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and other combinations are not possible. 

Rewriting previous equations, we obtain 

1) MQ - MQ e ker<p, and 

2) (°i -o*) ekenpC. 

Notice that condition 1) is equivalent to the following conditions: 

a) M ^ M * , or 
b) ipMl = ipMl with MQ1 ^ M0

2, 

and condition 2) is equivalent to the following conditions: 

c) o[ =o'2, or 

d) Cox = Co2 with o[ =̂  o2, or 

e) ipCo[ = <pCp2 with CP1 ^ CP2. 

Thus the combination of conditions a) or b) with the conditions c), d) or e) 
leads to a system of conditions equivalent to the system (14). However, not all 
combinations are valid under the assumptions of this work. For instance, it has 
been assumed that s"1 and s2

2 are different, therefore, it is not valid that M0 = M0 

and o[ = o2 since it indicates that s"1 = s2
2. The condition Cox = Co2 with 

o[ 7-= o2 is also not valid since it implies that there exist redundant transitions in o[ 
and o2, violating Remark 2.3. Thus the following combinations are the valid ones: 

Ri) MQ1 = M$ and (pCo{ = cpCP2 with CPX ^ CP2. 

R2) (pM$ = ipMl with M0
X ^ M% and o[=o2. 

R3) ipMl = ipMl with Ml ^ Ml and yCo[ = ipCo^ with Co{ / CP2. 

The first case characterizes when an initial marking M0 enables different firing 
transition sequences o\, o2. Thus, two marking sequences generating the same se
quence u of input-output symbols are obtained. 

The second case characterizes when two different markings enable the same firing 
transition sequence, thus two marking sequences generating the same sequence of 
input-output symbols are obtained. 

Finally, the third case characterizes when two different markings enable two dif
ferent firing transition sequences o\, o<i, such that two marking sequences generating 
the same sequence of input-output symbols are obtained. 

According to the previous argumentation, if the IPN is non observable, then 
condition R\), or R2), or #3) holds. Thus, if these cases are avoided the IPN 
becomes observable. 

For instance, the first case is avoided when any pair of firing transition sequences 
oT, 02, such that o\ / cr2, can be distinguished from each other. Because in this 
case for each input-output symbol word generated u, we have |£}(CJ)| = 1. Thus 
according to Definition 2.12, \SU\ = 1, and by Theorem 3.1 the net is observable. 

The second case is avoided when there exists a marking M* that can be computed 
after the firing of k < 00 transitions. In this case, we claim that either M0 -^> M*. 
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or MQ -^> Mk, but not both MQ,M$ could reach Mk firing the same input word. 
In order to prove it, assume that this is not true, i. e. MQ -^-» Mk and MQ - ^ M^. 
Since the firing transition sequence is the same in both cases, using the IPN state 
equation it follows that Mk-i is the same in both marking sequences and then, by 
recursively applying this idea, we obtain that MQ = M Q , a contradiction. Then, 
when a is known, the knowledge of Mk allows to detect the marking sequence, i. e. 
15.1 = 1. 

The third case is a combination of previous two cases. Thus, the knowledge of 
the fired transition sequence and the reached marking Mk are enough to avoid this 
case. 

In order to formalize these concepts, the following definitions are introduced. 

Definition 3.2. An IPN given by (Q,M0) is sequence-detectable if there exists 
an integer k < oo such that for any u G Ak(Q, M0) U AB(Q, M0) the information of 
u and the structure of the IPN suffices to determine the fired transition sequences. 
In other words there exists a function 

* 5 : (Ak(Q,M0) U AB(Q,M0)) X (Q,M0) —> £(Q,M0) 

such that Vw G Ak(Q,M0) U AB(Q,M0) it holds that * 5 (u, (Q,M0)) = au. 

Definition 3.3. An JPJV given by (Q, M0) is marking-detectable if there exists an 
integer k < oo such that for any LJ G Ak(Q,M0) U AB(Q,M0) the IPJV suffices to 
determine the actual marking of the IPJV. In other words there exists a function 

* M : (Ak(Q,M0) U AB(Q,M0)) x (QyM0) —> R(Q,M0) 

such that VCJ G Ak(Q,M0)UAB(Q,M0) it holds that * M ( ^ , (Q,M0)) = Miy where 
Mi is the marking reached by the firing of the underlying firing transition sequence 
&<jj-

According to these definitions and the previous discussion on the conditions that 
lead to observable JPJV it follows that, under conditions of Remark 2.3, sequence and 
marking-detectability are necessary for observability. Moreover, it can be proved in 
this case that sequence and marking-detectability are necessary and sufficient for 
observability. This is formally posed in the following result. 

Lemma 3.1. An JPJV given by (Q,M0) is observable if and only if it is both 
sequence and marking-detectable. 

P r o o f . (Sufficiency) Let (Q,M0) be an IPN and assume that there exists 
an integer k < oo and functions * M : Ak(Q,M0) x (Q,M0) —> R(QyM0) 
and * 5 : Ak(Q,M0) x (Q,M 0) —> £(Q,M0) such that Vo; G Ak(Q,M0) it holds 
that * M ( ^ , (Q,M0)) = Miy and ^s(^,(Q,M0)) = auy where Mi is the marking 
reached by the firing of the underlying firing transition sequence a^. Then, a func
tion *((j,(Q,yVt0)) = (Mo,Mi) can be built as *(CJ, (Q,M0)) = (M0,MM) where 
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MM = *M(C^, (Q,MO)) and M0 = MM - Co% is computed using the IPJV state 
equation. 

(Necessity) It follows from previous discussion on the conditions that lead to 
observable IPJV. • 

In the following section, a characterization based on the structure of the JPN 
exhibiting sequence and marking-detectability properties (and hence, observability), 
is addressed. 

4. SEQUENCE AND MARKING-DETECTABILITY CHARACTERIZATIONS 

Sequence-detectability implies the knowledge of all fireable sequences in the IPN, 
thus the problem of determining when an IPJV is sequence-detectable is a computa
tional complex task. Fortunately, using event-detectability [22], a stronger property, 
this complexity can be overcome because it leads to polynomial algorithms. This 
property is defined as follows. 

Definition 4.1. An IPJV given by (Q,Mo) is event-detectable if any transition 
firing can be uniquely determined by the knowledge of the input given to (Q, Mo) 
and output signals that it produces. 

The following lemma provides a structural characterization of the IPJV exhibiting 
event-detectability. 

Lemma 4.1. A live IPN given by (Q, Mo) is event-detectable if and only if: 

1. VU,tj G T such that X(U) = X(tj) or X(U) = e, it holds that <pC(-,U) ^ 
ipC(-,tj), and 

2. Vt* G T it holds that (pC(-,tk) ^ 0. 

P roo f . (Sufficiency) Assume that (Q,Mo) is an IPJV where VU,tj G T such 
that X(U) = X(tj) or X(U) = e, it holds that (pC(-,U) ^ <pC(-,tj), and Vt* G T 
it holds that <pC(-,tk) ^ 0. Let Mm,Mn € Mo and a transition tp G T such that 

Mm ---» Mn fire while the input symbol a is given to (Q,Mo)> From the state 
equation (1), yn — ym can be computed as 

yn-ym = <p(Mn) - ip(Mm) = <p(Mm + C(-, tp)) - y(Mm) = ipC(-, tp). 

Since Vtk G T it holds that <pC(-,tk) ^ 0, the change in the output produced by 
the firing of tp is not null, that is yn - ym ^ 0. Now, there are two possibilities: 

a) Suppose that the input symbol is e. Since VU, tj G T such that X(U) = X(tj) = 
e, it holds that (pC(-,U) ^ cpC(-,tj), then there is no transition tq G T with 
tq T-: tp such that X(tq) = € and (pC(-,tq) = (pC(-,tp). Thus, the firing of 
transition tp is the only one that could produce the change yn — ym — tpC(-, tp) 
while the null input word a = e was given to the system. 
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b) Suppose now that the input symbol is a ^ e. Since VU,tj G T such that 
\(U) = \(tj) = a (or \(U) = e, \(tj) = a) it holds that <pC(-,U) 7- <pC(-,tj), 
then there is no transition tq G T with tq ^ tp such that \(tq) = a (or 
\(tq) = e) and <pC(-,tq) = <pC(-,tp). Thus, the firing of transition tp is the 
only one that could produce the change yn — ym — <pC(-, tp) while the non-null 
input word a was given to the system. 

Then, in both cases the firing of transition tp can be uniquely determined and 
(Q, Mo) is event-detectable. 

(Necessity) Suppose first that there exist two transitions U,tj G T such that 
\(U) = \(tj) = a and <pC(-,U) = <pC(-,tj). Then for an input word a there are two 
transitions U,tj that may fire, therefore the input symbol given to (Q,Mo) does 
not provide information to distinguish the firings of U and tj. In this case, since 
<pC(-,U) = <pC(-,tj), the changes in the output that those firings produce are equal 
and no further information is provided. Therefore, there is no way to distinguish 
the firings of ti and tj. 

Now suppose that there exist two transitions U,tj G T such that \(ti) ^ e, 
X(tj) = e and <pC(-,U) = <pC(-,tj). Assume that \(U) = a. Then for an input 
word a, both transitions ti and tj may fire, again the input symbol does not help 
to distinguish the firings of U and tj. If also <pC(-,U) = <pC(-,tj), then both firings 
produce the same change in the output and once more the firings of those transitions 
cannot be distinguished. 

Finally, assume that 3tk G T such that <pC(-,tk) ^ 0. Then the firing of tk has 
no effect in the output and for any input symbol a given to (Q,Mo), there is no 
way to determine if transition tk fires. 

It follows that in all those cases the firing of the transitions cannot be uniquely 
determined and if any of those conditions holds, (Q, Mo) is not event-detectable. • 

Now, as we mention in Definition 3.3, marking-detectability deals with the possi
bility of finding out the current marking of an IPN. This property is strongly related 
with the structural properties of the IPN and can be analyzed using the following 
place classification. 

The following set contains the places whose current marking can be computed 
from the IPN output <p(Mk). 

Definition 4.2. Let (Q,MQ) be an IPN. The set of output-computable places is 
defined by Sm = {pi G P \pi is a computable place}. 

Notice that the set Sm can be computed from the knowledge of <pC since pi G Sm 

when the column of <pC(-,i) is not null and different from each other. 
Now, the following set contains the places whose marking can be computed when 

any T-semiflow is fired. 

Definition 4.3. Let (Q, MQ) be an IPN, X = {xi,..., xr} be the set of elemental 
T-components [5, 6] of the IPN, Pi be the set of places belonging to Xi, and E = 
{e i , . . . ,e s } be the set of BCML defined in the IPN. The set of BCML-computable 



Geometrical Characterization of Observability in Interpreted Petri Nets 567 

places is defined by: 

Se = {pi G P | VXJ G X there exists an e* G JB with p* G e* 

and 

U ЫjnPjт-Ø}. 
>nЄefc / 

г ^ - r - ( 1 5 ) 

In other words, a place p . belongs to 5 e when some places of any T-component 
Xi are contained in a BCML, ej, also containing place p.. Thus, when transitions 
in Xi are fired, the marking of places in ej is computed; hence the marking of p . is 
computed. Notice that p. € Se if the following linear programming problem (LPP) 
has no solution: ^Z such that 

CX = 0; X % 0 

r |P iz = o, 
where C is the incidence matrix of the IPN, C~ is the pre-incidence matrix of the 
IPN, X is a T-semiflow [5], Z are the places contained in the T-component generated 
by X (these places are computed by the equation XTC~T), and T\Pi is the matrix 
of the CML (see Definition 2.13) restricted to rows q such that T(q,i) = 1. Thus, 
T\ViZ = 0 means that there exist T-components whose places are disjoint from 
CML equations containing place p*, i.e. pi £ Se. Hence, if the previous LPP has no 
solution, then pi G 5, Je* 

Definition 4.4. Let (Q,M^) be an IPN, E = {eu... ,e s} be the set of BCML 
defined in the IPN, and 5 m , Se be the sets of output-computable places and BCML-
computable places, respectively. The set of transitive-computable places is defined 
by Sc = \Jz

i:=0Si where: 

uc
 = : um U ue 

Sl
c = S1'1 U {pi e P\pi e ek, and every pj G e*, j ^ i, fulfills that p^ G S*-1} 

and z could be at most equal to \P\. 
Notice that Sc can be computed with a polynomial algorithm. 
As we mention in Definition 2.7, the marking of output-computable places can 

be computed from the output function. This fact is summarized in the following 
lemma. 

Lemma 4.2. Let (Q, MQ ) be a binary, live and event-detectable IPN. Then, there 
exists an integer k < oo such that Vu; G A(Q,yVfo), k < \u\ < oo, the marking 
Mk(pi) for a place pi can be computed if pi G 5 m . 

P roo f . Let u G A(Q,M0) be a word of a finite length, k > 0, andu; = (ao,i/o) , , # 

(afc.y*). Then the current output of the IPN is the vector yk = </>M*. Since pi is 
computable, then ^(-,i) is different from other columns. Moreover, the columns 
of (p are elemental vectors, thus Mk(pi) = 2/k(g), where q is the number such that 
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Now, the marking of a place belonging to the BCML-computable places set can 
be computed as the following lemma states. 

Lemma 4.3. Let (Q,MQ) be a binary, live and event-detectable IPiY, X = 
{x\,..., xn } be the set of elemental T-components of the IPN, and E = { e i , . . . , es} 
be the set of BCML defined in the IPN. Then, there exists an integer ki < oo such 
that Vo; G &(Q,MQ), ki < \LJ\ < oo, the marking Mo(pi) for a place pi can be 
computed if pi G Se. 

Proo f . If pi is computable, then its marking can be computed using Lemma 4.2. 
If pi is a non computable place, then it belongs to an equation ek G E. 

Moreover, since (Q,MQ) is a live IPJV, then there exists a finite integer k' such 
that Vcr G £(Q, MQ) fulfilling \a\ > k1', a contains the firing of every transition in a 
T-component Xi G X. 

By definition, there exists a place pz such that Pi,pz G e& and pz G ^ , thus the 
firing of a prefix of a will add a token in pz. Let Mk be the first marking adding 
tokens to pz. This marking is detected because the IPJV is event-detectable, and the 
firing of a transition in *pz, adding a token to pz, can be detected. Since the IPN 
is binary, then Mk(pz) = 1 and using the equation e& we conclude that Mk(pi) = 0. 
Moreover, since the net is event detectable, then the marking of pi will be known 
for any marking Mi such that I > k. • 

Finally, we prove that the marking into the places belonging to Sc is computable. 

Lemma 4.4. Let (Q,MQ) be a binary, live and event-detectable JPJV. Then, there 
exists an integer ki < oo such that Vu; G A(Q,A / JQ)J &* < M < °°, tf-e marking 
Mo(pi) for a place pi can be computed if pi G Sc. 

P r o o f . According to previous lemmas, the marking of pi can be computed if 
Pi G Sm U Se. Thus, we will focus on places {pa,P&> • • • ,Pg} = Sc — (Sm U Se). 
Assume that places {pa,Pb, • • • ,Pg} are given in the following order: the leading 
places in this set are those belonging to S*, after them are those belonging to Sc, 
and so on. 

By definition of S*, for each px G 5* there exists a set of places SPx = {pw,..., ps} 
such that places {px} U5P^ are the only places belonging to the same BCML. Name 
ePx this BCML. 

Thus, the following BCML holds for any marking M, 

M(pi)+ ] T M(pr) = l. (16) 
Pr£S . yx 

Hence, the marking of place pl
x G SI can be computed as 

M(pi) = l- J2 MtPr)- (17) 
p-es,. 
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Moreover, by definition of S*, we have that S^ C 5*"1, therefore the marking 
of place pl

x can be computed using the places in S{
c~

l. To accomplish this task, we 
define the vector dp^ in the following way: flpix(r) = 1 if pr G Sl

c~
l fl ep. , otherwise 

dpi (r) =0. Thus, equation (17) can be rewritten as 

M(pi) = l- £ dpi(r)M(pr). (18) 

prGSr1 

In other words, the marking of places in Sl
c can be computed using the marking 

of places in Sl
c~

l. Thus, the marking of places in S\ can be computed using the 
marking of places in Sc = Sm U Se (whose markings are known). In general, the 
marking of places in Sl

c can be recursively computed using the marking of places in 

sir1. • 
c 

Finally, previous results lead to the following theorem, that provides a structural 
characterization of observable IPN. 

Theorem 4 .1 . An IPN given by (Q, M$) is observable if P = Sc and (Q, M$) is 
event-detectable. 

P r o o f . If (Q,MQ) is event-detectable, it is sequence-detectable. According to 
Lemma 4.4, if (Q,MQ) is event-detectable and P = SC1 then ( Q , M Q ) is marking 
detectable. Thus, because of Lemma 3.1, (Q,MQ) is observable. • 

5. OBSERVER DESIGN 

The adopted observer scheme is the widely known architecture depicted in Figure 2, 
and used in [21, 22]. In this figure, matrices CD and CE represent, respectively, the 
incidence matrix columns of the manipulated and non manipulated transitions. 

Now, an IPN observer structure and the gain terms are defined as in references 
[21, 22]. 

Definition 5.1. Let Ns = (Ps,Ts, Is, Os, S, A, (/?) be a binary and event-detectable 
JPJV where Ps = Sc. The net 1V0 = (Po,T0,Io,0o, S,I, I) is an observer for NSl 

i. e. the marking of No will tend to the marking of Ns as transitions are fired, when: 

1. Its state equation is 

" Ik " 
c. _ c. i r n _ T T 1 R. 

(19) S*+i =sk+[c -I I] 

ўk = Sk 

7* 
ßk 
sk 

where I is the identity function or the identity matrix, depending of the con
text. 
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System Input Marking M 

•»[ C ] 1 I [ Delay q ! ] Delay q 1 ]« L 

Selection of non- L 
controllable transitions 

CZD-System Output 

•CZD-^Q—-
- » [ C8 ] 1 ] ' [ Delay q 

Marking M 

D - 1 

Estimated 
marking 

:Ф 
CU 

Computation of 
corrective term 

-Ipk+I5k 

Observer Output 

ф ( M O - Ф (Mk) 

Computation of non-
controllable fired 

transitions 

T Block 

Fig. 2. The system and observer architecture. 

2. The admissible initial marking So of No is So (Pi) = M0(pi) if Pi is computable, 
and So (Pi) is any value fulfilling that 0 < So (Pi) < 1 if Pi is not computable. 

3. When a transition tj fires in Ns then: 

tj if tj is enabled in No 

0 any other case 
• 7* 

" ^ 1 

, õk = 

" Vi 

wn _ Vn . 

Pk = I , 4 = i , where 

1 if 7* = tj, and Sfc(pi) 4- C(pi, -)7k > !> ° r 

H7i = < -Ykyttj, Pi e# (*,) and Sk(pi) > 0 

0 any other case 

1 if 7* = tj , and Sfc(pi) + C(pi, -)7k < 0> o r 

Vi= { Ik ^ tj, Pit (tj)9 and Sk(pi) < 1 

0 any other case. 

We present next an example of an observable IPN and the use of an observer to 
compute the current IPN marking. 

Example 5.1 . Consider the producer-consumer scheme depicted in Figure 3. The 
model consists of a producer unit (PU), a consumer unit (CU) and a buffer of 
fc—slots. 
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Producer Consumer 

Buffer of k-slots 

Fig. 3. Producer-consumer with buffer of k-slots scheme. 

The behavior of this system is the following: The producer unit PU creates and 
delivers products into free buffer positions. The consumer unit CU retrieves products 
from the buffer when there exists a product stored into a slot buffer. PU emits a 
signal P when is creating a product. Similarly, CU emits C when is consuming a 
product. Each buffer slot sn emits a signal on while it is occupied. 

An IPN model of this system is shown in Figure 4, where the meaning of each 
place is depicted in the same figure. 

In this model, the input alphabet is E = {}, because there are no input sig
nals in the system. The function A for this model is V£i, X(U) = e. Since places 
P3iP6iP$iP9, • • • jP6+2k represent states that have different output signals associated 
and all other places have no output signal, tp is the (2 + k) x (6 + 2k) matrix 

ч> = 

0 0 1 0 0 0 0 0 0 •••0 
0 0 0 0 0 1 0 0 0 0 
0 0 0 0 0 0 0 1 0 0 
0 0 0 0 0 0 0 0 1 0 

0 0 0 0 0 0 0 0 0 1 

waiting 
to deliver 

ti Pi 

Fig. 4. IPN model of the producer-consumer system. 
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According to the system description and the meaning given to each place, the 
following BCML can be derived: 

M(pi) + M(p2) + M(p3) = 1 

M(p4) + M(p5) + M(p6) = 1 

M(pr) + M(p8) = 1 

M(p5+2k) + M(p6+2k) = 1. 

The initial marking for the system is Mo = [ 1 0 0 0 0 1 1 0 - - - 1 0] T and represents 
that the buffer is completely empty, the PU is waiting to deliver, and the CU is 
consuming a product. 

The matrix tpC is shown below. Notice that none of the columns of the matrix is 
null and they are different from each other. Therefore, the IPN is event-detectable. 

• ••• 0 
0 
0 
0 џ>C = 

1 1 0 0 0 0 0 0 
Ò 0 1 - 1 0 0 0 0 
0 0 0 0 1 - 1 0 . 0 
0 0 0 0 0 0 1 - 1 

0 0 0 0 0 0 0 0 0 0 1 

Indeed, the signals associated to places p6+2i allow to uniquely determine the 
firing of transitions ts+2i,U+2i- Analogously, the signals associated to p$ and PQ 
allow to uniquely determine, respectively, the firing of £1,̂ 2 and £3,^4. 

Notice that places P3,P6>P8, • • • >P6+2k belong to the set 5 m , because they are 
computable. Since all T-components contain places Pi,P2,P3> besides of P4,P5,P6, 
then Pi,P2,P3,P4,P5,P6 £ Se. Moreover, places P7,... ,P5+2k are included in equa
tions of BCML with the form M(p5+2i) + M(p6+2i) — 1 and, since P6+2i G Sm it 
follows that P7 , . . . ,P5+2fc £ Sc. Thus, it holds that P = Sc and according to Lemma 
4.4, the marking of all places can be computed and therefore the IPN is marking 
detectable. Moreover, being event and marking-detectable, the IPN is observable. 

An JPJV observer for this system is depicted in Figure 5, where the initial marking 
S0 is chosen a s S 0 = [0 0 0 0 0 1 1 0 - - - l 0]T . 

The initial estimation error is So — M0 = [ 1 0 0 0 0 0 0 0 - - - 0 0]T , and according 
to the definition of firing vectors /?* and 6k, this error becomes null as soon as any 
of the transitions £3+2* is fired. 

6. CONCLUSIONS 

This work introduced a novel definition of observability that considers the structure 
and finite input and output words of the JPJV. Based on all the possible marking 
sequences generated by the IPN, a geometric characterization of observability in JPJV 
was presented. It is a very general characterization and can be used in any state 
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Fig. 5. IPN observer for the producer-consumer system. 

dynamic model. For instance, when this characterization was applied to the lin
ear continuous systems case, the classical conditions of observability for continuous 
systems were derived. This fact suggests tha t the definition and characterization 
of observability are well posed. This characterization was also applied to the IPN 
model, and structural characterizations for a broad subclass of IPN were derived. 
The main advantage of this last approach lies in the fact tha t the marking sequences 
are no longer needed, thus polynomial algorithms can be used to check the observ
ability in those cases. 

Current research is being conducted to derive necessary and sufficient conditions 
for observability based on the IPN s tructure. 

(Received October 17, 2003.) 
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