
K Y B E R N E T I K A — V O L U M E 41 (2005) , NUMBER 4, PAGES 5 3 1 - 5 3 7

SELF-REPRODUCING PUSHDOWN TRANSDUCERS

A L E X A N D E R M E D U N A A N D L U B O Š L O R E N C

After a translation of an input string, x, to an output string, r/, a self-reproducing
pushdown transducer can make a self-reproducing step during which it moves y to its input
tape and translates it again. In this self-reproducing way, it can repeat the translation n-
times for any n > 1. This paper demonstrates that every recursively enumerable language
can be characterized by the domain of the translation obtained from a self-reproducing
pushdown transducer that repeats its translation no more than three times.

Keywords: pushdown transducer, self-reproducing pushdown transduction, recursively enu
merable languages

AMS Subject Classification: 68Q45

1. I N T R O D U C T I O N

In this paper, we introduce and discuss a self-reproducing pushdown transducer,
which represents a na tu ra l modified version of an ordinary pushdown transducer.
After a t ranslat ion of an input string, x, to an output string, y, a self-reproducing
pushdown transducer can make a self-reproducing step during v/hich it moves y to
its input t ape and t ransla tes it again. In this self-reproducing way, it can repeat
the translation n-t imes, for n > 1. This paper demonstrates tha t every recursively
enumerable language can be characterized by the domain of the translation obtained
from a self-reproducing pushdown transducer tha t repeats its translation no more
than three times.

This characterization is of some interest because it does not hold in terms of
ordinary pushdown transducers . Indeed, the domain obtained from any ordinary
pushdown transducer is a context-free language (see [1]).

2. PRELIMINARIES

This paper assumes t h a t the reader is familiar with the theory of automata and
formal languages (see [3, 6]).

For a set Q, Card(Q) denotes the cardinality of Q. For an alphabet V, V*
represents the free monoid generated by V under the operation of concatenation.
The identity of V* is denoted by e. Set V+ = V* - {e}; algebraically, V + is thus the

532 A. MEDUNA AND L. LORENC

free semigroup generated by V under the operation of concatenation. For w e V*,
\w\ denotes the length of w. For every i e { 0 , 1 , . . . , \w\}, Suffix(w, i) denotes w's
suffix of length i; analogously, Prefix (w, i) denotes M'S prefix of length i.

A queue grammar (see [2]) is a six-tuple, Q = (V,T,W,F,s,P), where V and W
are alphabets satisfying VnW = 0, T CV, F CW, s e (V - T)(W - F), and
P C (V x (W - F)) x (V* x W) is a finite relation such that for every a e V there
exists an element (a, b, x, c) e P. If u, v e V* W such that u = arb; v = rxc\ a eV\
r,x e V*; b,c e W; and (a, b,x,c) e P, then u => v [(a,b,x,c)] in G or, simply
u => v. In the standard manner, extend => to =>n, where n > 0; then based on =>n

define =>+ and =>*. The language of Q, L(Q), is defined as L(Q) = {w eT* : s =>*
wf where f e F}.

A left-extended queue grammar (see [5]) is similar to an ordinary queue grammar
except that it records the members of V used when it works. Formally, a left-extended
queue grammar is a six-tuple, Q = (V, T, W, F, s, P) where V, T, W, F and s have the
same meaning as in a queue grammar. P C"(V x (W — F)) x (V* x W) is a finite
relation (as opposed to an ordinary queue grammar, this definition does not require
that for every a G V, there exists an element (a, b, x, c) e P). Furthermore, assume
that # £ V U W. If u,v e V*{#}V*W so that u = w#arb; v = wa#rxc\ aeV\
r,x,w e V*; b,c e W; and (a, b, x,c) e P, then u => v [(a, b, x,c)] in G or, simply
u => v. In the standard manner, extend => to' =>n, where n > 0, =>+, and =>*. The
language of Q, L(Q), is defined as L(Q) = {v e T* : # s =>* w#vf for some w e
V* and / e F}.

3. DEFINITIONS

A self-reproducing pushdown transducer is a 8-tuple M = (Q,T,Y,,Q,R,s,S,O),
where Q is a finite set of states, T is a total alphabet such that Q C\T = 0, S C T |
is an input alphabet, Q C T is an output alphabet, R is a finite set of translation |
rules of the form u\qw —» U2PV with u\, U2, w,v eT* and q,p e Q, s G Q is the start
state, S eT is the start pushdown symbol, O C Q is the set of self-reproducing states.
A configuration of M is any string of the form %zqy%x, where x,y,z G T*, q G Q,
and $ is a special bounding symbol (% £ Q ij r) . If ?/igw —+ t^Pf e R, y =
%hu\qwz%t, and x = S/ii^PzSta, where h,u\,U2,w,t,v,z G T*, r/,p G Q, then M |
makes a translation step from y to x in M, symbolically written as y t=> x [u\qw —> |
W2pf] or, simply y t1^ ^ in M. If y = %hq%t, and x = %hqt%, where t,h eT*, q e O,
then M makes a self-reproducing step from y to x in M, symbolically written as
y r=> x. Write y => x if y t=^ ^ or y r=> x. In the standard manner, extend =>
to =>n, where n > 0; then, based on =>n, define =>+ and =>*. Let w,v e T*; M \
translates w to v if SSstuS =>* %q%v in M. The translation obtained from M, T(M), \
is defined as T(M) = {(w,v) : Ssw =>* %q%v with tu G £*, v G ST, <? G Q}. Set
£>omain(T(M)) = {ti;: (w,x) G T(M)} and Range(T(M)) = {x : (w,x) G T(M)}.
Let n be a nonnegative integer; if during every translation M makes no more than n
self-reproducing steps, then M is an n-self-reproducing pushdown transducer. Two
self-reproducing transducers are equivalent if they both define the same translation, j

In the literature, there often exists a requirement that a pushdown transducer, I

Self-Reproducing Pushdown Transducers 533

M = (Q, r , E, ft, R, 5, S, O), replaces no more than one symbol on its pushdown and
reads no more than one symbol during every move. As stated next, we can always
turn any self-reproducing pushdown transducer to an equivalent self-reproducing
pushdown transducer that satisfies this requirement.

Theorem 1. Let M be a self-reproducing pushdown transducer. Then, there is
an equivalent self-reproducing pushdown transducer, N = (Q, T, E, ft, R, 8, S, O), in
which every translation rule, u\qw —> u2pv G R, where u\,u2l w,v G T* and q,p G Q,
satisfies \u\\ < 1 and \w\ < 1.

P r o o f . (Sketch) Consider every rule u\qw —> u2pv in M with \u\\ > 2 or
\w\>2.N simulates a move made according to this rule as follows. First, N leaves
q for a new state and makes \w\ consecutive moves during which it reads w symbol
by symbol so that after these moves, it has w recorded in a new state, (qw). Prom
this new state, it makes |ui | consecutive moves during which it pops u\ symbol by
symbol from the pushdown so that after these moves, it has both u\ and w recorded
in another new state, (u\qw). To complete this simulation, it performs a move
according to (u\qw) —> u2pv. Otherwise, N works as M. A detailed version of this
proof is left to the reader. •

4. RESULTS

Lemma 1. For every recursively enumerable language, L, there exists a left-
extended queue grammar, Q, satisfying L(Q) = L.

P r o o f . Recall that every recursively enumerable language is generated by queue
grammar (see [2]). Clearly, for every queue grammar, there exists an equivalent
left-extended queue grammar. Thus, this lemma holds. •

Lemma 2. Let Qf be an left-extended queue grammar. Then there exists a left-
extended queue grammar, Q = (V,T,W,F,s,R), such that L(Qr) = L(Q),W =
I U Y U { 1 } , where X, Y, {1} are pairwise disjoint, and every (a,6,x,c) G R satisfies
either a eV-T, beX, xe(V-T)\ c G I U { 1 } or a G V-T, bGyu{l}, x G
T*, c€.Y. Q generates every h G L(Q) in this way

#a0q0

=* a0#x0q\ [(a0 , go, ^o, <1i)]
=> a0a\#x\q2 [(a\,q\,z\,q2)}

=> a0a\... ak#xkqk+i [(ak> Qk, *k, qfc+i)]
=> a0ai... akak+i#Xk+iyiqk+2 [(ak+i, Qk+uyu Qk+2)}

--> a o a i . . . akak+i • • • ak+m-iT^k+m-i^i • • • ym-iQk+m
[(ak+m-l,Qk+m-l,ym-l,Qk+m)\

=-> a 0 a i . . • akak+i...ak+m#yi • • • Vm^+m+i [(ak+m,Qk+m,ym,Qk+m+i)}

534 A. MEDUNA AND L. LORENC

where fc,ra>l, a{eV-T for i = 0,...,k + m, Xje(V-T)* for j = l,..., fc+ra-1,
s = a0q0, ajXj = Xj-iZj for j = 1 , . . . , k, ai... a^x^ = z0...Zk, ak+i... ak+m =
Xk, go,9i,..-9ib+m G J V - F and gfc+m+i G F, zu...,zk G (V - T) * , y i , . . . , y m G
T*, h = yiy2...ym-iym, gk+i = 1.

P r o o f . See Lemma 1 in [4]. •

Lemma 3. Let Q be a left-extended queue grammar satisfying the properties given
in Lemma 2. Then, there exists a 2-self-reproducing pushdown transducer, M, such
that Domain(T(M)) = L(Q) and Range(T(M)) = {e}.

P r o o f . Let G = (V,T,W,F,s,P) be a left-extended queue grammar satisfying
the properties given in Lemma 2. Without any loss of generality, assume that
{0,1} H (VU W) = 0 . For some positive integer, n, define an injection, t, from P to
({0 , l} n — {l}n) so that t is an injective homomorphism when its domain is extended
to (VW)*; after this extension, t thus represents an injective homomorphism from
(VW)* to ({0, l } n —{l}n)*; a proof that such an injection necessarily exists is simple
and left to the reader. Based on t, define the substitution, v, from V to ({0, l } n —
{l}n) so that for every a G V, v(a) = {t(p) : p G P, p = (a,b,x,c) for some x G
V*; b,c€ W}. Extend the domain of v to V*. Furthermore, define the substitution,
/i, from W to ({0, l } n - {l}n) so that for every q G W, /j,(q) = {t(p) : p G P, p =
(a, b, x, c) for some a G V, x G V*; b,ce W}. Extend the domain of fi to W*. •

Construction 1. Construction of M. Introduce the self-reproducing pushdown
transducer

M = (Q, T U {0,1, S}, T, 0 , R, z, S, O)

where Q = {o,f,z} U {(p, i) : p G W and i G {1,2}}, O = {o,f}, and R is con
structed by performing the following steps 1 through 6.

1. if a0q0 = s, where a G V — T and q G W — F,
then add Sz —> uS(q0, l)w to R, for all w G fi(q0) and all u G ^(ao);

2. if (a,q,y,p) e P, where a G V - T, p,g G VV - F , and y G (V - T) * ,
then add S(q, 1) —* uS^p, l)w to i?, for all w G /x(p) and n G 1/(2/);

3. for every q G IV - F , add S(q, 1) -> 5(r/, 2) to R;

4. if (a,q,y,p) G P , where o G ^ - T , p,q G IV - F , and y G T*,
then add ^(r/, 2)?/ —* 5(p, 2)w to i?, for all w G /x(p);

5. if (a,q,y,p) G P , where o G F - T , qeW-F, y G T*, and p G F ,
then add ^(g, 2)y - • SoS to R;

6. add o0 -+ Oo, ol -+ lo, oS -> c, 0c -* cO, lc -> cl, 5c -> / , 0/0 -> / ,
1/1 -4 / to R.

For brevity, the following proofs omits some obvious details, which the reader can
easily fill in. The next claim describes how M accepts each string from L(M).

Self-Reproducing Pushdown Transducers -oc

Claim 1. M accepts every h G L(M) in this way

$-S;zyiy2...ym-iym$

=> $5o(?o, i>yiy2... ym-iym$*o

=> $5i(?i, i)yiy2... ym-iym$^i

=> $5k(?k, i)y iy2 •..ym-iymUk
=> $5k (<7k, 2) y i y 2 . . . ym-iym$tk

=> $ 5 k (? k + i , 2) y i y 2 . . .ym-iym$*k+i
=> $5k(<Ik+2,2)2/2.. • ym-iy m $*k+2

.=*• $9k(k+m, 2)ym$tk+,
t=Ф $дkSo$tk+mS

r=Ф $gkSotk+mS$
t = Ф l $gкStk+moS$

.=*• $gkStk+mc$
t=ФŁ $щSc$vi

.=*• $Щf$Vl

r==> $uфi$
=Ф $u2fv2$

=Ф ^u^fv^î
=Ф $/$

in M, where fc,m > 1; 9o,9i,... ,gk+m G VV-F; y i , . . . ,y m G T*; ^ G /x(<Io<?i • • • Qi)
for i = 0, l,...,fc + m; 5./ G ^ (d 0 d i . . .dj) with d i , . . . , ^ - G (V - T)* for
j = 0 , 1 , . . . , fc; d0di ...dk = a 0 a i . . . afc+m where a i , . . . , afc+m G V - T , d0 = a 0,
and 8 = a0q0; 9k = £k+m (notice that i/(a0ai. . .a*.+m) = /i(</o<7i • • .?fc+m));
Vi G Prefix(ii(q0qi...qk+m), |/-*(?o?i ...?*+m)| - *) for t = l , . . . , t> with 1; =
K?o?i---9ib+m)|; Uj G Suffix(i/(a0ai...ajb+m), | i / (a 0ai . . .a f c + m) | - j) for j =
1, . . . , w with tu = | i / (a 0 a i . . . a f c+m) |; /i = j/ii/2 • • • ym-iym>

P r o o f of t h e C l a i m . Examine steps 1 through 6 of the construction of R.
Notice that during every successful computation, M uses the rules introduced in
step i before it uses the rules introduced in step i + 1, for i = 1 , . . . ,5 . Thus, in
greater detail, every successful computation Szh =>* $/$ can be expressed as

$S'zyiy2...ym-iym$
=> $5o(<?o, i)y iy2 . . . ym-iym$*o
=> $yi(91, i)y iy2 • • • ym-iym$*i

=> $9k(qk, i) y i y 2 . . . ym-iy m $*k
=> $yk(9k. 2) y i y 2 . . . y m - i y m $ t k
=> $5k (9k+i» 2)y iy2. . .ym-iym$*k+i

536 A. MEDUNA AND L. LORENC

=> $gk(qk+2,2)y2y3---ym-iym$tk+2
=> $9k(qk+3, 2)1/32/4 . . . ym-iym$tk+3

t=> $gk(qk+m, 2)ym$tk+m

t=> $gkSo$tk+mS
=>* $/$

where k,m > 1; h = yxy2.. -ym-iym, q0,qi,... ,qk+m G W - F ; j / i , . . . , y m G
T*; ^ G n(q0qi... <7i) for i = 0 , 1 , . . . , fc + m; £/ G iv(d0rfi... d?) with
di,...,dj G (V — T)* for j = 0,1,.. . ,fc; d0d\...dk = a0a\...ak+m where
a i , . . . ,ak+m €V — T, d0 = ao, and 5 = aotfo-

During $gkSo$tk+mS ==>* $/$ only the rules of 6 are used. Recall these rules:
oO -> Oo, ol -> lo, oS -> c, 0c -> cO, lc -> cl, 5c -> / , 0/0 -> / , 1/1 -> / .
Observe that to obtain $/$ from $gkSo$tk+mS by using these rules, M performs
$gkSo$tk+mS =>* $/$ as follows

$gkSo$tk+mS
r-=> $gkSotk+mS$
t=>L $gkStk+moS$
t-=> $gkStk+mc$
t=>L $uiSc$v1

t =* $ U i / $ V i

r=» $ U i / V i $

=» $W2 /^2$

=» $uxufvzu$
=> $/$

in M, where yfc = ^+m5 Vi G PreRx(ii(q0qi... <Zk+m), Mtfogi - • • 9Jb+m)| -<) for * =
1 , . . . , v with v = |/x(9o9i • - • 9*+m)|; **i G Su.ffix(i/(a0ai... ak+m), W(a0ai... ak+m)\
—j) for j = 1 , . . . , w with w = \v(a0a\... a*.+m)|. This computation implies gk =
tk+m- As a result, the claim holds. D

Let M accepts h G L(M) in the way described in the above claim. Examine
the construction of R to see that at this point P contains (a0,q0,z0,qi)y...,
(ak,qk, Zk, qk+i), (ak+i,qk+i,yi, qk+2), • • •, (ak+m-i,qk+m-i,ym-i,qk+m), (ak+m,
qk+m, ym, qk+m+i), where 2 1 , . . . , Zk G (V — T)*, so G makes the generation of h in
the way described in Lemma 2. Thus /i G I>(G). Consequently, L(M) C L(G).

Let G generates /i G I/(G) in the way described in Lemma 2. Then, M accepts h
in the way described in the above claim, so L(G) C L(M); a detailed proof of this
inclusion is left to the reader.

As L(M) C L(G) and L(G) C L(Af), L(G) = L(M).
From the above Claim, it follows that M is a 2-self-reproducing pushdown trans

ducer. Thus, Lemma 3 holds. •

Self-Reproducing Pushdown Transducers 537

T h e o r e m 2. For every recursively enumerable language, L, there exists a 2-
self-reproducing pushdown transducer, M , such tha t Domain(T(M)) = L and
Range(T(M)) = { e } .

P r o o f . This theorem follows from Lemmas 1,2 and 3. •

(Received August 27, 2004.)

REFERENCES

[1] M. A. Harrison: Introduction to Formal Language Theory. Addison-Wesley, Reading
1978.

[2] H. C. M. Kleijn and G. Rozenberg: On the generative power of regular pattern gram
mars. Acta Inform. 20 (1983), 391-411.

[3] A. Meduna: Automata and Languages: Theory and Applications. Springer, London
2000.

[4] A. Meduna: Simultaneously one-turn two-pushdown automata. Internat. Computer
Math. 80 (2003), 679-687.

[5] A. Meduna and D. Kolaf: Regulated pushdown automata. Acta Cybernet. 14 (2000),
653-664.

[6] G. E. Revesz: Introduction to Formal Languages. McGraw-Hill, New York 1983.

Alexander Meduna and Lubos Lorenc, Brno University of Technology, Faculty of Infor
mation Technology, Bozetechova 2, 61266 Brno. Czech Republic,
e-mails: meduna, lorenc@fit.vutbr.cz

