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FUZZY DISTANCES 

J O S E F BEDNÁŘ 

In the paper, three different ways of constructing distances between vaguely described 
objects are shown: a generalization of the classic distance between subsets of a metric 
space, distance between membership functions of fuzzy sets and a fuzzy metric introduced 
by generalizing a metric space to fuzzy-metric one. Fuzzy metric spaces defined by Zadeh's 
extension principle, particularly to Rn are dealt with in detail. 
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1. INTRODUCTION 

When programming a fuzzy database with search [1] storing both exact and relatively 
vague information, we encountered a problem of identifying the item that has the 
least distance from a required item. In this paper, we will not be concerned with 
searching but, rather, with the definition itself of a fuzzy (or crisp) distance between 
fuzzy sets, which will certainly be useful also in other parts of fuzzy mathematics 
such as fuzzy clustering or fuzzy optimization. 

The definitions of fuzzy distances published by different authors [3,4,7,9] can be 
divided into three distinct groups: 

1. generalization of the classic distance between subsets of a metric space (Sec
tion 3), 

2. distance between membership functions of fuzzy sets (Section 4), 
3. fuzzy metric introduced by generalizing a metric space to fuzzy-metric one 

(Section 5). 
As none of the fuzzy distance definitions published fitted our purpose [2], we defined 
a fuzzy metric space on a set of fuzzy points (Definition 2.3) using Zadeh's extension 
principle. The properties of this fuzzy metric space are described in the following 
chapters and related to the fuzzy distances of other authors. 

2. BASIC NOTIONS AND DENOTATIONS 

Definition 2.1. Let X 7-= 0 be a set and JIA ' X —* [0,1] a mapping. By a fuzzy set 
A on X we understand the set of all ordered pairs {(x, IIA{X))\ X G X; IIA{X) G [0,1]} . 
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We will also denote it by A = (X, /i^). X will be called the universe and the function 
fiA will be called the membership function of A. The number HA(X) will be called 
the membership degree to the fuzzy set A of x. 

Next, we will work with generally known notions whose definitions are listed 
in [5,6]. 

Definition 2.2. The support of a fuzzy set A = (X, JJ,A) is defined as the ordinary 
set supp A = {x G X; [IA(X) > 0. The kernel of a fuzzy set A = (X, JIA) is defined as 
the ordinary set ker A = {x € X; JJLA(X) = 1}. The a-cut of a fuzzy set A = (X, HA) 
is defined as the ordinary set Aa C X such that, Aa = {x £ X\HA(X) > a} for 
Va G [0,1]. A fuzzy set A = (X,JIA) is called normal, if ker^l ^ 0. A fuzzy set 
A = (X,[1A) where X is a linear space is called convex, if all its a-cuts are convex. 
The height of a fuzzy set A = (X,/JLA) is defined as a number h(A) = s up x / ^ ( x ) . 

Denota t ion 2 .1 . Cartesian product of fuzzy sets A\, A<i,... ,An will be denoted 
by Ai x A2 x • • • x An. 

Definition 2.3. A fuzzy set A = (X, ^A) where X is a linear space is called a fuzzy 
point, if the fuzzy set A is convex and normal. A fuzzy point is called a fuzzy point 
continuous from above, if all its a-cuts are closed sets. A fuzzy point A = (R, LM) is 
called a fuzzy number. A fuzzy number A is non-negative, if (J>A(X) = 0, for Vx < 0. 

Denota t ion 2.2. The set of all fuzzy sets on a universe X will be denoted by Xps-
The set of all fuzzy numbers will be denoted by R/ n and, similarly, the set of all 
fuzzy points in a linear space X will be denoted by X/p. The set of all non-negative 
fuzzy numbers will be denoted by Rt n , and the set of all normal fuzzy sets on R+ 
will be denoted by n R ^ 5 . 

Using Zadeh's extension principle, the following lemma published in [4,5] can be 
proved. 

Lemma 2 .1 . If, a unary function f : X —> Y has an inverse f~l : Y —> X, then 

M/(A)(y) = / i A ( / " 1 ( y ) ) . 

If o G {+-—-•>/} is a binary operation on R and A, B G R/ n are non-interactive 
fuzzy numbers, then for the extension of the binary operation A@B = (R, AM©j9) G 
R/n and we have: 

HA®B(y) = supmin {/iA(x),/JiB(y - x)} , yeR, 
x€R 

/^AeB(y) = supmm{fiA(x),fiB(x-y)}, yeR, 
x€R 

V>AQB(y) = supmin {fiA(x), fJ,B(y/x)} , y G R, 
iGR 

VA0B(y) = supmm{fiA(yx)yfiB(x)}, y G R. 
xjtO 
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The fuzzy absolute value \A\ = (R,p.\A\) G R^n of the fuzzy number A G R/ n has 
the membership function 

( max{fiA(x),p,A(-x)} f o r x > 0 , 
H\A\(x) = < 

{ 0 forx<0. 

Definition 2.4. Let M be a non-empty set and, for every pair of elements A, B G 
M a function p(A, B) : M x M -* R+ is defined satisfying the following conditions: 

— p(A, B)>0 with p(j4, B)=0iSA = B, 

— p(A,B)=p(B,A), 

— p(A, B) < p(A, C) + p(C, B) for V C G M, 

then the function p is called a metric and the ordered pair (M, p) is called a metric 
space. 

3. DISTANCE BETWEEN FUZZY SETS 

In this chapter, we define fuzzy distances of two fuzzy sets as a generalization of the 
distance of two non-empty subsets of a metric space. To do this we have used the 
distances of the matching a-cuts of both the fuzzy sets. 

Definition 3 .1. Let (X,p) be a metric space. By the distance of two non-empty 
sets M and IV of the metric space X we mean the non-negative real number 

p(M,N)= ini p(x,y). 
x£M,y£N 

Definition 3.2. Let (X, p) be a metric space. The fuzzy distance of two non
empty fuzzy sets M and IV of the metric space X will be defined as the fuzzy set 
Df(M,N) = (IR+,/iD/(M,Iv)) w1th the membership function 

ЏDf(м,N)(y) 

[ sup {a € [0,1] \Ma, Na ž 0; p(Ma, Na)<y} 

(3->m\n{h(M),h{N)} _ 

0 otherwise. 

Gerla and Volpe [3] have introduced a (crisp) distance of two fuzzy sets as follows. 

Definition 3.3. Let (X, p) be a metric space. By the distance of two fuzzy sets 
M and IV of the metric space X we mean a non-negative real number 

D(M,N)= [ p(Ma,Na)da, where p(P, 0) = 0 for VP G X. 
Jo 
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N o t e 3.1. The distance D(M, IV) : XFS x XFS -> R+ is not a metric on XFS. 

T h e o r e m 3.1. If (X,p) is a metric space and M, IV two non-empty (crisp) sets 
on X,then 

a) p(M,N) = D(M,N), 

ы w д w-{; f o t *-*"-"). for y ^ p(M,N). 

Proof. Let M, IV be two non-empty (crisp) sets on X, then 

a) D(M,N)= f p(Ma,Na)da= f p(M,N)da = [ap(M,N))l

0 = p(M,N), 
Jo Jo 

b) min {h(M),h(N)} = 1 =. lim p(M(3,N0) = p(M,N) 
/3—>min{h(M),h(IV)}_ 

{ aS

eVoPii Q ioTy^P(M'N>> ( 0 for y<p(M,N), 

. PWX)<V = } l for y = p(M,N), 
0 otherwise I ° f o r y>p(M,N). 

D 
N o t e 3.2. By the previous theorem, Definitions 3.2 and 3.3 naturally generalize 
the classic definition of the distance of two non-empty subsets of a metric space. 

T h e o r e m 3.2. If (X, p) is a metric space and M, IV two non-empty fuzzy sets on 
X, then the fuzzy distance Df(M, IV) is a convex set and 

fh(Df(M,N)) 

/ inf(D f(M, N)a) da = D(M, IV), 
Jo 

where h(D) is height of a fuzzy set D. 

P r o o f . h(Df(M,N)) = min {h(M), h(N)}. If we denote h(Df(M,N)) = h, 
then p>Df(M,N)(y) 1s a non-decreasing function on (—cojim^-,/^ ^(M^IV^)] and 
liDf(M,N)(y) — 0 otherwise so that the fuzzy distance Df(M,N) is a convex fuzzy 
set. 

Next D(M,N) = fi p(Ma,Na)da =fip(Ma,Na)da + ^p(Ma,Na)da = 

= tfp(Ma,Na)da + 0. 

Further inf(D/(M, IV)a) = lim/3_>Q_ p(M@,Np) is a non-decreasing function for 
Va G (0, h) =. for Va G (0, h) we have 

lim p(Mf3,Np)= sup p(Mp,Np)< sup p(Mp,Np) = p(Ma,Na). 
0 ~ > Q - /3_(0,a) l3G(0,a> 

If lim^-^a, p(Mp, Np) < p(Ma,Na), then p(Ma, Na) is discontinuous on the left at 
a. Moreover, the number of points at which the function p(Ma, Na) is discontinuous 



Fuzzy Distances . 379 

is countable on (0,h) since p(Ma,Na) is a non-decreasing function for Va G (0,/i). 
Then we have 

rh nh MDf(M,N)) 

/ p(Ma,Na)da= / lim p(M0,Np) da = / mi(Df(M, N)a)da. 
JO JO 0 — < * - JO 

D 

Example 3.1. The fuzzy distance Df(M, N) of the two fuzzy sets M, IV G RFS 
is shown in Figure 3.2. The distance D(M, IV) is the measure of the grey area 
(Figure 3.1). 

1 1 
0 , 9 ' 

0.5 

0,1 " 7 
il -l—ć— 

Fig. 3.1. Fuzzy sets M, N. Fig. 3.2. Fuzzy sets Df(M,N). 

Definition 3.4. Let (X,p) be a metric space. The maximal distance of two non
empty sets M and IV of a metric space X will be defined as the non-negative real 
number 

Pmax (M, IV) = SUp p(x, y). 
xGM,y£N 

Definition 3.5. Let (p,X) be a metric space. The maximal fuzzy distance of two 
non-empty fuzzy sets M and IV of a metric space X will be defined as a fuzzy set 
-9/max(M, IV) = (^,p<Df(M,N)) with the membership*function 

/iD/I„ax(M,tV)(2/) 

f sup{aG [O,l] |M Q ,IV a ^0 ; / 9 m a x (M a ,IV a ) >y) 
for y > lim Pm*x(Mp, Np), 

/3-*min{li(M),h(jV)}_ 

0 otherwise. 

4. DISTANCE BETWEEN MEMBERSHIP FUNCTIONS 

In this chapter, the distance of fuzzy sets is defined as the distance between their 
membership functions. The properties of membership function distances are listed 
in [8]. 
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Definition 4.1. Let X ^ 0 be a Lebesgue-measurable set, m a Lebesgue measure 
on X. The distance dp : .Kp^ x XFS -> R+ o/ too fuzzy sets on X is a function 
assigning to each pair M, IV e XFS the number 

{ (/x IMM-MIv | P dm) 7 1 for 1 < p < oo, 

essential sup |/iM(^) - MIv(z)| for p = oo. 
The ordered pair (XFS,dp) is called a /kzzy metric space. 

Note 4 .1. This fuzzy metric space complies with all the requirements for a metric 
space (Definition 2.11) with a single exception: if the distance of two fuzzy sets is 
zero, the membership functions of both fuzzy sets are the same almost everywhere 
thus 

dp(M, N) = 0 => HM(X) = HN(X) for MxeX -E, where m(E) = 0. 

Special cases of this definition are Definition 4.2 introduced by Abu Osman in [7] 
and Definition 4.3 introduce by E. Szmidt and J. Kacprzyk in [9]. 

Definition 4.2. The function doo : XFS x XFS —> [0,1], which, to every pair 
M, N e XFS, assigns the number doo(M, IV) = s u p ^ ^ \^M(X) - HN(X)\ is called a 
fuzzy metric and the ordered pair (XFS,dOQ) is called a fuzzy metric space. 

Note 4.2. Abu Osman's fuzzy metric space is defined in an elegant way, but for 
technical applications, this definition is not suitable because, as long as at least 
one x e X exists such that HA(X) = 0 a /J,B(X) = 1, dOQ(A,B) = 1, which is the 
maximum distance. Thus the fuzzy metric d^ (A, B) discretizes XFS too much. For 
example, for all intervals A, B on R, where A ^ B,we have doo (-4,5) = 1. 

Definition 4.3. The functions d\ and d2 : XFS x XFS —> E + where X = 
{x\,x2,... ,xn} that, to every pair M, N G XFS , assign the number 

di{M,N) = ^2\fiM(xi)-fiN{xi)\, d2{M,N) = 

N 
Y^(ЏM(XІ) - ЏN(XІ)Ý 

i=l i=l 

are called fuzzy metrics. 

Note 4 .3 . Sometimes these metrics are written in the standardized form 

1 n 1 n 

n\(M,N) = -y^\pLM(xi) -HN(XÍ)\, n2(M,N) = \ -Y](HM(XÍ) - VN(XÍ)) 
n r—í \ n r~i 

i=l v i = l 
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5. FUZZY METRIC SPACE 

In this chapter, we will generalize a metric space to a fuzzy metric one. 
A very general definition (Definition 5.1) of fuzzy metric space has been shown 

by Kaleva and Seikkala [4]. They have defined the distance as a fuzzy function 
that, to any two elements of a set, assigns a non-negative fuzzy number continuous 
above and complies with some requirements, they have defined a fuzzy convergence 
and proved a fixed-point theorem. Due to the generality of the definition, no rules 
are shown enabling the construction of particular fuzzy metric spaces for particular 
point sets. 

Denotation 5.1. Every x G X can bee seen as a fuzzy number {x} = (X,p,{x}) 
with the membership function p>{x}(y) = 1 for y = x, H{x}(y) = 0 for y ^ x. The 
set of all {x} will be denoted CT\spXfp (obviously cr\spXfp C Xfp). 

Definition 5.1. Let X7-CI, d : X x X —» G where G is the set of all non-negative 
fuzzy numbers continuous from above and mappings R, L : [0,1] x [0,1] —> [0,1] are 
symmetric, non-decreasing in both arguments with L(0,0) = 0 and It(l, 1) = 1. 

The ordered quadruple (X, d,L,R) is called a fuzzy metric space and the function 
d is called a fuzzy distance, if, for every x, y, z G X, we have: 

1) d(x, y) = {0} iff x = y, 

2) d(x,y) = d(y,x) for every x, y £ X, 

3 a ) Vd(x,y){s + t) > L(jJLd(x,z)(s)^d(z,y)(t)), \l s < inf kerd(x,z), t < inf kerd(z,y) 
and s + t < inf ker d(x, y), 

3b) fid(x,y)(s + t) < R(Vd(x,z)(s), Vd(z,y)(t)), if s > inf kerd(x,z), t > inf kerd(z,y) 
and 5 + t > inf ker d(x,y). 

Note 5.1. Since the metric space need not be defined on a general set X y= 0, but 
rather on a set of fuzzy points, we define the fuzzy distance using Zadeh's extension 
principle. This means that the membership degree HPf(A,B)(y) may be interpreted 
as a measure of the likelihood that the distance between A G Xfp and B G Xfp is y. 

Definition 5.2. If (X,p) is a linear metric space and A, B G Xfp arbitrary fuzzy 
points, we define the fuzzy distance of the fuzzy points A and B as a fuzzy set 
pf(AyB) = (^fiPf(A,B)) with the membership function 

Ppf(A,B)(y) = sup min{LM(zi), VB(X2)} . 
(x j ,X2)€*2 

p{x\,X2)=zV 

If no (11,32) G X2 exists such that p (n ,x 2 ) = 2/> w e Pu t /-P,(.4,B)(V) = 0. The 
ordered pair {Xfp,pf) is called a fuzzy metric space.. 
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Theorem 5.1. The fuzzy distance pf as defined under Definition 5.2 is a mapping 
of Xjp into the set of all normal non-negative fuzzy sets on R, that is, pf : Xj —> 

nKFS. 

P r o o f . For every A, B G Xfp there is (x\,X2) G X2 such that xi G ker(A), X2 G 
ker(i?). If p(x\,X2) = y, then y G ker(pf(A, B)), which means that the fuzzy dis
tance pf(A,B) is normal. The non-negativity of p / follows from the assertion b) of 
Theorem 5.2. • 

Note 5.2. In engineering practice, mostly linear normed spaces (X,g) are encoun
tered where g : X —> R4" is a norm. If we define the metric p(x\,X2) — g(x2 — x\) 
on such spaces, then the fuzzy distance pf defined by Zadeh's extension principle 
in Definition 5.2 is a mapping of X? into the set of all non-negative fuzzy numbers 
on R, thus pf : X2 —> R/n- An example of such a fuzzy metric space is the fuzzy 
Euclidean space (R^ , Pf2j, or the fuzzy metric spaces (Rn , pfk) where 1 < k < oo 
as defined in Section 7. 

Note 5.3. Now we have to verify whether the fuzzy metric space complies with 
the conditions listed in Definition 2.4 and thus deserves to be called metric. To do 
this, first an ordering needs to be defined on R/ n and then generalized to nRFS-

Definition 5.3. If A, B G R/ n , then a partial ordering •< on R/ n is defined as a 
relation A < B if and only if inf Aa < inf Ba and sup Aa < sup Ba for all a G (0,1]. 

Note 5.4. The relation A -< B signifies that the membership function P>A(X) is 
"to the left" of the membership function P>B(X). The set of all normal fuzzy sets on 
R is much more complex (R/n C nRFS) and therefore, rather than investigating the 
inner structure of individual fuzzy sets, we will be matching their least convex hulls. 

Definition 5.4. If A, B G n^FS, then a partial ordering -< on nRFS is defined as a 
relation A •< B if and only if inf Aa < inf Ba and sup.Aa < sup Ba for all a G (0,1]. 

Denotation 5.2. Let O C n R ^ 5 a /io(0) -= 1, then the fuzzy set O will be called 
a fuzzy zero and the set of all the fuzzy zeros will be denoted OFS-

Theorem 5.2. For every triple of elements A, B, C G Xfp we have: 

a) The fuzzy metric space (Xfp,pf) is symmetric, thus pf(A,B) = pf(B,A). 

b) The fuzzy metric space (Xfp, pf) is positively semi-definite, thus {0} -< Pf(A, B). 

c) In the fuzzy metric space (Xfp,pf), the triangle inequality holds, thus 

Pf(A,B)<pf(A,C)®pf(C,B). 
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P r o o f. a) The original (crisp) metric is symmetric so we have 

HPf(A,B){y) = sup min {^iA(x\), fiB(x2)} = nPflBtA){y) 
( x 1 , x 2 ) 6 X 2 

and, if no (x\,x2) G X2 exists such that p(x\,x2) = y, then no (x2,x\) G X2 exists 
such that p(x2,x\) = y. 

b) If y G R - R+ , then no (xi, x2) G X 2 exists such that p(x\,x2) = y. This 
means that p>Pf(AyB){y) = 0, for Vy G R - R+ and this implies that {0} •< Pf(A, B). 

c) The fuzzy sets Pf(A, C) and pf(C, B) are interactive due to the fuzzy point C 
therefore it is not possible to calculate both fuzzy distances and add them up, the 
expression pf(A,C) © pf(C,B) needs to be handled as a fuzzy function dependent 
on the fuzzy points A, B, C G Xfp. 

For Va e (0, 1] we have: 

lim inf p(x\,x2) < lim inf p(x\,x3)+ lim inf p(x3,x2), Vx3 G X, 
/3->a-xi£Ap,X2£B0 (3-+a- xi£Ap (3—>a- x2€Bp 

lim sup p(x\,x2) < lim sup p(x\,x3) + lim sup p(x3,x2),Vx3 G X. 
0—<*- xi€A0,x2eB0 0->a_ xiGA/3 /3->a_ X 2 e ^ 

If both above inequalities hold for V^3 G X, they also hold for Vx3 G nl3<a && c ^ 
and thus 

Pf(A,B)±Pf(A,C)®pf(C,B). u 

Theorem 5.3. For every pair of elements A, B G Xfp we have: 

a) If pj(A,B) = {0}, then A = B and _4, B GCrisP. X/p- However, it is not true 
that, for A = B, we have pf(A, B) = {0}. 

b) If pf(A,B) Gcrisp R / n , t h e n A, B Gcrisp -X/p. 

c) If A = B, then p/(-4, J5) G OES- However, it is not true that, for Pf(A, B) G 
OFS, w e have A = B. 

P r o o f . The assertions are obvious. • 

Note 5.5. If A G Xfp — crisp Xfp, then pf(A,A) ^ {0}. Therefore, if the identity 
axiom is needed, a new metric may be defined 

Pnf(A,B) = {p<{AB) f°Г A * B > {0} for A = B. 

The fuzzy metric space (Xf, pnf) defined in this way, however, is no longer obtained 
using Zadeh's extension principle. For this reason, it is often good to disregard the 
identity axiom and call as metric (as we have done) simply the space as defined 
under Definition 5.2. 



384 J . BEDNÁŘ 

6. FUZZY CONTRACTIVE MAPPING 

Definition 6.1. Let (X, p) be a metric space. A mapping C : X —> X is called 
contractive if a number 0 < q < 1 exists such that, for any two points x, y £ X, we 
have 

p(Cx,Cy) <qp(x,y). 

Theorem 6.1. (Banach) Every contractive mapping has exactly one fixed point 
in a complete metric space (X, p). 

Definition 6.2. Let (Xfp,pf) be fuzzy metric space. Mapping Cf : Xfp —> Xfp 

is called fuzzy contractive, if a number 0 < q < 1 exists such that, for any two fuzzy 
points A, B e Xfp, we have pf(CfA, CfB) _< {q} 0 Pf(A, B). 

Theorem 6.2. Let (X, p) be a complete metric space, C : X —* X be a contractive 
mapping with p G X as a fixed point and mapping Cf : X / p —• Xfp be Zadeh's 
extension of the contractive mapping C, then Cf is a fuzzy contractive mapping and 
has exactly one fixed point 

{P} ^crisp Xfp. 

P r o o f . Since, in the proof, intervals will be used of which it cannot be determined 
whether they are open or closed and this fact is irrelevant for the proof, we will denote 
such intervals \a, 6]. 

For VaG (0, 1] we have: 

pf(A,B)a 

qOPf{A,B)a 

pf{CfA,CfB)a 

lim 
ß-+a-

lim 
/?->«_ 

lim 
3—a_ 

inf p(x,y), sup p(x,y) 
xeAfl,yeB0 xeAíi,yGBp 

q inf p(x,y),q sup p{x,y) 
xÇA0,yЄtSø xЄAв,yЄB(i 

^ „ i n f , . - a P(X>У)> S U P p(я>У) 
xЄCfAg,yЄCfB0 xЄCfA0,yЄCfB(i 

lim inf p(x,y) < lim inf p(Cx,Cy) < lim a inf p(x,y), 
{3->a-xeCfAfl,yeCfBf3

rK ~ l3->a_ x G A ^ G B / T "" /3->a_ x G ^ . y G B ^ 

lim sup p(%,y) < lim sup p(Cx,Cy) < lim r/ sup p(x,y) 
0 — " - x€CfA0}yeCfB0 /3—a_ x^A&,y^B0 /3-*a_ xeAtuyZBp 

and so pf(CfA,CfB) •< {q} 0 pf(A,B) => Cf Xfv —> X/ p is a fuzzy contractive 
mapping. 

For Wx e X we have limn_oo C n x -= p. By repeatedly applying Zadeh's extension 
principle we will obtain limn-.oo C^-c = {p} for V.4 G X/ p . The existence and 
uniqueness of a fixed point for mapping Cf : -K/p —» X/ p follows from the existence 
and uniqueness of a fixed point for mapping C : X —> X. 
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7. FUZZY METRIC SPACE IN RN 

li A, B e Wfp is a fuzzy point, then, using Definition 5.2, any metric space (Rn,p) 
may be extended to a metric space (R"p, f>/). In Rn, mostly the metrics po (-4, i?) = 0 

for A = B, p0(-4, J5) = 1 for A ^ B, and pk (A, B) = f £ H i | ^ - a / j are used 

where 1 < k < oo, for k = 2, the Euclidean metric p<2 (-4, B) = V^lCiLi (^ ~~ a 0 2 *s 

obtained. 

Example 7.1. Fuzzy distances of fuzzy points A and J5 in E2 (Figure 7.1) are 
shown in Figure 7.2. 

Fig. 7.1. Fuzzy points in R . 

0 2 4 6 8 10 12 14 16 18 29 

Fig. 7.2. Fuzzy distances pfk(A,B). 

Theorem 7.1. The membership function of the fuzzy distance 

pf0{A,B) = {R+,vpMA,B)(y)) i s 

PPMAM0) = h{Af\B) 

Mp/0(/.,B)(l) = h((AUB)-{x0}), where x 0G f] (A\JB)p. 
ß<h(ЛПB) 

P r o o f . 

/IP/0(A,B)(°) = 
sup 

((-5 1.--2 - 5 n ) . ( V l . V 
(-51.-52 хп) = (У 

sup{A П В) = !г(А П £ ) 

sup min{//^( .ri ,x2 , . . . , i n ) , A-B(J/I,1/2, • • • ,2/n)} 
( ( x i . x 2 - 5 n ) . ( V l . V 2 W n ) ) G K 2 n 

(-5 1.-52 * n ) = ( v l . V 2 V n ) 

AV/0(A,в)(l) = 

sup m i n { ^ ( x i , X 2 , . . . , z n ) , A-"B(2/I,!/2-• • • »2/n)} 
( ( - 5 1 . x 2 * n ) . ( v i . V 2 V n ) ) € R 2 n 

(-B 1.-52 * n ) i ^ ( V l . V 2 V n ) 

/ z ( (AU/5) -{x 0 }) , where xo 6 f | (i4UB)/j. 
/3</i(/tnB) 
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If we define a fuzzy point A = (]Rn,/i^(xi,X2,.. .,xn)) as the Cartesian product of 
the fuzzy numbers A{ = (R,//^. (#)), i = 1,.. .,n, in each dimension, the expression 
for the fuzzy distance pfk can be simplified using distances in each dimension. 

Example 7.2. Fuzzy distances pf(A, B) of fuzzy points A and B in R 2 (Figure 7.3) 
are shown in Figure 7.4. 

7X\ 
0 1 2 3 4 5 6 7 8 

^г^ 
- 2 - 1 0 1 2 3 4 S 6 7 8 

^ІB.-Aj 

Fig. 7.3. Fuzzy points A and B in R2 and their distances in each dimension. 

* M-proCA.B) 

H-PnCA.B) 

M-p f2(A.B) 

M-p f4(A.B) 

10 12 14 

Fig. 7.4. Fuzzy distances pf(A,B) calculated using distances in each dimension. 

8. RELATIONSHIP BETWEEN DF(A,B) AND pF(A,B) 

Definition 8.1. The minimal convex hull of a fuzzy set A = (R,/^^) is defined 
as a convex fuzzy set \A\ = ( R , / ! ^ ) continuous from above where inf [;4]|a = 
limf3—Q_ inf Ap and sup[yl]]a = limI3_>a_ supAp for all a(0, h(A)\. 

Theorem 8.1. If (Xfp,pf) is a fuzzy metric space as defined by Definition 5.2, 
A, B e Xfp, Df(A, B) is a fuzzy distance as defined by Definition 3.2 and Df m&x(A, B) 
is a maximal fuzzy distance as defined by Definition 3.5, then 

ID}(A,B) UDfm&x(A,B)} = lpf(A,B)l. 

Proof . lDf(A,B) U Dfm&x(A,B)j , \pf(A,B)\ are convex and, for Vo € (0, 1), 
we have: 

\Pf(A,B)\a = 
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lim ( inf p{x,y), sup p{x,y)) , 
/3-.a_ YeA0,y€B0 x€A0,yčBg ./ 
lDf(A,B)UDfm^(A,B)ja = 

= Иm (p(Aß,Bø),pmaLX(AßìBß)) = lìm ( inf p(x,y), sup p(x,y) 
P-*a- ß-+a- үЄAøtУ£B0 xЄA0,yЄB0 i 
lDf(A,B)UDfmлx(A,B)} = Іpf(A,B)l 

0 1 2 3 4 x 

Fig. 8.1. Fuzzy points A, B 6 R/n. 

Example 8.1. Fuzzy distances pf(A,B), Df(A,B) and D/ m a x (A,J3) between 
fuzzy points A, B E R/n (Figure 8.1) where 

{ 0 for x = y, 

0,5 for \x-y\e(0,l), 
\x-y\ for | x - y | > l , 

are shown in Figures 8.2 and 8.3. 

0 1 2 3 4 x 
Fig. 8.2. Fuzzy distance pf (A,B). 

9. CONCLUSION 

In this paper, we have systematically classified the distances published previously 
by various authors [3,4,7,9] into three groups by the construction method. We 
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— Dj(A,B) 

•• Dfmax(A,B) 

O 0,5 1 2 3 4 x 

Fig. 8.3. Fuzzy distances Df(A,B) and Dfmax(A,B). 

have shown our own original definition of the distance of fuzzy sets and an original 
definition of a fuzzy metric space, whose properties we have formulated in several 
theorems and il lustrated by examples. We have shown that , by fuzzifying a contrac
tive mapping, we will obtain a fuzzy contractive mapping and, in a similar way, we 
have investigated in some detail fuzzy metric spaces defined on M71. We will refer 
to the outcomes achieved when further studying linear normed spaces and fuzzy 
convergences. 
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