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DOMINATION IN THE FAMILIES
OF FRANK AND HAMACHER t-NORMS

PETER SARKOCI

Domination is a relation between general operations defined on a poset. The old open
problem is whether domination is transitive on the set of all t-norms. In this paper we
contribute partially by inspection of domination in the family of Frank and Hamacher t-
norms. We show that between two different t-norms from the same family, the domination
occurs iff at least one of the t-norms involved is a maximal or minimal member of the
family. The immediate consequence of this observation is the transitivity of domination on
both inspected families of t-norms.
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1. INTRODUCTION

The concept of domination has been introduced within the framework of proba-
bilistic metric spaces for triangle functions and for building cartesian products of
probabilistic metric spaces [12]. Afterwards the domination of t-norms was studied
in connection with construction of fuzzy equivalence relations [2, 3, 13] and con-
struction of fuzzy orderings [1]. Recently, the concept of domination was extended
to the much general class of aggregation operators [9]. The domination of aggrega-
tion operators emerges when investigating which aggregation procedures applied to
the system of T-transitive fuzzy relations yield a T-transitive fuzzy relation again [9]
or when seeking aggregation operators which preserves the extensionality of fuzzy
sets with respect to given T-equivalence relations [10]. The most general definition
of domination considered so far demands the operations to be defined on arbitrary
poset [4].

Definition 1. Let (P,>) be a poset and let A: P™ — P, B: P* — P be two
operations defined on P with arity m and n, respectively. Then we say that A
dominates B (A > B in symbols) if each matrix (z; ;) of type m x n over P satisfies

A(B(ml,lv L1,2y--+ ,-’151,1;), sy B(IL‘m,1,:L‘m,2, ceey Im,n))
> B(A(z11,T2,1,. -, Zm1)s- -, A(T10, T200 - -y Tmin)-
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Let us recall that a t-norm [12, 8] is a monotone, associative and commutative
binary operation T': [0,1]*> — [0, 1] with neutral element 1. Important examples of
t-norms are: the minimum Ty, the product Tp, the Lukasiewicz t-norm 7T}, and the
drastic t-norm Tp given by

TM(.’E,y) = min(zay)a
Tp(z,y) = zy,
TL(xay) = max(O,x +y— 1)7

TD(I’ y) = {

zy max(z,y) =1
0 otherwise.

We say that a t-norm Tj is stronger than a t-norm T5(T} > T» in symbols) if
any z,y € [0,1] satisfy T1(z,y) > Ta(r,y). We use the notation T} > T, whenever
simultaneously 77 > T, and T} # T» hold. One can easily show that each t-norm is
weaker than Ty and stronger than Tp. Particularly, Tp and Ty, satisfy Ty > Tp >
Ty, > Tp. It is obvious that > is a partial order on the set of all t-norms, i.e., the
reflexive, antisymmetric and transitive relation.

By Definition 1 we have that two t-norms T} and T satisfy T} > T3 iff for each
z,y,u, v € [0,1]

TI(T2($7 y)’ T2(u’ U)) 2 T2(T1(.’L', u)v Tl(ya U)) (1)

It is easy to show that each t-norm T satisfies Ty > T, T > Tp and T > T.
Moreover, by (8, 11], the representative t-norms Tp and Ty, satisfy Tp > Ty. If
T1 > T, then by inequality (1), the neutrality of 1 and the commutativity of t-
norms we have that any y,u € [0, 1] satisfy

Tl(y:u) = Tl(Tz(lay)aTZ(uv 1))
> T2(T1(11u)’T1(y1 1)) = T2(u’ y) = Tz(yvu)

so that Ty > T», see [8]. This means that satisfaction of T3 > T3 is a necessary
condition for T7 > T5 or, in other words, that domination is a subrelation of >. The
converse implication does not hold as it is demonstrated by results of this paper.
Domination of t-norms is moreover an antisymmetric relation which is a consequence
of the fact that it is a subrelation of the antisymmetric relation >. The old open
problem (12, Problem 12.11.3] is whether domination is transitive on the set of all
t-norms. If it were true domination would be a partial order.

When inspecting domination, the tool of yp-transform can be helpful. Let ¢ be
an order isomorphism of the interval [0, 1] and let T be an arbitrary t-norm. Define
T,: [0,1]> — [0,1] by

Ty(x,y) = ¢~ (T(p(), 0(1)))

to be the p-transform of T. It is easy to show that T, is again a t-norm (8].
Moreover, for arbitrary t-norms T; and T, and for arbitrary order isomorphism ¢
the satisfaction of 77 > T is equivalent to (T1), > (T2), so that ¢-transforms
preserve domination [9]. Let us recall that a t-norm is strict (nilpotent) iff there
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exists ¢ such that T = (Tp), (T = (TL),) (8]. Moreover, it is clear that each ¢-
transform of a strict (nilpotent) t-norm is again strict (nilpotent). Thus in order to
characterize pairs of dominating strict (nilpotent) t-norms it suffices to characterize
strict (nilpotent) t-norms dominating Tp (7).

The following result relates domination and powers of additive generators [8]. Let
T be a continuous Archimedean t-norm with additive generator f and let A € 0, oo
be a positive number. Define T to be a t-norm with additive generator f*(z), i.e.,
the A-power of f. It is known that for each A > p is T™ > T This construction
of dominating t-norms gives rise to many parametrical families of t-norms such as
the Aczél-Alsina or the Dombi family.

Although the structure of domination on the set of all t-norms is still unknown,
it is possible to inspect it on particular families of t-norms. One of the oldest results
of this type is due to Sherwood [11] who solved the structure of domination on
the family of Schweizer—Sklar t-norms. Another result of this type is the above
mentioned solution of domination in the Aczél-Alsina or the Dombi family. In
the next two sections we inspect another two important families — the Frank and
Hamacher t-norms.

2. FRANK t-NORMS

Frank t-norms T} are given as

TM(Iay)

A=0
Tp(z, A=1
Tf(:z:,y): T:é;z; A\ =00 (2)

log), ((’\z_—}\)_(i{-——ﬂ + 1) otherwise

where A € [0, o0] is the characterizing parameter of the Frank t-norm. Note that the
family of Frank t-norms is strictly decreasing in A which means that TI\F1 > Tf; iff
A1 < A2. In [5] M. J. Frank solved the problem of characterization of all continuous
t-norms T such that the function F: [0, 1]? — [0,1] given by

F(z,y)=z+y—-T(z,y)

is associative. Each T} solves this problem.

In what follows we find out which A;, Az € [0, 00| satisfy Tfl > Tf; . Recall that
for \; = 0 the question is trivial as T¢ = T dominates any t-norm. Particulary,
for A\; = 1 and Ay = oo the question is solved as well since TF =Tp > Ty, = TOF;,
see, for example, the already mentioned work of Sherwood [11]. Finally Tf; > T)f‘;
cannot be satisfied for A; > )2 due to the decreasingness of the Frank family. That’s
why we consider A; < A2 in the following.

Lemma 2. Let A, = [a},a]] x [ab,a}] x---x[a},al], a} <a],i=1,2,...,n, bean
n-dimensional interval. Let f: A, — R be a real function, linear in each argument.
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Moreover, let the value of f be nonnegative in each vertex of A,, i.e., at each point
with coordinates (b1, bz, ..., bs), b; € {a},al}. Then f is nonnegative on whole A,.

Proof. By induction with respect to the dimension n. The statement is obvious
for n = 1.

Let us assume that the claim of the lemma is true for all intervals of dimension
n — 1 and that A,, and f fulfill all assumptions of the lemma. Consider arbitrary
z = (z1,%2,...,Zn) € A,. Define points

Ty = (xl’x21 .. '1x‘n—11afln)1
z* = (z1,22,...,%n-1,0y)

to be the left and right projections of the point x along the last coordinate. Further
define functions f. and f* by expressions

fo(@1, T2y oo Tno1) = f(Z1, %2, -+, Tno1,0Y),

f(z1,z2,. .. 2n-1) = f(z1,22,...,Tp_1,0a},).
Both functions f, and f* are defined on (n — 1)-dimensional interval
Ap1 = [all,aﬂ X [aé’ag] XX [051-1’02—11

and both functions are linear in each argument. On vertices of A,,_; both functions
attain nonnegative values. Indeed, let v = (v1,v2,...,un—1) be any vertex of A, _;.
Then f,(v) = f(v1,v2,...,Vn_1,a.) is a value of f at one vertex of A,, which is by
assumption nonnegative. Analogically for f*.

Thus f, and f* are nonnegative on A, _; by assumption. Particularly,

f*(zlvzzy"'vxn—l)zf(x*) Z 0)
f(z1,22,...,2n-1) = f(z*) > 0
By assumptions, the function g(y) = f(z1,...,Zn-1,9) is linear on [a}, a}] and
g(a ) = f(m*) Z Oa
9(az) f=*) >0.
Thus f(z) = g(zn) > 0. ) O

Proposition 3. T} > Ty, for each A €]0,1{U]1, 00[.

Proof. We have to show that any z, y, u, v € [0,1] satisfy the inequality

TE(TL(:I:’ y)7TL(u’U)) > TL(Tf(m,u),Tf(y,v)). (3)

Let us consider two mutually exclusive cases. First that the left-hand side of (3)
equals zero and the second that it is positive:
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(¢) Since for A € ]0,1[U |1, 00[ Ty is strict, the left-hand side of (3) can be zero iff
at least one of the Lukasiewitz t-norms involved attains the value 0. Without loss

of generality assume Ti,(z,y) = 0 which is equivalent to z +y — 1 < 0. It suffices to
show that

Ty (TF (2, ), TF (y,v)) = max(0, T¥ (z,u) + TF (y,0) — 1) = 0

or simply Ty (z,u) + T¥ (y,v) — 1 < 0. But from the nondecreasingness of TF and
from the neutrality of 1 it follows

TY (z,u) + T (y,v) =1 < Tx (z,1) + T¥ (y,1) =1 =z +y —1 < 0.

(i) Assume that the left-hand side of (3) is positive, so that z +y —1 > 0 as well
as u+wv —1 > 0 holds. Inequality (3) can be rewritten in the form
T¥ (z+y—1,u+v—1) > max(0,T¥ (z,u) +TX (y,v) — 1)
which is further equivalent to
T¥(z+y—Lu+v—1)>TF(z,u) + TF (y,v) — 1

since the left-hand side is positive. After expansion of the definitions of TF the
inequality can be rewritten as

T uyv (A=1)(\'*=1) A1 (A1
(- 1) (B0 ] [2G0 ]
log, o1 +1] > log, 3

and by further de-logarithmation we end up with

uw

ATAY  1y(ARAY [(A’"—l)(A —1)+1] [()\"—-1)_()\"—1) +1]
A -neRE-y o e o
A—-1 A -

sgn(A—1)

Note that the multiplicative constant sgn(A — 1) prevents the reversion of the order
after de-logarithmation whenever A € ]0,1].

The expression on the left-hand side is nonnegative for any z, y, u, v € [0,1].
Indeed, by substitution A*= X, AY =Y, A*=U and \ =V where X, Y, U,V €
[min(1, A), max(1, A)] we obtain

(X=1)(U=1) (Y=1)(V=1)
XY _1)(LV _1 = +1 = +1
S A)—(f )+1—[ - ]A[ ] >0.  (4)

Let us define the function G: [min(1,\), max(1,)]* — R in variables X, Y, U, V to
be the value of the expression on the left-hand side of (4). One can easily see that G
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is linear in each argument. A very simple computation reveals that G attains zero
value at all vertices of [min(1, \), max(1,A)]* up to the following seven exceptions

sgn(A —1)(A\%2 -1)

G(1,1,1,1) = " >0,
GOM1L1,1) = G(1, A 1,1) = B4 _i)(’\ =Y 5,
G, 1L,M1) =G(1,1,1,y) = B _;)(’\ Do,
G =G 1,1, = B _;)()‘ =Y 5o,
which all are nonnegative values. Thus the function G satisfies all assumptions of
Lemma 2 by which G is nonnegative which proves inequality (4). 0O

Proposition 3 together with Ty > T, and Tp > Ty, show that any Frank t-norm
dominates Tr,. Further we discuss the mutual domination of nonextremal Frank
t-norms. :

Lemma 4. Let f: R — R be n-times differentiable in 0, f®(0) = 0 for all i =
0,1,...n —1 and f™(0) < 0. There exists § > 0 such that f(z) < 0 for each
z €]0,6].

Proof. The claim of the lemma is a well-known result of real analysis. O

Proposition 5. There does not exist A1, A2 € ]0, 0o[ such that A; < A2 and Tfl >
sz.

Proof. Suppose arbitrary A1, A2 € ]0,00[ with A; < A2. We shall show that
there exists some x € |0, 1{ such that

X, (TX, (2, 2), T, (z,z)) < T, (T}, (z,2), T¥, (2, 2)) (5)

so that the defining inequality for domination (1) is violated. Let us define the
function 6% : [0,1] — [0,1] to be the diagonal of a Frank t-norm so that &} (z) =
T¥ (z,z) for any z € [0,1]. Due to the strictness of T} we know that &} is an order
isomorphism of the interval [0, 1]. Inequality (5) can be rewritten into the form

Further define the function f(y, x,): [0,1] — R by expression
Fona) (@) = 03, (83, (2)) — 8%, (8%, (2));

Now another alternative reformulation of (5) is that there exists some = > 0 such
that fi,.a,(z) < 0. We prove this claim by means of Lemma 4.
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Let us compute 65 as well as its first and second derivatives which we will use
later:

2

(aT-1)2
& (z) ={l°g*( A-1 +1) A#1

x A=1,
2\ —1)A"
55(”( ) = ‘J_,\r DriaT A F 1
A=1,
227 In(A) ((2A"-1)(A-1)- (A" -1)?)
5§'(2)(x) = ((AT=1)24x-1)* A#1
2 A=1.
Their values at point 0 are
21In(A) A 1
5}:\‘(0) =0 F(l)(O) -0 JF(2)( 0) = {2‘,\-1 \ f . (7)

so that the first nonzero derivative of (SF( ) at point 0 is the second derivative.
Thereout the first nonzero derivative of f( A1,\2), according to its definition, is the
fourth derivative for which we have

f((:z,Az)(O) _ 36F (2)(0) (6F (2)( )) 36F (2)( 0) (6F (2)( )) ' ®8)

Now we can compute the value of this derivative for all feasible combinations of A;
and A2. Let us distinguish three mutually exclusive cases — the first that Ay = 1,
then Ay =1 and finally, A\; # 1 # As.

(¢) Let us consider A\; < A2 = 1. Combining (7) and (8) we obtain the expression

FO _gqn() (In(A)
fun(©@ = 24,\1—1 A -1 1

The sign of this derivative is determined by the sign of the expression in parenthesis.
Under the assumption A\; < 1, the expression in parenthesis is positive because the
expression In(\)/(A — 1) is decreasing, continuous on ]0,1{U |1, 0c0[ and

lim In(A)

A g,
Aol A —1

Thus the first nonzero derivative of f(y, 1) is negative at point 0.

(i) Let us consider 1 = A\; < A2. Combining (7) and (8) we obtain the expression
In(A2) (In(A2)
@ _gqn(2) (In(d2)
f1,00)(0) 24A2 -1 ()\2 -1

Following the considerations from (i) we find out that f(1 " )(0) is negative.
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(7ii) Let us consider A; # 1 # X2. Combining (7) and (8) gives us the expression

(4) _ ln(/\l)ln()\ ) ln(/\ ) ln()\ )
S @ = 25T (Al 1% —21> '

The sign of the derivative is determined by the sign of expression in ellipses. From

the decreasingness of this expression and from A; < A3 it follows that f((:z A2) (0) <o.

We distinguished all possible cases and regardless of the values of A\; and )y the
value of f((iz'Az)(O) is negative. In addition, all lower-order derivatives of f(x, x,)
vanish at point 0. By Lemma 4 there exists some z € ]0,1[ such that f(z) <0. O

Corollary 6. Any case of domination within the family of Frank t-norms is one
of these

¥ > TF
Tm > TY
Tf‘ > Ti

for arbitrary A € [0,00]. Moreover, domination is transitive within this family so
that it is partially ordered by >>.

3. HAMACHER t-NORMS

Hamacher t-norms form another one-parametric family of t-norms. It has been
proved in [6, 7] that members of this family are the only ones to be expressed as
quotient of two polynomials in two variables. The family of Hamacher t-norms is
parameterized by A € [0, o0]

TD(:an) A =00
TH(z,y) =40 A=z=y=0 (9)

W_,\)I(ym; otherwise.

The Hamacher family is strictly decreasing in A which means that T )\lf > Tg iff
A1 < Ag. The drastic t-norm Tp = ng is the minimal element and the t-norm Tg*
is the maximal element of the family.

In this section we answer the question for which A;, A2 € [0,00] the relation
TE > Tg is satisfied. Recall that for A\ = oo the question is trivial as ng =Tp
is dominated by any t-norm. Moreover, TE > Tg cannot be satisfied for A\; > Ao
due to decreasingness within the family of Hamacher t-norms. That is why we will
only deal with A\; < A2 in the sequel.

Proposition 7. For each ) € 0, 00] it holds that Tg! > T}1.

Proof. We divide the proof into two parts. We first show that T(?l > Tp and
then we prove the claim of proposition by virtue of p-transform.
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(¢) We show that T (zy, uwv) > T (x, u)T3 (y,v) holds for any z, y, u, v € [0, 1).
This inequality is trivially fulfilled whenever at least one variable equals 0. Therefore
assume zyuv > 0. After expansion of the definitions we have
TYuv > zu Yy
TY+uv —xyuv T T+u—zTUuyY+v-—Yyv

or equivalently, by inversion

Ty +uv —zyuv (z+u—zu)(y+v—yv)
TYuv = TYuv '

As the denominators of both fractions are equal and positive, we can drop them,
and by further manipulation we obtain the third equivalent inequality

0<(z+u—zu)(y+v—yv) —zy — uwv+ TYuw
or
0<zv(l—u)(l—y)+uy(l—v)(l-=zx)

where the expression on the right-hand side is evidently nonnegative.

(#) Now, let ) be the multiplicative generator of the nonextremal Hamacher t-norm
TH. So that for A € ]0,00[, v and its inverse are given by

T PV

ox@) = s ey (z) = T3 0=V

TA+ (1 =Nz’
Let us apply the ¢-transform to both T¢ and Tp. Since T§' dominates Tp, the
corresponding -transforms do as well.

The py-transform of Tp is T}! by the definition of multiplicative generator. Now
we shall show that py-transform of T¢! is again T§, i.e., the strongest Hamacher
t-norm is stable under the p)-transform whenever ¢, is a multiplicative generator
of a nonextremal Hamacher t-norm. The equality

is trivially fulfilled whenever zy = 0. Now assume zy > 0. Then we have

1 ( ox(2)ea(y) )
22\ or@) + or(®) — or(@)er ()

o3 (To (A (z), oa(v)))

- Ty
G (A(m+y)+<1—2x)my>
_ zy
 zHy-—zy
= TOH(x,y). .

Since TH > Tp, by virtue of py-transform we have that Tg! > T)! which is our
claim. O
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Proposition 8. There does not exist A1, A2 € |0, co[ such that A; < Az and T/{f >
Tg.

Proof. Let A; and Ay satisfy assumptions of the proposition. We shall show
that there exists z € ]0, 1{ such that

Tg(Tg(x,m),Tf:(x,x)) < Tg(TE(.’L‘,.’IJ),Tg(.’L‘, z)) (10)
so that the defining inequality for domination (1) is violated. Let us define the

function 651 [0,1] — [0, 1] to be the diagonal of a Hamacher t-norm so that 6 (z) =
T{Y(z,z) for any z € [0,1]. The inequality (10) can be rewritten as

83, (033 (2)) < 835 (83} (@) (11)

In order to show-that (11) is satisfied for some z € ]0, 1] it suffices to show that this

T satisfies

x4 z4

>
O (855 (z)) ~ OXL(o%: (2))
since we consider z # 0 and both compositions of the diagonals are positive whenever
z €]0,1[. The diagonal of a Hamacher t-norm T}! is given by the expression

(12)

2
TH(z,z) = s
X (2,2) = 5 F1-NE-2)
by which
1.4
X F(1-2)(2—2)7)?
03 (0% (2)) = e =32 =) §
A+ (1=XM) [2 - A2+(1->\2)(2_x)1] PP Gy vt
- 74
T MO2(z—1)—22)2(z—1)2+2%(2Xa(z—1)2+ (4—37)z)
and
I4
M +(A=-2)(2—2)2)?
53\{2(6?1 (:L‘)) = 1 112 )T -
A2+ (1 —A2) [2 - A1+(1_,\§(2_I),] PP Gy v G
4
x

T NOa(z—1)—22)2(z—1)2+22(2A(z— 1)+ (4—3z)z)
According to these expressions, (12) can be rewritten in the form
A(a(z—1)—22)2(z— 1)+ 22 (2Ao(z—1)%+(4—3z)x)
> A(M(z—1)—2z)%(z—1)2 4222\ (z—1)%+(4—-32)z)
which is further equivalent to
(A2 = A1) (x — 1) (M Az(z — 1)? — 22%) > 0. (13)

The expression on the left-hand side of (13) is polynomial in  which is a continuous
function. Moreover, the value of this expression at 0 is (A2 — A1)A1 A2 which is strictly
positive under assumption Ay > A; > 0. From continuity and strict positivity at 0,
it follows that there exists z € ]0, 1[ which satisfies (13). O
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Corollary 9 Any case of domination within the family of Hamacher t-norms is
one of these

TH > TH
T > 1TH
TP > Tp

for arbitrary A € [0,00]. Moreover, domination is transitive within this family so
that it is partially ordered by >>.

4. CONCLUDING REMARKS

Posets {TF | A € [0,00]}, >>) and ({TH' | A € [0,00]},>>) are order isomorphical
since T}, > T}, holds iff T} > T5: does so. Results of this paper can be transformed
to other famllles of t-norms by means of yp-transforms.

In Introduction we have mentioned that T; > T is not satisfactory for T} > Ts.
This claim is exemplified by any pair of nonextremal Frank (Hamacher) t-norms.
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