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EXTRACTION OF FUZZY LOGIC RULES FROM DATA 
BY MEANS OF ARTIFICIAL NEURAL NETWORKS1 

MARTIN HOLENA 

The extraction of logical rules from data has been, for nearly fifteen years, a key ap
plication of artificial neural networks in data mining. Although Boolean rules have been 
extracted in the majority of cases, also methods for the extraction of fuzzy logic rules 
have been studied increasingly often. In the paper, those methods are discussed within a 
five-dimensional classification scheme for neural-networks based rule extraction, and it is 
pointed out that all of them share the feature of being based on some specialized neural net
work, constructed directly for the rule extraction task. As an important representative, a 
method for the extraction of rules in a general fuzzy disjunctive normal form is described in 
detail and illustrated on real-world applications. Finally, the paper proposes an algorithm 
demonstrating a principal possibility to extract fuzzy logic rules from multilayer percep-
trons with continuous activation functions, i.e., from the kind of neural networks most 
universally used in applications. However, complexity analysis of the individual steps of 
that algorithm reveals that it involves computations with doubly-exponential complexity, 
due to which it can not without simplifications serve as a practically applicable alternative 
to methods based on specialized neural networks. 
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1. INTRODUCTION 

Extraction of logical rules from da ta is the main stream of the nowadays quite 
popular da ta mining technology, an information technology at tempting to extract , 
from unmanageable and always increasing amounts of available data , manageable 
amounts of human-unders tandable structured knowledge. Knowledge expressible 
as logical rules has been traditionally extracted not only with purely logical ap
proaches, but also with many statistically-based approaches and approaches relying 
on artificial neural networks and on nonconnectionist machine learning (Figure 1). 
In addition, rules are extracted also with the emerging data mining approaches based 

1 Presented at the 7th FSTA international conference held in Liptovský Mikuláš, Slovakia, on 
January 26-30, 2004. 
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on rough sets and on genetic algorithms. Although the notion of a rule is under
stood differently in different approaches, it always means some kind of formulas or 
sentences of some formal logic, typically some kind of implications or equivalences. 
The most frequently encountered rule extraction methods have been the topic of a 
number of specialized monographs (e.g., [1, 13, 16, 21, 24, 36, 48, 49, 53, 55, 56]). 
The present paper, which is an extended written version of a talk at the Seventh 
International Conference on Fuzzy Systems Theory and Applications, deals with a 
less known kind of rule extraction methods - methods for the extraction of fuzzy 
logic rules from data by means of artificial neural networks. 

Fig. 1. Main data mining approaches and supporting technologies. 

The following section presents a general characterization of neural-networks based 
rule extraction methods. Attention is paid mainly to their universality with respect 
to the underlying neural networks, and it is recalled that for the extraction of fuzzy 
rules, so far only specialized networks have been used, built up directly for the 
extraction of some particular kind of fuzzy logic rules. An example method relying on 
such a network is given in Section 3. Finally, Section 4 shows the principal possibility 
but unacceptably high computational complexity of extracting fuzzy rules from the 
kind of neural networks most frequently encountered in applications - multilayer 
perceptrons. 

2. EXTRACTION OF LOGICAL RULES 
BY MEANS OF ARTIFICIAL NEURAL NETWORKS 

The extraction of knowledge from data by means of artificial neural networks (ANNs) 
has received much attention especially in the nineties [3, 6, 31, 35, 38, 39, 51]. Actu
ally, already the mapping computed by the network incorporates knowledge trans
ferred to it during training from the training data, knowledge about the implications 
that certain values of the variables assigned to its inputs have for the values of the 
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variables assigned to its outputs. That knowledge is represented partially through 
the network architecture and mainly through distributed numerical parameters de
termining the computed mapping. Needless to say, such a knowledge representation 
is not easily human-comprehensible (in terms of [8], that representation provides 
a high data fit but a low mental fit). It is the difficult comprehensibility of such 
a representation that motivated research into the problem of extracting from it 
more easily comprehensible logical rules. Formally, that problem can be viewed as a 
transformation of the ANN architecture and of parameters determining the computed 
mapping into a set of logical rules of a prescribed'kind, e. g., into a set of appropriate 
implications or equivalences [11, 14, 15, 20, 25, 30, 34, 50, 52, 54]. 

Up to now, already several dozens ANN-based rule extraction methods exist. In 
[6] and [51], a classification scheme has been proposed, classifying each such method 
according to following aspects: 

(i) expressive power of the extracted rules, given by the meaning they are able to 
convey; 

(ii) translucency of the view of the underlying neural network, i.e., the extent 
to which the extracted rules reflect the way how the mapping computed by 
the network is composed from somatic and synaptic mappings assigned to 
individual neurons and connections; 

(iii) universality of the method with respect to how commonly used is the under
lying neural network, which in turn determines its portability across networks 
encountered in various applications; 

(iv) quality of the set of extracted rules, determined mainly by its comprehensi
bility, consistency and completeness, and by the accuracy and fidelity of the 
individual rules; 

(v) computational complexity of the method. 

The key aspect of that classification is the expressive power of the rules. Though 
the conveyable meaning of the rules depends also on the syntax of the language 
underlying the considered logic, which allows to differentiate, e.g., propositional 
and first-order logic rules, it is primarily determined by the.set of possible truth 
values of the rules. According to this criterion, extracted rules can be divided into 
two main groups: 

• Boolean rules, i.e., formulas of the Boolean logic, such as the propositional 
if... then rules or M-of-N rules. As any Boolean formula, they can assume 
only two different truth values, say true and false. The tertium-non-datum 
axiom of the Boolean logic implies that if a Boolean rule has been evaluated 
and has not been found true, then it automatically must have been found false. 
That is why methods for the extraction of Boolean rules only need to output 
rules that, within an apriori set of rules to evaluate, have been found valid in 
the data. 

• Fuzzy rules, i. e., formulas of some fuzzy logic, typically formulas of the product 
logic, Lukasiewicz logic, Godel logic, or some combination of those three. Their 
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truth values can be arbitrary elements of some BL-algebra [23]. In the existing 
methods for the extraction of fuzzy rules, that BL-algebra is always defined 
on the interval (0,1). 

The proper subject of the present paper are methods for the extraction of fuzzy 
rules. A closer look at methods of that kind that have been so far proposed in 
the literature (cf. [4, 9, 15, 20, 34, 39], a survey of many other methods can be 
found in [35]) reveals that they actually share classification not only with respect 
to the expressive power, but also with respect to the universality aspect. Indeed, 
all of them use specialized neural networks, the architectures of which reflect the 
particular fuzzy logic considered and the syntax of the extracted rules. Needless to 
say, a network with such properties can hardly be expected to have been constructed 
and trained in the usually encountered approximation and prediction applications 
of neural networks, hence it needs to be constructed and trained specifically for the 
rule extraction task. 

An example method based on such a neural network, already implemented and 
tested with real-world data, will be described in the next section. 

3. NEURAL-NETWORKS BASED EXTRACTION OF FUZZY DNF RULES 

One of the standard kinds of extracted Boolean rules are rules in the disjunctive 
normal form (DNF), i.e., rules 

d 

^ V A ¥*.,•. (i) 
i=ijeCi 

in which C\,... ,Cd are non-empty sets, and \I/, <pij, i = 1,...,d, j G Ci, are atomic 
formulas. 

That definition can be in full generality transferred also to a fuzzy logic (for 
more specific definitions of a fuzzy DNF, based either on the DNF decomposition 
of Boolean functions, or on fuzzy if-then rules, see [12, 41, 42, 43, 44, 45, 46, 47]) 
provided the meaning of the connectives V and A in (1) is fixed (cf. [22] for the above 
general definition of a fuzzy DNF in the case of the Godel logic). In this section, a 
method for the extraction of such fuzzy DNF rules will be outlined. That method 
is based on the following four principles: 

(i) the underlying neural network computes the truth value of the rule consequent 
in some model M of the considered fuzzy logic; 

(ii) any atomic formulas <Pilyj, <Pi2j are interpreted by the same kind of finitely-
parametrizable fuzzy sets on a crisp domain Dj (e.g., the value set of some 
variable); 

(iii) the network is trained with a sequence of training pairs {xl,y1),... ,{xl,yl), 
such that for k = l , . . . , t , the input component of the A:th training pair is 
a vector xk = (xk,... ,x^) G D\ x • • • x Dn, and the output component is 
the desired truth value yk G (0,1) of * provided <piyj, i = l,...,d, j G Ci,, 
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are interpreted with respect to xkj (i.e., the truth value of <piyj equals the 
membership of x) in the fuzzy set (pfj interpreting (pitj in the model M); 

(iv) M is chosen from some considered set of models M in such a way that the 
squared Euclidean distance between the computed and the desired outputs of 
the network, averaged over the training set (mean squared error), is minimal 
provided each of the atomic formulas tpij is interpreted by a fuzzy set of a 
prescribed kind. 

Observe that the principle (i) implies that the underlying neural network has 1 
output neuron, whereas from (ii) follows that it has n input neurons corresponding 
to the domains D\,..., Dn and |Ci| + • • • + \Cd\ hidden neurons corresponding to 
the considered atomic formulas, where \C\ denotes the cardinality of a set C, and 
d C { 1 , . . . ,n) for i = 1 , . . . ,d. For M G M, let || • ||M denote the truth values 
of formulas of the considered fuzzy logic in the model M. Then the principle (ii) 
entails a parametrizability of the set M with a finite number of parameters, and for 
each M G M, the principle (iii) implies 

M=(dMi^crd'5'r) = (m^^)* & 
where S and T are, respectively, the s-norm interpreting V and the £-norm inter
preting A. Finally, combining (i)-(ii) with (1) yields 

||*||M = SU (TjeCi (HwjIlAf)) = SU [TjeCt (#$)), (3) 

whereas the principles (iii) - (iv) in connection with (3) imply that training the net
work with a sequence of training pairs (x1, yl),..., (xl, yl) leads to the optimization 
task 

w = «8^E(s£- ( r ^ (ti5ti)))-rf- w 
k=l 

Due to the finite parametrizability of M, this is a standard task of multidimensional 
optimization. 

For any implementation of the method, the considered set of models M has to 
be specified. Taking into account (2) and the principle (ii), this means to specify: 

• for each domain Dj, j = 1 , . . . ,n, the parametrization of the fuzzy sets tpW 
on Dj, interpreting the atomic formulas tpij, j G C*, i.e., the number of 
parameterspj and the parametrizing mapping TTJ : ffl* —> F(Dj), where T(Dj) 
denotes the set of fuzzy sets on Dj and itj fulfils ( 3 a ^ G 3?p0 (p^ = Kj(a^j), 
for i = l , . . . , d , j G Ci, M G M; 

• the particular fuzzy logic considered, which in turn determines the considered 
s-norm S and the £-norm T. 

In the implementation of the method at the Institute of Computer Science in 
Prague, the user can combine any of the parametrizations in table on page 302 with 
either the Lukasiewicz logic [23], entailing the £-norm 

TL(x,y) = max(x + y - 1,0) | x , y G (0,1), (5) 
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and 8-norm 
SL(x,y) = min(x + y,l)\x,ye (0,1), (6) 

or the product-Lukasiewicz logic [29] with the £-norm 

TPL(xJy)=xy\x,ye (0,1), (7) 

and 8-norm 
-5PL(-C, y) = x + y - xy \ x, y G (0,1). (8) 

At the present implementation, Dj = 3? is assumed for all j = 1 , . . . , n, and only one 
parametrization at a time can be chosen, which is then used for the interpretation 
of all (fij, i = 1 , . . . , d, j G Ci. 

parametrization number of 

parameters 

parametrizing mapping 

Gaussian ?r(a, 6) = r ( a | 6 ) G .F(5R) | a G 3ft, b > 0, 

where (Vx G 3ft) r ( f l | 6 )(x) = e~{JL:^ 

symmetric 

triangular 

TT(O, 6) = A*a6) G .^(3ft) | a G 3ft, b > 0, 

where (Vx G 3ft) A*ab)(x) = max(0, l-\*~a\) 

triangular 7r(a,6,c) = A ( a A c ) G .^(Sft) | a < b < c, 

where (Vx G ») A ( a A c ) (x) = max(0,min(fff, f=f)); 

bell-shaped 7r(a, 6, c) = .B(flj6jC) G ̂ (3ft) | a, 6, c G 3ft, a ^ 0, 

where (Vx G 3ft) £ ( a A c ) (x ) = i | ( T
1_ c ,2 t j , 

sigmoidal spline ҡ(a,b) = Slab) Є .F(Я) | a < 6 , 

0 | x < o; 

where 5^, i6)(x) = < 
2 ( f f f ) | a < x < f 

l - 2 ( | E f ) 2 | ^ < o ; < 6 

1 | x > b, 

sigmoidal 7r(a, 6) = Siafb) G .^(3ft) | a G 3ft, 6 > 0, 

where (Vx G 3ft) S(atb)(x) = 1 + e - j ( g _ f t ) 

decreasing spline ÍT(O, 6) = D(o>6) € JF(5i) | o < 6, 

1 | x < o; 

where D^b)(x) = < 
- - - ( l = f ) i « < * < ^ 
2 ( f e f ) 2 | ^ < x < 6 

0 | x > b, 
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For the resulting combinations of parametrization with t-norms and s-norms, (2) 
and (4) yield the final formulation of the optimization task to be solved, for example: 

M r r = a r g m i n , -c» , ^ m i = 1 <l 

L ^ to (a».,j-9ť,bi,j>0) j6C. 

£ 
fc=l 

rnm 

v 
£ 

, i = 1 

max £ e V.,' - | C 4 | +1,0 ,1 

M, Г.PL = aгgmin ( O ł i j Є- i ò ł i í > 0 )i-i.....d 

І6C; 2Ьi:j ) - y k \ E»-n<>-« 
fc=l\ i = l / 

M A ,, L = argmin(oiij€-ilHij>0)i-i.....d 

^ L n ( ^ m a x f c m a x ( 0 , Í ^ 4 ^ H ^ I + 1.0]>lVy fc | . 
fc=i\ \i=i WC, V 

ЬІJ 

MAsyPL = a r g m i n ( a i j Є Я ł Ь ł j > 0 ) i = ^ : . . . d 
JЄСІ 

£ 
fc=l 

/ 

i -П(i-П max0< 
l-|gjf-Q.,jl\ _yk\ 

i = l 
ЬІ, 

Mв, L = aгgn-iП(„..J,iч. j,c..iЄя,ał.Jîío)í-îíł 

í 

fc=l 
mm У^ max У^ —k  

І = l 

\ \ \ 

IOil + 1,0 ,1 -yk 

1 1 1 
M B , P L = argmin ( a i . 6 i . С ł . є 9 г a i ^ 0 ) , й i 

t / 

= 1 d 

fc=l 
£ h - n »-n i -H ^ ( ^ n 

(9) 

(10) 

(П) 

(12) 

(13) 

(14) 

For illustration, Figures 2 and 3 show the same 2-dimensional cut of the truth 
values of ||\-/||M for models M fulfilling (11) and (14), respectively. The neural 
networks in these figures have been trained with data from a recent application of 
ANNs to material science [27, 28]. 

Though the implementation covers the most important special cases, the method 
itself is actually applicable to a much broader class of problems, due to the generality 
of the set of models M. Indeed, M is only required to comply with (2), otherwise it 
can be quite arbitrary, in particular it can impose arbitrary additional restrictions to 
the included models. Such restrictions will now be briefly illustrated on an example 
from a currently starting application of the method to the results of an EEG spectral 
analysis in neurophysiology [19]. 
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Lukasiewicz logic, 
bell-shaped parametrization 

truth 
value 

0.9 

0.8 

0.7 

0.6 

0.5 

0.4 

0.3 

- 0 . 2 

0.1 

Fig. 2. A 2-dimensional cut corresponding to the dimensions X3 and X4 of the truth 

value | | ^ | |M = 1 - H ° i {l ~ e * 2bi'j )» w h e r e aiJ a n d Ki for t = 1, . . . , 10, 
j = 1, . . . , 13 are obtained from (11), xs = 1 — X3 — £4, and Xj = 0 for j =1,2,5-7,9-13. 

The data from an EEG spectral analysis contain amplitudes of EEG signal com
ponents for all included frequencies of the spectrum. However, knowledge about 
EEG spectra is usually formulated in terms of differently looking bands of the spec
trum (J-, 0-, a- and /?-bands). This has the following consequences for the fuzzy 
s ets (^)i=i , . . . ,d ,jGCi in (2): 

(І) Dj = 5řř for j = 1, . . . , n; 

(ii) ^ = S ( o ^ , 0 f , d t
M ,/3f) for i = l , . . . ,d , j G d = { l , . . . ,n} , where 

5f*, Of*, df*, /?A* are fuzzy sets describing the respective band of the spectrum; 

(iii) there exist a number p G JV, a parametrizing mapping 7r : 5RP —> ̂ "(3?), and 
parametersa§, a $ , a™a, a^ G 5RP) such that | f = 7r(a i | f) for £ G {5,0,a,/?}, 
i = l , . . . , d , M G }W; 

(iv) there exist numbers L5, L^, L a , L^, E/$, U0, c7Q, Up G K such that L^ < U$ and 
I f I (-00,L c) = £? I (c7e,oo) = 0 for £ G {5,0,a,/3}, i = l d ,Af€A<. 
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product-Lukasiewicz logic-
Gaussian parametrization 

truth 
value 

0.9 

0.8 

І0.7 

ţйfö 

0.6 

0.5 

0.4 

Fig. 3. A 2-dimensional cut corresponding to the dimensions X3 and X4 of the truth 
value | | ^ | |M = min (£?=i max ( £ ] ! - . — / xk_l . .2,, 12,0), l), where aitj, foj and cid 

for i = 1, . . . , 10, j = 1, . . . , 13 are obtained from (14), x$ = 1 — £3 — #4, and Xj = 0 for 
j =1,2,5-7,9-13. 

Hence, the set of models M gets restricted to 

M = [M = ( ( ^ ) ^ : - - ' d , 5 , T ) : (Vi G { l , . . . , d} ) (35 f , ^ { , d f ,&M G .F(H)) 

(V^G{5,^a, /3})(3a^ G 5RP) cff =7r(aifC) & ̂  I ( - o o , £ € > = ^ | <l/c,oo) = 0 

^yjeih.^^^^sCs^^.^J^)}' (15) 

4. IS EXTRACTION FROM GENERAL MULTILAYER PERCEPTRONS 
POSSIBLE? 

As was mentioned in Section 2, all existing methods for ANN-based extraction of 
fuzzy logic rules rely on some highly specialized neural networks, thus they are 
hardly portable to networks commonly encountered in applications. Recent results 
by Amato, Porto, Aguzzoli and Mundici on the connection between fuzzy logic and 
piecewise-linear functions (0, l ) n —• (0,1) with rational coefficients [2, 5] indicate 
that this may not need to be the case. Both quoted papers show that such piecewise-
linear functions (i. e., rational generalizations of McNaughton functions) are actually 
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fuzzy sets on (0, l ) n interpreting particular formulas of some fuzzy logic, or in other 
words, they are fuzzy logic functions represented by formulas of the respective logic. 
In [2], that logic is the logic 3L, a fragment of the infinite-valued Lukasiewicz predi
cate logic, whereas in [5], it is the Esteva-Godo-Montagna logic hH\ [18], Those 
results can be considered a direct generalization of the classical McNaughton theo
rem [33]. Though none of both results concerns neural networks, they nevertheless 
imply a principal possibility to extract fuzzy logic rules from multilayer perceptrons 
with continuous activation functions, the kind of ANNs that is most commonly used 
in applications. Indeed: 

1. Due to the density of the set Q of rational numbers within the set 5R of real 
numbers, any piecewise-linear function (0, l ) n —> (0,1) is arbitrarily close (in 
the metrics on C((0,l)n)) to a piecewise-linear function (0 , l ) n —> (0,1) with 
rational coefficients, i.e., to the interpretation of some formula of either the 
logic Ln^, or the logic 3L. 

2. Any function computed by a multilayer perceptron with the input space (0, l ) n 

and continuous activation functions is arbitrarily close to a function computed 
by a multilayer perceptron with piecewise-linear activation functions, which in 
turn is a piecewise-linear function (0, l ) n —> (0,1) [26, 32]. 

3. An alternative argument to 1-2 is the fact that any continuous mapping 
(0, l ) n —> (0,1) (in particular, any continuous mapping (0, l ) n —> (0,1) com
puted by a multilayer perceptron with the input space (0, l ) n ) is arbitrarily 
close to a function represented by a fuzzy normal form of a specific kind [41]. 
However, such normal forms require the language of the Lukasiewicz logic to 
be extended with truth constants for all numbers from (0,1) (or at least for 
all rationals from (0,1)), which is not the case for the fuzzy logics considered 
in [2] and [5]. 

Moreover, both quoted papers provide a constructive proof of the representability 
of piecewise-linear functions (0, l ) n —> (0,1) with rational coefficients by formulas 
of the considered fuzzy logic, a proof in both cases heavily relying on Mundici's 
constructive proof of the McNaughton theorem [10, 37] (which is different from the 
more recent constructive proof by Perfilieva and Tonis [40, 41]). Those constructive 
proofs, together with an algorithm for the approximation according to (ii) above [26], 
already allow to formulate algorithms for the extraction of formulas of the respective 
fuzzy logic from a multilayer, perceptron with continuous activation functions (for 
the approximation according to (i), no algorithm is needed because all computations 
are always performed with rational numbers). Here, the main steps of an algorithm 
relying on [2] are sketched. To facilitate the formulation of the algorithm and the 
subsequent discussion, several simplifying assumptions will be adopted: 

• the considered multilayer perceptron has only one output neuron (an extension 
to perceptrons with more output neurons is possible through splitting the 
original network into several perceptrons sharing the input and hidden neurons 
and the connections between them, and through applying the algorithm below 
to each of those perceptrons); 
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> the considered multilayer perceptron has only one hidden layer (an extension 
to perceptrons with more hidden layers is possible through repeating the steps 
1 - 3 for each of them, proceeding from the last hidden layer to the first hidden 
layer); 

i the somatic operation at the output neuron doesn't include the activation 
function (an extension to output neurons that include the activation function 
is possible through starting the algorithm with steps 1-3 applied to the output 
neuron); 

* for the purpose of rule extraction, the input space of the considered multilayer 
perceptron is restricted from a whole Euclidean space 3?n to the unit cube 
(0, l ) n (this can be in a standard way extended to all closed cubes, and further 
to all compact sets in 5Rn, which are sufficient for real-world applications of 
multilayer perceptrons). 

On those assumptions, the algorithm can be formulated as follows: 

Input: A required precision e > 0 for the approximation according to 2. above, 
a multilayer perceptron with one hidden layer, nj input neurons, n// hidden 
neurons and an activation function /, and a function F computed by that 
perceptron and defined 

nH / nr \ 

(Vx G ft) F(x) = Yl w^f Yl Wh-iXi + bh)+bo, (16) 
h=i \i=\ ) 

where WJH — {wh,i)i=i'"'n" T" C is a matrix of the weights of connections 
between input and hidden neurons, 6/j = (&i,..., bnH) is a vector of the biases 
of hidden neurons, WHO = (^i, • • • ,wnH) 7̂  0 is a vector of the weights of 
connections between hidden neurons and the output neuron, and bo is a bias 
of the output neuron. 

Step 1. Let U = max max \(wh\,... ,whni)'u\, m be the smallest integer 
/i=l, . . . , r iH u G ( 0 A ) n 

whenever \u — u'\ < ^ , such that \f(u) - f(u')\ < ^*H\WH\ 
piecewise-linear function g : (—U, U) —• (0,1) by 

and define a 

(\/ue(-U,U))g(u) = f 

~m(u + U) 

-U+ 
m(u + U) 

( ' ( - ( 2ř7 
+ 1 

W 
m 

W 

- f 

' W\ ím(u + 
~m) + \ W 

+ U) m(u + U) 
W 

-U + 
m(u + U) 

W ш (17) 

where [u] denotes the integer part of a real number u. 

Step 2. Create a polyhedral complex Vni partitioning (0, l ) n / : 

{P C (0,l)ni :WIH(P)=(/-U-b1 + (i1-l)^,-U-b1+i1^\ x ... (: 

•••x í-U-bnH + (inH-l) — ,-U-bnH+inH—\ , i1,...,inH = l,...,m\, 
\ 771 7TZ I J 
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where the notation WJH(P) for {WJH(X) : x G P) is used. 

Step 3. Define a piecewise-linear mapping G : (0, l ) n / —> (0,1) by 

nH / n 7 \ 

(V* G (0 , l ) n ' ) G(x) = ^ « ; W J ] v + bh + 6 0 , (19) 
hz-rl \ i = l / 

so that, due to Steps 1-2, G approximates F at (0, l ) n / within the precision 

Step 4. Triangularize the polyhedral complex Vnj into a simplicial complex Snj (see, 
e.g., [17] for details). 

Step 5. Create a polyhedral complex Vnj+i partitioning (0, l ) n / + 1 : 

Vnj+i = {P C ( 0 , l ) n ' + 1 : (3/3 G Sni) P is a polyhedron, and has either 
the vertices (su0),..., ( s n / +i , 0), (suf(s1))1..., ( s n / +i , / ( s n / + i ) ) , 
or the vertices(si, / ( s i ) ) , . . . , ( s n / +i , / ( s n / + 1 ) ) , (si, 1), • • •, (sni+i, 1), 
where s\,..., s n / +i are the vertices of /?}. 

(20) 

Step 6. Triangularize the polyhedral complex Vni+i into a simplicial complex Sni+\. 

Step 7. As long as there exists an (nj + l)-dimensional simplex S G Sni+\ such 
that detTs ^ ±1 for its matrix Is in homogeneous integer coordinates, refine 
<Sn/+i through adding such a vertex s inside of S that for any subsimplex S' of 
the resulting simplicial partitioning of 5, detX^ < det Z;s, thus finally arriving 
to a unimodular refinement U of <Sn/+i (see [10] for details). 

Step 8. For each vertex v G V, where V = {v = ( - J , . . . , % ^ ) G Q n / + 1 : (3 U G 

ZY) i; is a vertex of CI & a 1 ? . . . , a n / + 1 , d are integers &: d > 0 & Tt^+1 < 

G ( ^ - , . . . , -g1-)}, construct a Schauder hat of v with respect to U, i.e., a 
piecewise-linear function with integer coefficients Hy : (0, l ) n / + 1 —> (0,1) that 
is linear over each U G U and fulfills H^(v) = \, H^(v') = 0 for all other 
vertices v' of any U €U (see [10] for the existence of such a function, and for 
details of that construction). 

Step 9. Define a formula ( 3 X n / + 1 ) $( .K i , . . . ,X n / +i ) of the logic 3 L, in which 
the formula $ with nj + 1 free variables X\,... ,Xnj+i is defined gradually 
starting with formulas that represent individual linear pieces of individual 
Schauder hats, and proceeding via formulas that represent entire Schauder 
hats, in such a way that the final formula (3X n / +i $(X\,..., Xni+i) repre
sents maxX n / + l 6 ( 0 ) i ) T,vevani+iHu ( s e e [101 f o r details). 

Output: The formula ( 3 X n / + 1 ) $ (X X , . . . ,Xni+i) defined in Step 8; due to the 
equality 
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(Vx = ( x i , . . . , x n / ) € ( 0 , 1 > " 0 max y < / + 1 f l S ( I l l . . . , x n ; , i n ; + 1 ) = G(x), 
X n '+ , e ( 0 '1 > t7iv 

(21) 

proven in [2], this formula represents also G. 

Already a first look at this algorithm reveals that, even when neglecting as
signments, concatenations and comparisons, most steps involve computations of 
exponential complexity, and the last step (Step 9) even computations of doubly-
exponential complexity: 

(i) In Step 2, a polyhedral complex Vni with \Vnj\ = 0(mnH) is created through 
solving mnH linear equations WIH(x) = ( n ^ , • • • , * n H ^ ) for i i , - - . , i n H = 
0 , . . . ,ra. 

(ii) In Step 4, each polyhedron from Vnj is triangularized into 0 (2 - ) simplices 
n 2 

(see, e.g., [7]), thus Vnj is altogether triangularized into |«Sn/| = 0(2~*~mnH) 
simplices. 

/ H \ 

(iii) In Step 5, a polyhedral complex Vni with |Pn/+i| = 0(2 2 mnH) polyhedra is 
created through constructing 2 polyhedra over each simplex S E Sni. 

(iv) In Step 6, each polyhedron from Vnr+i is triangularized into 0(n^ ) simplices, 
n2

H
 nH 

thus Vnj+i is altogether triangularized into |<Sn/+i| = 0(2 2 mUHn^ ) sim
plices. 

(v) In any of the repeatedly performed iterations of Step 7, a particular simplex 
S from the current refinement S of the simplicial complex Snj +1 is split-
ted into 0(nH) simplices such that for each of them, detT's < det J 5 , thus 
as many as |S n / +i | iterations may be needed to decrease the current value 
of Ds = maxsGs | de t2s | from As n / + 1 to As n / + 1 - 1, and <Sn/+i is split-
ted into 0(nH\Sni+i\) simplices during that time; repeating this until the 
unimodular simplicial complex U with Du = 1 is reached implies \U\ = 

0(nlS^\Sni+1\)=0(2^m^n{
I/

+Ds"'+l)). 

(vi) In Step 8, for each of the 0(|W|) vertices v e V, an (n// + 2)-dimensional 
system of linear equations has to be solved to construct each of the £y < 
\U\ nonzero linear pieces of the Schauder hat H%, thus altogether 0(\U\2) = 

0(2n»m2nHnH
 n / + 1 ) such systems of linear equations have to be solved. 

(vii) In Step 9, for each of the 0(\U\) vertices v G V and each permutation o of 
the number t^ of different linear pieces # i , . . . ,#« of the Schauder hat # £ , 
it has to be decided whether the polyhedron Pa = {x G 5rcn/+1 : 9a(i)(x) > 
••• > ga(e

v)(x)} is (nj + l)-dimensional, through checking the regularity of 
the system of vertices Pa n V, thus altogether the regularity of 0(^1) = 

0 ( e o ( 2 ^ m ^ n (
H " f + D S n ^ l ) ) ) systems of 0(2^mnHny*DSni+1') vectors 

from 3t n / + 1 has to be checked. 



310 M. HOLENA 

Observe that the highest complexity is connected with the construction of for
mulas corresponding to Schauder hats. Since that construction has been taken over 
from Mundici's constructive proof of the McNaughton theorem [37, 10], the overall 
doubly-exponential complexity pertains already to the representation of piecewise-
linear functions with integer coefficients by formulas of Lukasiewicz propositional 
logic according to that proof, and is not specific to the presented algorithm for the 
representation of piecewise-linear functions with rational coefficients by formulas of 
the logic 3L. Moreover, it can be shown that also the alternative constructive proof 
of the McNaughton theorem in [40, 41] finally leads to a doubly-exponential com
plexity. Due to the complexity of involved computations, the above algorithm can be 
viewed merely as a demonstration that the extraction of formulas of fuzzy logic from 
general multilayer perceptrons is principally possible. However, further research is 
needed to arrive to an algorithm that will be practically applicable. 

5. CONCLUSION ' 

The paper surveyed, the task of extracting fuzzy logic rules from data by means 
of artificial neural networks. It described a particular method of that kind, based 
on a fuzzy generalization of DNF rules, which had already been successfully em
ployed in several practical applications. On the other hand, it also demonstrated 
that the common feature of all existing fuzzy rule extraction methods to rely on 
highly specialized networks constructed directly for the rule extraction task is not a 
principal necessity. An algorithm has been proposed for the extraction of formulas 
of the infinite-valued Lukasiewicz logic from neural networks as general as multi
layer perceptrons with continuous activation functions. That generality makes the 
algorithm theoretically attractive for the extraction of fuzzy rules from numerous 
trained multilayer perceptrons that are available in real-world applications. How
ever, its applicability to this end is hindered by its high computational complexity. 

Simplifications of the algorithm to decrease its complexity and make it feasible 
for practical applications are the topic of ongoing research. That research is driven 
by the following ideas: 

• To restrict, in Steps 2 and 4, the cardinalities of the involved polyhedral and 
simplicial complexes through considering only those polyhedra and simplices 
that contain the input component xk of at least one training pair (xk,yk). In 
that way, the cardinalities of \Vnj\ and | 5 n / | get restricted to 0(£), compared 

73L to 0(mnH) and 0 ( 2 2 m n / / ) , respectively. 

» To seek alternatives to Steps 5 - 9 . In this respect, the alternative constructive 
proof of the McNaughton theorem in [40, 41] is very inspiring, but since it 
covers only Steps 7 - 9 , at least an alternative to Steps 5 -6 needs to be sought 
anyway. 

Most important for the feasibility of any proposed simplification of the algorithm 
above will be results of its testing on real-world problems and comparison with the 
method for extracting fuzzy DNF rules from Section 3 and / or with other methods 
based on specialized networks. That comparison needs to include not only the final 
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computational complexity of the proposed simplification, compared to the complex
ity of retraining the specialized network, but also the quality of the extracted rules, 
especially their comprehensibility and accuracy. 

Due to the approximations involved in extending the results [2, 5] from rational 
McNaughton functions to continuous functions computed by multilayer perceptrons 
(see 1-2 in Section 4), the interpretation of the extracted formula actually only ap
proximates tha t continuous function, except for the case when the computed function 
is a rational McNaughton function. Needless to say, simplifications of the algorithm 
cannot improve this situation. On the contrary, they can lead to approximations 
even for rational McNaughton functions. It is interesting to compare the result
ing approximations with several methods for approximation of continuous functions 
based on specific kinds of fuzzy normal forms [41, 47]. In those methods, the ap
proximation is in fact based on crisp sets (on sufficiently small balls from the domain 
of the approximated function, or on products of sufficiently small balls from its do
main and range, covering the function). Consequently, the approximation can be 
actually described also by means of Boolean logic in those methods. In contrast , the 
method outlined in Section 4 is based on proper fuzzy sets, represented by formulas 
of Lukasiewicz logic, and the resulting approximation could not be described by 
means of Boolean logic. 
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