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INTERPRETABILITY OF LINGUISTIC VARIABLES: 
A FORMAL ACCOUNT 

ULRICH BODENHOFER AND PETER BAUER 

This contribution is concerned with the interpretability of fuzzy rule-based systems. 
While this property is widely considered to be a crucial one in fuzzy rule-based modeling, a 
more detailed formal investigation of what "interpretability" actually means is not available. 
So far, interpretability has most often been associated with rather heuristic assumptions 
about shape and mutual overlapping of fuzzy membership functions. In this paper, we 
attempt to approach this problem from a more general and formal point of view. First, we 
clarify what the different aspects of interpretability are in our opinion. Consequently, we 
propose an axiomatic framework for dealing with the interpretability of linguistic variables 
(in Zadeh's original sense) which is underlined by examples and application aspects, such 
as, fuzzy systems design aid, data-driven learning and tuning, and rule base simplification. 
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1. INTRODUCTION 

The epoch-making idea of L. A. Zadeh's early work was to utilize what he called 
"fuzzy sets" as mathematical models of linguistic expressions which cannot be rep
resented in the framework of classical binary logic and set theory in a natural way. 
The introduction of his seminal article on fuzzy sets [42] contains the following re
markable words: 

"More often than not, the classes of objects encountered in the real phys
ical world do not have precisely defined criteria of membership. [ . . . ] 
Yet, the fact remains that such imprecisely defined "classes" play an im
portant role in human thinking, particularly in the domains of pattern 
recognition, communication of information, and abstraction." 

Fuzzy systems became a tremendously successful paradigm - a remarkable tri
umph which started with well-selling applications in consumer goods implemented 
by Japanese engineers. The reasons for this development are manifold; however, we 
are often confronted with the following arguments: 
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1. The main difference between fuzzy systems and other control or decision sup
port systems is that they are parameterized in an interpretable way - by means 
of rules consisting of linguistic expressions. Fuzzy systems, therefore, allow 
rapid prototyping as well as easy maintenance and adaptation. 

2. Fuzzy systems offer completely new opportunities to deal with processes for 
which only a linguistic description is available. Thereby, they allow to achieve 
a robust, secure, and reproducible automation of such tasks. 

3. Even if conventional control or decision support strategies can be employed, 
re-formulating a system's actions by means of linguistic rules can lead to a 
deeper qualitative understanding of its behavior. 

We would like to raise the question whether fuzzy systems, as they appear in daily 
practice, really reflect these undoubtedly nice advantages. One may observe that 
the possibility to estimate the system's behavior by reading and understanding the 
rule base only is a basic requirement for the validity of the above points. If we adopt 
the usual wide understanding of fuzzy systems (rule-based systems incorporating 
vague linguistic expressions), we can see, however, that this property - let us call it 
interpretability - is not guaranteed by definition. 

In our opinion, interpretability should be the key property of fuzzy systems. If it 
is neglected, one ends up in nothing else than black-box descriptions of input-output 
relationships and any advantage over neural networks or conventional interpolation 
methods is lost completely. 

The more fuzzy systems became standard tools for engineering applications, the 
more Zadeh's initial mission became forgotten. In recent years, however, after a 
relatively long period of ignorance, an increasing awareness of the crucial property 
of interpretability has emerged [1, 2, 6, 12, 21, 39, 40, 41]. A recent book [11] 
bundles these forces by presenting a comprehensive overview of research on this 
topic. So far, the following questions have been identified to have a close connection 
to interpretability: 

1. Does the inference mechanism produce results that are technically and intu
itively correct? 

2. Is the number of rules still small enough to be comprehensible by a human 
expert? 

3. Is the rule set complete and consistent? 

4. Do the fuzzy sets associated to the linguistic expressions really correspond to 
the human understanding of these expressions? 

This paper is solely devoted to the fourth question. So far, there is a kind of 
shallow understanding that this question is related to shape, ordering, and mutual 
overlapping of fuzzy membership functions. We intend to approach this question 
more formally. This is accomplished making the inherent relationships between the 
linguistic labels explicit by formulating them as (fuzzy) relations. In order to provide 
a framework that is as general as possible, we consider linguistic variables in their 
most general form. 
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Note that the given paper is a revised and extended version of a previously pub
lished book chapter [7]. 

2. PRELIMINARIES 

Throughout the whole paper, we do not explicitly distinguish between fuzzy sets 
and their corresponding membership functions. Consequently, uppercase letters are 
used for both synonymously. For a given non-empty set X, we denote the set of 
fuzzy sets on X with F(X). As usual, a fuzzy set A G F(X) is called normalized if 
there exists a n x G l such that A(x) = 1. 

Triangular norms and conorms [28] are common standard models for fuzzy con
junctions and disjunctions, respectively. In this paper, we will mainly need these 
two concepts for intersections and unions of fuzzy sets. It is known that couples 
consisting of a nilpotent t-norm and its dual t-conorm [22, 28] are most appropri
ate choices as soon as fuzzy partitions are concerned [14, 30]. The most important 
representatives of such operations are the so-called Lukasiewicz operations: 

T\s(x, y) = max(x + y - 1,0) 

Sh(x>y) = min(a; + y, 1) 

The intersection and union of two arbitrary fuzzy sets A> B G T(X) with respect to 
the Lukasiewicz operations can then be defined as 

(AnL B)(x) =TL(A(x),B(x)) 

and 

{A\JIdB){x) = Sh{A{x),B(x))> 

respectively. We restrict to these two standard operations in the following - for 
the reason of simplicity and the fact that they perfectly fit to the concept of fuzzy 
partitions due to Ruspini [38]; recall that a family of fuzzy sets (Ai)iei C T(X) is 
called Ruspini partition if the following equality holds for all x 6 X: 

X>(*) = 1. 
iei 

Furthermore, recall that a fuzzy set A G F(X) is called convex if the property 

x <y <z =>My) > m i n { M x ) i M z ) ) 

holds for all x ,y ,z G X (given a crisp linear ordering < on the domain X) [4, 8, 31, 
42]. 

Lemma 1. [4] Let X be linearly ordered. Then an arbitrary fuzzy set A G F(X) 
is convex if and only if there exists a partition of X into two connected subsets X\ 
and X2 such that, for all x\ G X\ and all X2 G -K2, x\ < X2 holds and such that the 
membership function of A is non-decreasing over X\ and non-increasing over X2. 

As a trivial consequence of the previous lemma, a fuzzy set whose membership 
function is either non-decreasing or non-increasing is convex. 
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3. FORMAL DEFINITION 

Since it has more or less become standard and offers much freedom, in particular 
with respect to integration of linguistic modifiers and connectives, we closely follow 
Zadeh's original definition of linguistic variables [43, 44, 45]. 

Definition 2. A linguistic variable V is a quintuple of the form 

V = (N,G,T,X,S), 

where N,T, X, (7, and S are defined as follows: 

1. N is the name of the linguistic variable V; 

2. G is a grammar; 

3. T is the so-called term set, i. e. the set linguistic expressions resulting from G\ 

4. X is the universe of discourse; 

5. S is a T —> F(X) mapping which defines the semantics - a fuzzy set o n l -
of each linguistic expression in T. 

In this paper, let us assume that the grammar G is always given in Backus-Naur 
Form (BNF) [37]. 

In our point of view, the ability to interpret the meaning of a rule base quali
tatively relies deeply upon an intuitive understanding of the linguistic expressions. 
Of course, this requires knowledge about inherent relationships between these ex
pressions. Therefore, if qualitative estimations are desired, these relationships need 
to transfer to the underlying semantics, i.e. the fuzzy sets modeling the labels. In 
other words, interpret ability is strongly connected to the preservation of inherent 
relationships by the mapping S (according to Definition 2). 

The following definition gives an exact mathematical formulation of this property. 

Definition 3. Consider a linguistic variable V = (N,T,X,G,S) and an index set 
I. Let R = (Ri)iei be a family of relations on the set of verbal values T, where each 
relation Ri has a finite arity a;. Assume that, for every relation Ri, there exists a 
relation Qi on the fuzzy power set T(X) with the same arity.1 Correspondingly, we 
abbreviate the family (Qi)iei with Q. Then the linguistic variable V is called R-Q-
interpretable if and only if the following holds for all i e I and all x i , . . . , xai E T: 

Ri{xu...,xai) = > Qi(S(xi),...,S(xa.)). (1) 

lQi is associated with the "semantic counterpart" of I^, i.e. the relation that models Ri on the 
semantic level. 
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R e m a r k 4. The generalization of Definition 3 to fuzzy relations is straightforward. 
If we admit fuzziness of the relations Ri and Qi, the implication in (1) has to be 
replaced by the inequality 

RІ(XI,... , x a . ) < QІ(S(XI),... ,S(xа.)). 

4. A DETAILED STUDY BY MEANS OF PRACTICAL EXAMPLES 

In almost all fuzzy control applications, the domains of the system variables are 
divided into a certain number of fuzzy sets by means of the underlying ordering -
a fact which is typically reflected in expressions like "small", "medium", or "large". 
We will now discuss a simple example involving orderings to illustrate the concrete 
meaning of Definition 3. 

Let us consider the following linguistic variable: 

V = (uvV\G,T,X,S). 

The grammatical definition G is given as follows: 

_L := (atomic); 

(atomic) := (adjective) | (adverb) (adjective); 

(adjective) := "small" | "medium" | "large"; 

(adverb) := "at least" | "atmost". 

Obviously, the following nine-element term set can be derived from G: 

T = {"small", "medium", "large", 

"at least small", "at least medium", 

"at least large", "at most small", 

"at most medium", "at most large".} 

The universe of discourse is the real interval X = [0,100]. 
Taking the "background" or "context" of the variable into account, almost every 

human has an intuitive understanding of the qualitative meaning of each of the above 
linguistic expressions, even if absolutely nothing about the quantitative meaning, i. e. 
the corresponding fuzzy sets, is known. This understanding, to a major part, can be 
attributed to elementary relationships between the linguistic values. According to 
Definition 3, let us assume that these inherent relationships are modeled by a family 
of relations R = (Ri)iei-

In our opinion, the most obvious relationships in the example term set T are 
orderings and inclusions. Therefore, we consider the following two binary relations 
(for convenience, we switch to infix notations here): 

R = (±,Q- (2) 
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I atl. small 

small 

latm. small 

-Ң atl. medП 

H med. \ 

Hatm. med. 

atl, large 

large 

| atm. large | 

Fig. 1. Hasse diagram of ordering relation <. 

The first relation < stands for the ordering of the labels, while the second one 
corresponds to an inclusion relation, e. g. u C v means that v is a more general term 
than u. 

First of all, one would intuitively expect a proper ordering of the adjectives, i.e. 

"small" < "medium" ^ "large". (3) 

Moreover, the following conditions of monotonicity seem reasonable for all adjectives 
u,v (atomic expressions from the set {"small", "medium", "large"}): 

u Q "at least" u 

v C "at most" v 

u <v =-=> "at least" u < "at least" v 

u •< v ==> "at most" u < "at most" v 

u^v=> "at least" v C "at least" u 

u -< v => "at most" u C "at most" v. 

Figures 1 and 2 show Hasse diagrams which fully describe the two relations •< and 
C (note that both relations are supposed to be reflexive, a fact which, for the sake 
of simplicity, is not made explicit in the diagrams). 

Now we have to define meaningful counterparts of the relations in R on the 
semantic level, i. e. on T(X). We start with the usual inclusion of fuzzy sets according 
to Zadeh [42]. 

Definition 5. Consider two fuzzy sets of A, B G F(X). A is called a subset of B, 
short A C J3, if and only if, for all x G X, A(x) < B(x). Consequently, in this case, 
B is called a superset of A. 

For defining a meaningful counterpart of the ordering relation -<, we adopt a sim
ple variant of the general framework for ordering fuzzy sets proposed in [4, 5], which 
includes well-known orderings of fuzzy numbers based on the extension principle 
[27, 29]. 
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| atm. large 

I small 1 

Fig. 2. Hasse diagram of inclusion relation C. 

Definition 6. Suppose that a universe X is equipped with a crisp linear ordering 
<. Then a preordering < of fuzzy sets can be defined by 

A < B ^=> (ATL(B) C ATL(A) and ATM(,4) C ATM(B)), 

where the operators ATL and ATM are defined as follows: 

ATL(A)(x)=suv{A(y)\y<x} 

ATM(A)(x) = sup{A(y) | y > x}. 

Figure 3 shows an example what the operators ATL and ATM give for a non-
trivial fuzzy set. It is easy to see that ATL always yields the smallest superset 
with non-decreasing membership function, while ATM yields the smallest superset 
with non-increasing membership function. For more details about the particular 
properties of the ordering relation < and the two operators ATL and ATM, see 
[4, 5]. 

Summarizing, the set of counterpart relations Q looks as follows (with the rela
tions from Definitions 5 and 6): 

Q = (<,Q- (4) 

Now .R-Q-interpretability of linguistic variable V (with definitions of R and Q accord
ing to (2) and (4), respectively) specifically means that the following two implications 
hold for all u,veT: 

u <v 

utlv 

S(u)<S(v) 

S(u) Ç S(v). 
(5) 

(6) 

This means that the mapping S plays the crucial role in terms of interpretability. In 
this particular case, i?-£-interpretability is the property that an ordering or inclusion 
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ATL(A) 

ATM(Л) 

Fig. 3. A fuzzy set A £ !F(R) and the results 
which are obtained when applying the operators ATL and ATM. 

relationship between two linguistic terms is never violated by the two corresponding 
fuzzy sets. From (3) and (5), we can deduce the first basic necessary condition for 
the fulfillment of jR-Q-interpretability - that the fuzzy sets associated with the three 
adjectives must be in proper order: 

S("small") < S("medium") < S("large"). (7) 

It is easy to observe that this basic ordering requirement is violated by the example 
shown in Figure 4, while it is fulfilled by the fuzzy sets in Figure 5. 

In order to fully check i?-Q-interpretability of V, the semantics of linguistic ex
pressions containing an adverb ("at least" or "at most") have to be considered as 
well. The definition of linguistic variables does not explicitly contain any hint how 
to deal with the semantics of such expressions. From a pragmatic viewpoint, two 
different ways are possible: one simple variant is to define a separate fuzzy set for 
each expression, regardless whether they contain an adverb or not. As a second 
traditional variant, we could use fuzzy modifiers - F(X) -> F(X) functions - for 
modeling the semantics of adverbs. In this example, it is straightforward to use the 
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S( "medium^' )5( "small" )S( "large';) 

Fig. 4. A non-interpretable setting. 

S("small")S{"medium") 5("large") 

Fig. 5. An example of an interpretable setting. 

fuzzy modifiers introduced in Definition 6 (see [4, 3, 15] for a detailed justification): 

5("atleast"A) = ATL(5(A)) 

5("at most"A) = ATM(5(A)). 

Since it is by far simpler and easier to handle with respect to interpretability, we 
strongly suggest the second variant. 

In case that we use the above fuzzy modifiers for modeling the two adverbs "at 
least" and "at most", we are now able to formulate a necessary condition for the 
fulfillment of .R-Q-interpretability in our example. 

Theorem 7. Consider the linguistic variable V and the two relation families R 
and Q as defined above. Provided that the mapping S always yields a normalized 
fuzzy set, the following two statements are equivalent: 

(i) V is .R-Q-interpretable 

(ii) S("small") < ^("medium") < 5("large"). 

P roo f , 

(i) => (ii): Trivial (see above). 
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(ii) -=-> (i): The following basic properties hold for all normalized fuzzy sets A, B G 
HX) [4, 8]: 

A C ATL(A) (8) 

A C ATM (A) (9) 

ATL(ATL(A)) = ATL(A) (10) 

ATM(ATM(A)) =ATM(A ) (11) 

ATL(ATM(,4)) = ATM(ATL(A)) = X (12) 

ACB => ATL(A) C ATL(B) (13) 

ACB => ATM(A) C ATM(B). (14) 

Since the relations C and < are reflexive and transitive [4, 5], it is sufficient 
to prove the relations indicated by arrows in the two Hasse diagrams (see 
Figures 1 and 2). 

Let us start with the ordering relation. The validity of the relations in the 
middle row is exactly assumption (ii). The relations in the two other rows 
follow directly from the following two relationships which can be proved easily 
using (10), (11), and (12): 

A<B = > ATL(A) < ATL(B) 

A<B -==> ATM(A) < ATM(B). 

The three vertical relationships in Figure 1 follow directly from 

ATM(A) < A < ATL(A) 

which can be shown using (8), (9), (13), and (14). 

The relations in the Hasse diagram in Figure 2 follow from (8), (9), and the 
definition of the preordering < (cf. Definition 6). • 

Obviously, interpretability of V in this example (with respect to the families R and 
Q) does not fully correspond to an intuitive human understanding of interpretability. 
For instance, all three expressions "small", "medium", and "large" could be mapped 
to the same fuzzy set without violating i?-Q-interpretability. The intention was to 
give an example which is just expressive enough to illustrate the concrete meaning 
and practical relevance of Definition 3. 

In order to formulate an example in which _R-Q-interpretability is much closer to a 
human-like understanding of interpretability (e.g. including separation constraints), 
we have to consider an extended linguistic variable 

y / = ("v2",G / ,T / ,X / , .S /). 

The extended grammar G1 is given as follows: 
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± 
(exp) 

(atomic) 

(adjective) 

(adverb) 

(binary) 

(bounds) 

(exp) | (bounds); 

(atomic) | (atomic) (binary) (atomic); 

(adjective) | (adverb) (adjective); 

"small" | "medium" | "large"; 

"at least" | "at most"; 

"and" | "or"; 

"empty" | "anything". 

It is easy to see that the corresponding term set V has the following elements: the 
grammar admits nine atomic expressions (three adjectives plus two adverbs times 
three adjectives; note that this subset coincides with T from the previous example). 
Hence, there are 9 + 2 • 92 = 171 expressions of type (exp). Finally adding the two 
expressions of type (bounds), the term set T' has a total number of 173 elements. 

As in the previous example, we would like to use an inclusion and an ordering 
relation. Since the two relations < and C are defined for arbitrary fuzzy sets, 
we can keep the relation family Q as it is. If we took R as defined above, R-
Q-interpretability would be satisfied under the same conditions as in Theorem 7. 
This example, however, is intended to demonstrate that partition and convexity 
constraints can be formulated level of linguistic expressions, too. Therefore, we 
extend the inclusion relation E as follows. Let us consider a binary relation E on 
T'. First of all, we require that E coincides with E on the set of atomic expressions 
(u,veT): 

(uQv) = > ( u E v ) . (15) 

Of course, we assume that the two binary connectives are non-decreasing with respect 
to inclusion, commutative, and that the "and" connective yields subsets and the "or" 
connective yields supersets (for all u,v,w eT): 

(v£w)=> (u "and" i;) E (u "and" w) (16) 

(v E w) ==> (u "or" v) E (u "or" w) (17) 

(u "and" v) E (v "and" u) (18) 

(u "or" v) E (v "or" u) (19) 

(u "and" v) E u (20) 

u E (u "or" v). (21) 

Next, let us suppose that "anything" is the most general and that "empty" is the 
least general expression, i.e., for all u G T', 

u E "anything" and "empty" E u. (22) 

Now we can impose reasonable disjointness constraints like 

"small and at least medium" E "empty" (23) 

"at most medium and large" E "empty" (24) 
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and coverage properties: 

"small or medium" E "at most medium" (25) 

"at most medium" E "small or medium" (26) 

"anything" E "at most medium or large" (27) 

"medium or large" E "at least medium" (28) 

"at least medium" E "medium or large" (29) 

"small or at least medium" E "anything". (30) 

Finally, let us assume that "small" and "large" are the two boundaries with respect 
to the ordering of the labels: 

"at most small" E "small" (31) 

"anything" E "at least small" (32) 

"at least large" E "large" (33) 

"anything" E "at most large". (34) 

If we denote the reflexive and transitive closure of E with E', we can finally write 
down the desired family of relations: 

R' = (<,Q'). (35) 

In order to study the .ft'-Q-interpretability of V, we need to define the semantics 
of those expressions that have not been contained in T. Of course, for the expressions 
in T, we use the same semantics as in the previous example, i.e., for all u G T, 
S'(u) = S(u). Further, let us make the convention that the two expressions of type 
(bounds) are always mapped to the empty set and the whole universe, respectively: 

S' ("empty") = 0 S'( "anything") = X. 

The "and" and the "or" connective are supposed to b& "implemented" by the inter
section and union with respect to the Lukasiewicz t-norm and its dual t-conorm (for 
all u,v eT): 

S'(u "and" v) = S'(u)nLS'(v) 

S'(u "or" v) = S'(u)ULS'(v). 

Now we are able to fully characterize ii'-Q-interpretability for the given example 
(the linguistic variable V). 

Theorem 8. Provided that S' yields a normalized fuzzy set for each adjective, V 
is .R'-Q-interpretable if and only if the following three properties hold together: 

1. 5'("smaH") < ^("medium") < 5'("large"); 

2. 5'("small"), ^("medium"), and 5'("large") are convex; 

3. ^("small"), ^("medium"), and 5'("large") form a Ruspini partition. 
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P r o o f . First of all, let us assume that V is I?'-Q-interpretable. The first prop
erty follows trivially as in the proof of Theorem 7. Now, taking (23) into account, 
we obtain from -R'-Q-interpretability that 

0 > -TL(5'("small")(x),5'("at least medium")(x)) 

= TL(5 ,("small")(a;),ATL(5'("medium"))(x)) 

> TL (Sf ("small") (x), 5 ' ("medium") (x)), 

i. e. that the TL-intersection of 5'("small") and 5'("medium") is empty. Analogously, 
we are able to show that the TL-intersection of 5'("medium") and S'("large") is 
empty, too. Since 5'("medium") < 5'("large") implies that 

ATL(5'("large")) C ATL(5'("medium")), 

it follows that, by the same argument as above, that the TL-intersection of 5'("small") 
and 5'("large") is empty as well. Now consider (25) and (26). ii'-Q-interpretability 
then implies the following (for all x 6 X): 

5L(5'("smaH")(x),5'("medium")(x)) = 5'("at most medium")(x) 

= ATL (5' ("medium" ))(x). 

Taking (27) into account as well, we finally obtain 

1 < 5L (5 ' ("a t most medium")(x), 5'("large")(x)) 

= 5 L (5 ' ("small") (x), 5 ' ("medium") (x), 5 ' ("large") (x)) 

which proves that the 5L-union of all fuzzy sets associated to the three adjectives 
yields the whole universe X. Since all three fuzzy sets are normalized and properly 
ordered, not more than two can have a membership degree greater than zero at a 
given point x e X. This implies that the three fuzzy sets form a Ruspini partition 
[30]. 

Prom (31) and (33) and .R'-Q-interpretability, we can infer that 

ATM(5'("smaH")) = 5'("small"), 

ATL(5'("large")) = 5'("large"), 

hence, 5'("small") has a non-increasing membership function and 5'("large") has a 
non-decreasing membership function. Both fuzzy sets, therefore, are convex. Since 
the three fuzzy sets 5'("small"), 5'("medium"), and 5'("large") form a Ruspini 
partition, while only two can overlap to a positive degree, we have that 5 ' ("medium") 
is non-decreasing to the left of any value x for which 5 ' ("medium" )(x) = 1 and non-
increasing to the right. Therefore, by Lemma 1, 5'("medium") is convex, too. 

Now let us prove the reverse direction, i. e. we assume all three properties and 
show that .ft'-Q-interpretability must hold. By (15) and the first property from The
orem 8, we can rely on the fact that all correspondences remain preserved for cases 
that are already covered by Theorem 7. Therefore, it is sufficient to show that 5 ' 
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preserves all relationships (16)-(34). Clearly, the preservation of (16)-(21) follows 
directly from elementary properties of t-norms and t-conorms [28]. The inclusions 
(22) are trivially maintained, since Sf is supposed to map "empty" to the empty 
set and "anything" to the universe X. The preservation of the two disjointness 
conditions (23) and (24) follows from the fact that S'("small"), S'( "medium"), and 
S"("large") form a Ruspini partition and that the first property holds. The same is 
true for the six coverage properties (25)-(30). Since all three fuzzy sets are convex 
and form a Ruspini partition, S'("small") must have a non-increasing membership 
function and S'("large") must have a non-decreasing membership function. There
fore, the following needs to hold: 

ATM(S'("small")) = 5'("small") 

ATL(S'("large")) = S'("large"). 

This is a sufficient condition for the preservation of inclusions (31) and (33). Then 
the preservation of (32) and (34) follows from the fact, that ATL(ATM(A)) = X 
for any normalized fuzzy set A (cf. (12)). Since _ ' and C are both supposed to 
be transitive (E' being the transitive closure of the intermediate relation E ), the 
preservation of all other relationships follows instantly. • 

At first glance, this example might seem unnecessarily complicated, since the fi
nal result is nothing else than exactly those common sense assumptions - proper 
ordering, convexity, partition constraints - that have been identified as crucial for 
interpretability before in several recent publications (see [10] for an overview). How
ever, we must take into account that they are not just heuristic assumptions here, 
but necessary conditions that are enforced by intuitive requirements on the level 
of linguistic expressions. From this point of view, this example provides a sound 
justification for exactly those three crucial assumptions. 

Now the question arises how the three properties can be satisfied in practice. In 
particular, it is desirable to have a constructive characterization of the constraints 
implied by requiring .R'-Q-interpretability. The following theorem provides a unique 
characterization of i?'-Q-interpretability under the assumption that we are consid
ering real numbers and fuzzy sets with continuous membership functions - both 
are no serious restrictions from the practical point of view. Fortunately, we obtain a 
parameterized representation of all mappings 5 ' that maintain _R'-Q-interpretability. 

Theorem 9. Assume that X is a connected subset of the real line and that 5 ' , for 
each adjective, yields a normalized fuzzy set with continuous membership function. 
Then the three properties from Theorem 8 are fulfilled if and only if there exist four 
values a,b,c,d £ X satisfying a < b < c < d and two continuous non-decreasing 
[0,1] - • [0,1] functions fuf2 fulfilling / l v 0) = /2(0) = 0 and / i ( l ) = /2(1) = 1 such 
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that the semantics of the three adjectives are defined as follows: 

5'("small")(x) = 

5 ' ("medium" )(x) = í 

7i(i=ř) 

0 
Лfâ) 
1 

i-MЗEf) 
0 

if x < а 
if а < x < b 
iîx>b 

if x < а 
if а < x < b 
if b < x < c 
if c < x < d 
if x > d 

(36) 

(37) 

(38) 

5'("large")(x) 
Іf X < c 
if c < x < d 
if x > d. 

(39) 

P r o o f . It is a straightforward, yet tedious, task to show that the fuzzy sets 
defined as above fulfill the three properties from Theorem 8. Under the assumption 
that these three properties are satisfied, we make the following definitions: 

o = sup{x | 5'("small")(x) = 1} 

b = inf{x | 5'("medium")(x) = 1} 

c = sup{x | 5'("medium" )(x) = 1} 

d = inf{x | 5'("large')(x) = 1}. 

The two functions /i,/2 can be defined as follows: 

/i(x) = 5'( "medium" )(o + x • (6 - a)) 

fi(x) = 5'("large")(c + x-(d- c)). 

Since all membership functions associated with adjectives are continuous, the func
tions /i and Lj are continuous. Taking the continuity and the fact that the three 
fuzzy sets associated to the adjectives form a Ruspini partition into account, it is 
clear that the following holds: 

5'("small")(o) = 1 

5'("small")(6) = 5'("small")(c) = 5'("small")(d) = 0 

5'("medium")(6) = 5 ' ("medium" )(c) = 1 

5'("medium")(o) = 5'("medium" )(d) = 0 

5'("large")(d) = 1 

5'("large")(o) = 5 ' ("large") (b) = 5'("large")(c) = 0. 
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These equalities particularly imply that /i(0) = /2(0) == 0 and / i ( l ) = /2(1) = 1 
holds. As a consequence of convexity and Lemma 1, we know that the membership 
function of Sf("medium") to the left of b is non-decreasing. Analogously, we can 
infer that the same is true for S"("large") to the left of d. Therefore, / i and f2 are 
non-decreasing. To show that the three representations (36) - (39) hold is a routine 
matter. • 

5. APPLICATIONS 

5.1. Design aid 

As long as the top-down construction of small fuzzy systems (e. g. two-input single-
output fuzzy controllers) is concerned, interpretability is usually not such an impor
tant issue, since the system is simple enough that a conscious user will refrain from 
making settings which contradict his/her intuition. 

In the design of complex fuzzy systems with a large number of variables and rules, 
however, interpretability is a most crucial point. Integrating tools which guide the 
user through the design of a large fuzzy system by preventing him/her from making 
non-interpretable settings accidentally are extremely helpful. As a matter of fact, 
debugging of large fuzzy systems becomes a tedious task if it is not guaranteed 
that the intuitive meanings of the labels used in the rule base are reflected in their 
corresponding semantics. 

To be more precise, our goal is not to bother the user with additional theoret
ical aspects. Instead, the idea is to integrate these aspects into software tools for 
fuzzy systems design, but not necessarily transparent for the user, with the aim 
that he/she can build interpretable fuzzy systems in an even easier way than with 
today's software tools. Theorem 9 gives a clue how this could be accomplished. 
This result, for one particular example, clearly identifies how much freedom one has 
in choosing interpretable settings. The example is not quite representative, since 
three linguistic expressions are a quite restrictive assumption. However, the exten
sion to an arbitrary finite number of such expressions is straightforward, no matter 
whether we consider such a typical "small"-"medium"-"large" example or a kind of 
symmetric setting (e. g. "neg. large", "neg. medium", "neg. small", "approx. zero", 
"pos. small", "pos. medium", "pos. large") as it is common in many fuzzy control 
applications. In all these cases, the requirements for interpretability are similar and, 
by Theorem 9, the resulting set of degrees of freedom is an increasing chain of values 
that mark the beginning/ending of the kernels of the fuzzy sets and a set of contin
uous non-decreasing functions that control the shape of the transitions between two 
neighboring fuzzy sets. While linear transitions are common and easy to handle, 
smooth transitions by means of polynomial functions with higher degree may be 
beneficial in some applications as well. 

As simple examples, the following three polynomial [0,1] -» [0,1] functicns of 
degrees 1, 3, and 5 perfectly serve as transition functions in the sense of Theorem 9. 
They produce membership functions that are continuous (pi), differentiable Q93), 
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Fig. 6. Three interpretable fuzzy partitions 
with polynomial transitions of degree 1 (top), 3 (middle), and 5 (bottom) 

and twice differentiable (ps), respectively: 

pi(x) =x 

p3(x) = - 2 x 3 + 3z2 

p3(x) = 6 x 5 - 1 5 x 4 + 10x3. 

Figure 6 shows examples of interpretable fuzzy partitions with three fuzzy sets using 
the transition functions pi , p3 , and p$. 

5.2. Data—driven learning and tuning 

Automatic design and tuning of fuzzy systems has become a central issue in machine 
learning, data analysis, and the identification of functional dependencies in the anal
ysis of complex systems. In the last years, a vast number of scientific publications 
dealt with this problem. Most of them, however, disregarded the importance of 
interpretability - leading to results which are actually black-box functions that do 
not provide any meaningful linguistic information (typical pictures like in Figure 4 
can be found in an enormous number of papers). 

One may argue that proper input-output behavior is the central goal of automatic 
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tuning. To some extent, this is true; however, as stated already in Section 1, this is 
not the primary mission of fuzzy systems. 

Again, Theorem 9 gives a clear indication how the space of possible solutions 
among interpretable settings may be parameterized - by an ascending chain of tran
sition points (given a set of transition functions). Note that this kind of parametriza-
tion even leads to a reduction of the search space. Parameterizing three trapezoid 
fuzzy sets independently requires a total number of twelve parameters and most 
probably leads to difficulty interpretable results. Requiring interpretability (as de
scribed in the previous section) leads to a set of only four parameters. It is true 
that such a setting is much more restrictive. However, in our opinion, it is not nec
essarily the case that requiring interpretability automatically leads to a painful loss 
of accuracy. The requirement of interpretability implies more constraints that have 
to be taken into account and, therefore, is more difficult to handle for many tuning 
algorithms, no matter whether we consider genetic algorithms, fuzzy-neuro methods, 
or numerical optimization. As a recent investigation has shown, it is indeed possible 
to require interpretability while, at the same time, maintaining high accuracy and 
robustness [26]. Many other studies have also come up with tuning algorithms that 
produce interpretable and accurate results [2, 9, 16, 17, 21, 34, 40]. 

5.3. Rule base simplification 

The examples in Section 4 used an inclusion relation C and its counterpart on the 
semantic side - the inclusion relation C. Both relations are preorderings which 
particularly implies that their symmetric kernels are equivalence relations. As easy 
to see, the relation C is even an ordering on F(X), which implies that the symmetric 
kernel is the crisp equality relation, i . e . i C B and B C A hold together if and only 
if the two membership functions coincide exactly. 

Now let us assume that we are given a linguistic variable V and two relation 
families R and Q, where R contains an inclusion relation C and Q contains its 
counterpart C. If we have two linguistic labels u and v for which u C. v and v C v 
hold, i?-<2-interpretability guarantees that the inclusions S(u) C S(v) and S(v) C 
S(u) hold, i.e. u C. v and v C v are sufficient conditions that the membership 
functions of S(u) and S(v) are equal. This means that the equivalence relation 
defined as (for two u,v £ T) 

(u = v) <=> (u\Zv and v Q u) 

may be considered as a set of simplification rules, while i?-Q-interpretability corre
sponds to the validity of these rules on the semantic side. 

Let us recall the second example (linguistic variable V defined as in Section 4). 
The two inequalities (25) and (26) together imply 

"small or medium" = "at most medium". 

This could be read as a replacement rule 

"small or medium" —•> "at most medium", 
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with the meaning that, in any linguistic expression, "small or medium" can be 
replaced by "at most medium". If we assume interpretability, we can be sure that 
this replacement is also semantically correct. If we incorporate as many reasonable 
relationships in the relation C as possible such that interpretability can still be 
fulfilled, we are able to provide a powerful set of simplification rules. 

Of course, very simple grammars do not necessitate any simplification. However, 
if we have to consider very complex rule bases like they appear in grammar-based 
rule base optimization methods (e.g. inductive learning [32, 33, 35, 36] or fuzzy 
genetic programming [23, 24]), simplification is a highly important concern. The 
methodology presented here allows to deal with simplification in a symbolic fashion 
- assuming interpretability - without the need to consider the concrete semantics of 
the expressions anymore. 

6. CONCLUSION 

This paper has been devoted to the interpretability of linguistic variables. In order 
to approach this key property in a systematic and mathematically exact way, we 
have proposed to make implicit relationships between the linguistic labels explicit 
by formulating them as (fuzzy) relations. Then interpretability corresponds to the 
preservation of this relationships by the associated meaning. This idea has been il
lustrated by means of two extensive examples. These case studies have demonstrated 
that well-known common sense assumptions about the membership functions, such 
as, ordering, convexity, or partition constraints, have a sound justification also from 
a formal linguistic point of view. In contrast to other investigations, the model 
proposed in this paper cannot just be applied to simple fuzzy sets, but also allows 
smooth integration of connectives and ordering-based modifiers. 

By characterizing parameterizations which ensure interpretability, we have been 
able to provide hints for the design and tuning of fuzzy systems with interpretable 
linguistic variables. Finally, we have seen that interpretability even corresponds to 
the fact that symbolic simplification rules on the side of linguistic expressions still 
remain valid on the semantic side. 

Looking back on the questions posed in Section 1, this paper has been concerned 
with the fourth one. However, the ideas presented in this paper also have strong 
influence on the way the Questions 1-3 can be handled. Partitions constraints, as 
we derived them, enforce semantic properties of the expressions used in the rule 
antecedents that ease to investigate/guarantee completeness and/or consistency (cf. 
Question 3). As we use linguistic variables in their most general form, high-level 
language elements, such as linguistic modifiers or more advanced connectives, can 
smoothly be integrated, which directly lead to more compact rule sets (cf. Ques
tion 2). The ideas stated in Subsection 5.3. strongly support this viewpoint, too. The 
first question is a slightly different matter which should rather be approached from 
the side of approximate reasoning [18, 19, 20] and relational equations [13, 25, 30]. 
However, even following these lines, partition constraints play a crucial role. There
fore, we dare to conclude that interpretability of linguistic variables is a most basic 
requirement for any study of aspects of interpretability of fuzzy systems. 
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