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Considering a controllable, square, linear multivariable system, which is decouplable 
by static state feedback, we completely characterize in this paper the structure of the 
decoupled closed-loop system. The family of all attainable transfer function matrices for 
the decoupled closed-loop system is characterized, which also completely establishes all 
possible combinations of attainable finite pole and zero structures. The set of assignable 
poles as well as the set of fixed decoupling poles are determined, and decoupling is achieved 
avoiding unnecessary cancellations of invariant zeros. For a particular attainable decoupled 
closed-loop structure, it is shown how to find the corresponding state feedback, and it is 
proved that this feedback is unique if and only if the system is controllable. 
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1. INTRODUCTION 

Roughly speaking, decoupling of dynamic systems implies that each input of the 
system influences one and only one output. From the practical point of view it is of 
interest to achieve decoupling because it is often desirable to control the outputs of 
the system independently. 

In this work we are interested in the row-by-row decoupling of linear multivariable 
systems with the same number of inputs and outputs (square systems) by static state 
feedback. The solution to this famous problem was first established in [2], based on 
the nonsingularity of a matrix constructed from the system matrices. The structural 
conditions of solvability in terms of the infinite structure of the system can be found 
in [1]. The decoupling problem with stability of square systems has been solved in 
[10] using a geometric approach, and in [12] using an algebraic approach. 

Even though there exist many results concerning this problem, most of the con
tributions in the literature about decoupling focus mainly on the necessary and 
sufficient conditions to solve the problem, but they usually do not consider nei
ther the issue of what the structure of the decoupled closed-loop system may be 
(aside from the diagonality of the closed-loop transfer function matrix) nor the 
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characteristics of the decoupling state feedback. Actually, in order to simplify the 
problem, a common consideration is that the diagonal entries of the closed-loop 
transfer function matrix are supposed to be of the form 1/V, where j is a positive 
integer, which is also referred to as integrator decoupling. Of course, no pole loca
tions to obtain adequate system dynamics are considered within this approach, not 
to speak of the problems (for instance, internal stability) which may be caused by 
possible pole-zero cancellations. Achieving first decoupling, for example in integra
tor decoupling form, and after that trying to assign the poles of the system can be a 
difficult problem, since the state feedback designed to solve the pole-assignment will 
usually destroy the diagonality of the closed-loop transfer function matrix. Then, 
the more reasonable approach seems to be to achieve both objectives using the same 
state feedback. Considering pole-zero cancellations, it is well known that in order to 
decouple a linear system, it may be necessary to cancel some invariant zeros of the 
system with closed-loop poles, but that not necessarily all invariant system zeros 
have to be cancelled. Then, a complete characterization of the decoupled closed-
loop system should provide the whole set of finite pole-zero structures which can be 
obtained for the closed-loop system, avoiding unnecessary cancellations of invariant 
zeros. 

A first attempt to study the structure of the decoupled closed-loop system was 
presented in [2], where the authors characterized the class of all feedback matri
ces which decouple a system, and the number of closed-loop poles which can be 
assigned. Their conditions, however, are cumbersome and difficult to apply, there 
is no connection whatsoever of these conditions to the structure of the system, and 
they show how to assign only a number of poles equal to the sum of the system in
finite zero orders, which is in general less than the true number of assignable poles. 
The problem of block decoupling and pole assignment was tackled in [14] using a 
geometric approach, and the authors presented necessary and sufficient conditions 
to solve this problem in two special cases, based on the concept of controllability 
subspaces and their properties. Fixed decoupling poles for minimal systems were 
proved in [6] to be equal to the interconnection transmission zeros, as defined in this 
reference. 

In this paper we completely describe the closed-loop structure of a decouplable 
system, which is considered to be controllable but not necessarily observable (i. e. 
we are not restricted to minimal systems), thus providing the whole set of decoupled 
closed-loop systems which can be obtained by static state feedback. A charac
terization of the set of all attainable transfer function matrices for the decoupled 
closed-loop system is presented, which also establishes all possible combinations of 
finite closed-loop pole and zero structures. The set of assignable poles as well as the 
set of fixed decoupling poles are determined, and decoupling is achieved avoiding 
unnecessary cancellations of invariant zeros. It is also shown that the corresponding 
state feedback for a particular attainable closed-loop structure is unique if and only 
if the system is controllable, and a simple procedure is provided to obtain this state 
feedback. 

Observe that, strictly speaking, the problem solved in this paper can not be 
considered as a generalization of the problem of decoupling with stability (properly 
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defined in Section 2), since we are concerned with the characterization of all possible 
combinations of finite pole and zero structures for the decoupled closed-loop system, 
and not only with internal stable modes. However, the conditions for decoupling with 
stability can be easily derived from the results presented here (see Lemma 2). Besides 
stability, the characterization of the whole set of decoupled closed-loop systems can 
be further used to determine decoupling with appropriate response shaping. 

The approach used in this paper is a polynomial-based structural approach. The 
conditions presented in our results are simple, they have a nice interpretation in 
terms of system structure, and allow for simple design computations. 

After introducing some preliminaries in Section 2, the structure of the decoupled 
closed-loop system is described in Section 3, and the decoupling state feedback is 
presented in Section 4, An illustrative example is presented in Section 5, and we 
end up with some conclusions. 

2. PRELIMINARIES 

2.1. Problem statement and known solutions to decoupling 

We consider in this work linear multivariable systems with the same number of 
inputs and ouputs, described by 

(A,B,C) 
x(t) = Ax(t) + Bu(t) 

y(t) = Cx(t) 

where x G lRn, u G Km and y G Rm are, respectively, the state, input and output 
vectors of the system, and 

T(s) = C(sI-A)~lB 
is the transfer function matrix of the system. Further, the system (A,B,C) is 
supposed to be controllable, but not necessarily observable. Another assumption, 
necessary for decoupling, is that the system is invertible, which implies that the 
system transfer function matrix T(s) is nonsingular. 

The system (A, B, C) is said to be row-by-row decouplable by static state feedback 
(or simply, decouplable) if there exists a state feedback 

(F,G) : u(t) = Fx(t) + Gv(t), 

where F G Rmxn and G G R m x m are constant matrices with G nonsingular, and 
v(t) is a new input vector, such that the input Vi(t) controls the output yi(t), 
i = 1 , . . . ,ra, without affecting the other outputs. 

From the input-output point of view, the previous formulation is equivalent to 
the existence of a state feedback (F,G) such that the transfer function 7> ,G(S) of 
the closed-loop system (A + BF, BG, C) is a nonsingular diagonal matrix, i. e. there 
exists a state feedback (F, G) such that 

TFtG(s) = C(sl - A - BF)~lBG = diag {wx(s),... , wm(s)} =: W(s) (1) 

where Wi(s) ^ 0, i = 1 , . . . ,ra, are strictly proper rational functions. 
The solution to the decoupling problem in terms of the infinite structure of the 

system is given by the following result [1]. 
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Proposi t ion 1. The system (A, B, C) is decouplable if and only if 

m m 

E n * = En< (2) 
i=l i=l 

where {n[,... , n'm} are the infinite zero orders, and {n i , . . . , nm} are the row infinite 
zero orders of the system. 

For the definition and properties of infinite zero orders, see for instance [13]. 
As it can be seen from Proposition 1, the necessary and sufficient conditions for 
decoupling depend only on the infinite (global and row) structure of the system. The 
finite structure (finite zeros and poles), on the other hand, plays an important role 
concerning the general structure of the decoupled closed-loop system. The system 
zeros which are fundamental to our study are the invariant zeros of the system. 
Transmission zeros will be also mentioned. Even though invariant system zeros 
are briefly introduced in the next section, presenting the definitions and properties 
of system zeros is out of the scope of this work. For a comprehensive treatment, 
see for instance [9]. Let uŝ  just mention that transmission zeros are related to 
the system transfer function matrix, and they can be considered as "input-output 
zeros", while invariant zeros can be considered as "internal zeros". Invariant zeros 
contain the transmission zeros and both sets coincide if the system is controllable 
and observable. 

If the stability issue is considered in the problem formulation, then the system 
(.A, B, C) is said to be decouplable with stability if it is decouplable and the closed-
loop system (A -F BF, BG, C) is internally stable, i. e. the eigenvalues of the matrix 
(A + BF) are located in the open left half complex plane. 

The solution to the decoupling problem with stability in terms of the infinite and 
unstable structure of the system is given by the following result ([10, 12]). 

Proposi t ion 2. The system (A, B,C) is decouplable with stability if and only if 
(1) holds, and the number of global invariant and row invariant unstable zeros1 of 
the system (multiplicities included) is the same. 

2.2. Decoupling and cancellation of sys tem zeros 

It is well known that in the process of decoupling a linear system, some of the 
transmission zeros of the system may be cancelled by assigning closed-loop poles to 
the position of these zeros. It is important, however, to make the distinction between 
transmission zeros that have to be cancelled in order to achieve decoupling, and 
transmission zeros which are not necessary to cancel (see Example 1). Concerning 
controllable and non-observable, or non-minimal systems, instead of transmission 
zeros it is necessary to consider the invariant zeros of the system, which may appear 
as transmission zeros of the decoupled closed-loop system. 

In practical designs, cancellation of invariant zeros is usually avoided because of 
potential internal instability caused by hidden system dynamics and undesirable pole 

invariant unstable zeros are invariant zeros located in the closed right half complex plane. 
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locations, which is dramatically important in the case of unstable invariant zeros. 
Thus, if the main objective is to decouple the system, it is important at least to know 
the number of poles which can be freely assigned, and the number of poles which have 
to be cancelled with invariant zeros in order to achieve decoupling, i. e. the so-called 
fixed decoupling poles.2 This information would provide a complete characterization 
of the closed-loop structure and complete pole assignment of a decouplable system. 

2.3. Feedback realizability of precompensators 

The approach used in the next section to characterize the set of all transfer function 
matrices for the decoupled closed-loop system is related to the problem of feedback 
realizability of dynamic precompensators, which is introduced next. First, let us 
define a biproper matrix: a nonsingular proper rational matrix is said to be biproper 
if its inverse is also proper. We have [13] that a proper rational matrix, say V(s), is 
biproper if and only if 

lim V(s) 
s—>oo 

is a constant and nonsingular matrix. 
Let us consider a state feedback (F,G) acting on the system (A, S ,C) , and the 

corresponding closed-loop transfer function matrix 

-TF.GM = C(sl - A - BF)~lBG. 

After some manipulations on the last equation, we obtain 

TF,G(S) = C(sl - A)~lB[I - F(sl - A)-lB]~lG (3) 

where T(s) = C(sl — A)~XB is the transfer function of the system (A, J3,C), and 
the matrix 

[I-F(sI-A)-1B]~lG 

appearing on the right side of (3) is easily seen to be a biproper matrix. Then the 
effect of a state feedback acting on (A,B,C) can be represented in transfer function 
terms as a biproper matrix postmultiplying the system transfer function T(s). 

The converse problem, i. e. under which conditions a proper matrix postmulti
plying T(s) can be realized using state feedback, is known as feedback realizability 
of precompensators. Then, a given proper compensator, say Q(s), will be said to be 
feedback realizable if there exists a state feedback (F, G) such that 

Q(s) = [I- F(sl - A)~lB}-lG. (4) 

The following result [3] states the conditions for a proper compensator to be 
realizable. 

2Strictly speaking, cancelled frequency values are not system poles, since they do not appear 
in the system transfer function matrix . Then, it should be more appropriate to speak of fixed 
decoupling modes instead of fixed decoupling poles, where poles are a subset of the system modes, 
and both sets are equal if the system is controllable and observable. For simplicity, we make no 
distinction in this paper between modes and poles. 
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Proposition 3. Let the matrices N(s) and D(s) be a right coprime matrix frac
tion description (MFD) of the system (A,B,In), and let Q(s) be a nonsingular 
compensator. Then Q(s) is state feedback realizable on (A,B,In) if and only if 

— Q(s) is biproper, and 

— Q~x(s)D(s) is a polynomial matrix. 

3. STRUCTURE OF THE DECOUPLED CLOSED-LOOP SYSTEM 

The conditions for decoupling a linear multivariable system (A, B, C) are intimately 
connected to the structure of the so-called system matrix [11] 

P(s) = 
sI-A B 

C 0 

related to the structure of the matrices 

si -A B 
Ci 0 -ЗД. , i = 1,... ,m, 

(5) 

(6) 

where Ci, i = 1,... , m, is the zth row of matrix C. 
Indeed, the system (A, B,C) is decouplable if and only if the infinite structure of 

P(s) coincides with the infinite structure of the matrices Pi(s), i. e. if and only if (2) 
holds, where {n[,... , nm} are the infinite zero orders of P(s) (infinite zero orders of 
the system), and {n\,... ,nm} are the infinite zero orders of P\(s),... ,Pm(s) (row 
infinite zero orders of the system), see Proposition 1. 

If the system is decouplable, then it is decouplable with stability if and only 
if the number of unstable zeros of P(s) (unstable invariant zeros of the system), 
multiplicities included, is equal to the number of unstable zeros of P\(s),... , Pm(s) 
(row unstable invariant zeros of the system), taken all together, see Proposition 2. 

The invariant zeros of the system are the finite zeros of matrix P(s), i.e. the 
roots of the invariant polynomials of P(s) [9], while the row invariant zeros are the 
finite zeros of matrices P\(s),... , Pm(s). 

The general structure of the decoupled closed-loop system depends also on the 
structure of matrices (5) and (6), as it will be shown. First, let us introduce the 
following preliminary result. 

L e m m a 1. Let (A,B,C) be a square controllable system, and let c% be the zth 
row of matrix C, i = 1,. . . , m. Then, the matrix 

sI-A B 
CІ 0 Pi(s) = 

can have at most one non-unit invariant polynomial. 

P r o o f . The invariant polynomials of Pi(s) can be obtained as 

AІ(S) = 
Aj(д) j = 1,... ,n + l, 
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where 

AoOO := 0, 

Aj(s) := monic greatest common divisor (gcd) of all j x j minors of Pi (s), 
j = 1,... ,n + 1, 

are the determinantal divisors of Pi(s) (see for instance [5]). Since the system is 
controllable, at least the first n determinantal divisors of Pi(s) are all units. This 
can be seen from the fact that the Smith form of [ si - A D ] is [ In 0 ] . Then, 
the only possible non-unit invariant polynomial of Pt(s) is the last one, which is equal 
to A n + 1 ( s ) . • 

Let us denote by Zi(s) the last invariant polynomial of Pi(s), i = 1,.. . ,ra. It 
can be seen that any finite zero of Pi(s) is also a zero of the matrix P(s) given by 
(5), but that a zero of P(s) is not necessarily a zero of Pi(s). In other words, any 
row invariant zero is an invariant zero of the system, but an invariant zero is not 
necessarily a row invariant zero. Then the product of the polynomials YllLi zi(s) 
divides exactly niL™ ei(s)> where Ci(s) are the invariant polynomials of P(s). 

The invariant zeros of the system (global or row invariant zeros) can also be 
obtained from a matrix fraction description (MFD) of the system as follows. Let 
N(s) and D(s) be a right coprime MFD of (A,D,In). Then the matrices N(s) := 
CN(s) and D(s) form a right MFD of (A,D,C). Observe that N(s) and D(s) are 
not necessarily right coprime, since we are not restricted to minimal systems. The 
invariant zeros of the system can be obtained from the invariant polynomials of the 
numerator matrix N(s). In the case of row invariant zeros, the previously defined 
polynomial Zi(s) corresponds then to the invariant polynomial of the iih row of 
N(s), i.e. Zi(s) is the monic gcd of all entries in the ith row of N(s). This fact will 
be used in the proof of Theorem 1. 

The family of all attainable transfer function matrices for the decoupled closed-
loop system is characterized by the following result. 

Theorem 1. Let (A,D,C) be a square, controllable, and decouplable system. 
Then, there exists a state feedback (F, G) which decouples the system, such that the 
transfer function of the decoupled closed-loop system is of the form 

W(s) = C(sl -A- BF)~lBG = 
* - # аi(s) 

i Zm(s) 
Kmam(s) J 

(7) 

where k\,... ,km, are real numbers, Zi(s) is the last invariant polynomial of the 
matrix Pi(s), i = 1,.. . ,m, as introduced before, ai(s),... ,am(s), are monic poly
nomials with arbitrary roots, satisfying 

deg ai(s) - deg Zi(s) =n{, i = 1,... , m, (8) 

and m , • • • ,Wm, are the row infinite zero orders of the system. 
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P r o o f . We will prove the result by showing that the set of compensators given 
by 

Q(s):=T~l(s)W(s), (9) 

and producing (7) as transfer function matrix, are the set of all feedback realizable 
compensators that decouple the system. 

The degree constraint (8) is easily seen to hold, since the decoupling state feedback 
(F, G) does not modify the infinite zero structure of the system, and in particular it 
does not modify the row infinite zero orders. Since the system is decouplable, then 
there exists a biproper matrix U(s), such that 

rw = dia6{;L..., J - } U(s). 

Then, we have from (9) that 

Q(3) = C/-1(s)diag{5n i, . . . , snҷ}W(s). 

From the last equation and the degree constraint (8), it can be seen that Q(s) is 
a biproper matrix. 

Let N(s), D(s) be a right coprime matrix fraction description of (A, B, In). Then, 
by Proposition 3 the matrix Q(s) will be proved to be state feedback realizable if 
Q~l(s)D(s) is a polynomial matrix. 

We have that 
T(s)Q(s) = CN(s)D~1(s)Q(s) = W(s), 

then 

Q-Ҷв)D(в) = WҶs^Nis) 

ai(s) 
kizi(s) 

LÍiL 
•(«) J 

І V ( S ) 

where N(s) = CN(s). Since Z{(s) is the monic gcd of all entries in the ith row of 
N(s), then it can be seen that Q~1(s)D(s) is a polynomial matrix, implying that 
the matrix Q(s) is state feedback realizable. 

To see that any other matrix not contained in the set (7) can not be the transfer 
function of the decoupled closed-loop system, observe that the state feedback can 
not introduce finite zeros, and therefore no other polynomial different from zi(s) (not 
considering possible cancellations between Z{(s) and ai(s)), which contains the row 
invariant zeros of the system, can appear as numerators in (7). Alternatively, the 
corresponding compensator to get any matrix not contained in (7) is not feedback 
realizable. O 

Theorem 1 completely characterizes the set of all matrices which can be obtained 
as transfer function matrices for the decoupled closed-loop system of a decouplable 
system. This characterization provides also all the set of possible finite pole-zero 
structures for the decoupled closed-loop system. The set of fixed decoupling poles 
of the system are given by the following result. 
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Theorem 2. The fixed decoupling poles of the system correspond to the roots of 
the polynomial 

S(s) := " t 1 6f; (10) 
lli=i zi(s) 

where ei(s),... , en+m(s), are the invariant polynomials of P(s), and zi(s) is the last 
invariant polynomial of Pi(s), i = 1 , . . . ,ra. 

P roo f . The set of invariant zeros of (A,B,C) are the roots of the polynomials 
€i(s), and it is evident from (7) that the only frequency values that can be finite 
zeros of the decoupled closed-loop system are the roots of the polynomials Z{(s). If 
S(s) is a polynomial different from 1, then some of the poles of the system (the fixed 
decoupling poles) must be located at the positions of the roots of S(s) producing 
cancellation with invariant zeros of the system. • 

Remark 1. From the previous result, it can be seen that the fixed decoupling 
poles correspond to invariant zeros which are not row invariant zeros of the sys
tem. Observe also that there are no fixed decoupling poles (all system poles can be 
assigned) if the system has no invariant zeros, or if all invariant zeros (multiplicities 
included) are also row invariant zeros of the system. 

Corollary 1. It follows from Theorem 2 that the number of poles which can be 
arbitrarily assigned while decoupling the system is equal to 

n-degS(s), (11) 

where n is the order of the system and S(s) is given by (10). 

Well-known results about decoupling with stability can be readily obtained from 
the results presented previously, as follows. 

Lemma 2. The system (A, B, C) is decouplable with stability if and only if there 
are no fixed unstable poles, i. e. if and only if the polynomial S(s) given by (10) has 
no roots in the closed right half complex plane. 

P r o o f . The result follows since this condition is equivalent to saying that the 
system is decouplable with stability if and only if it is decouplable, and the set of 
unstable invariant zeros of the system (multiplicities included) coincide with the 
unstable row invariant zeros of the system (see Proposition 2). • 

4. DECOUPLING STATE FEEDBACK 

Concerning the decoupling state feedback, it will be shown next that for a particular 
choice of transfer function matrix from the set (7), say Wi(s), the corresponding state 
feedback producing W\ (s) is unique if and only if the system is controllable, which is 
the case of the systems we are considering in this paper. First, the next preliminary 
result will be presented. 
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Lemma 3. The system (A,B,C) is controllable if and only if it does not exist a 
constant vector q different from zero such that 

q(sI-A)~lB = 0. (12) 

P r o o f . Evident from the controllability of the system. • 

Theorem 3. Let (A, B, C) be a decouplable system, and let Wi(s) be a particular 
matrix from the set (7). Then, the state feedback (F,G) producing Wi(s) as the 
transfer function of the decoupled closed-loop system is unique if and only if the 
system is controllable. 

P roo f . Write Q(s) = T~1(s)W1(s) as 

Q(s) = Q0 + QsP(s) (13) 

where Qo is a constant matrix, and Qsp(s) is the strictly proper part of Q(s). 
Then, from (4), and since F(sl — A)~lB is strictly proper, matrix G is uniquely 

given by 
G = lim Q(s) = Qo. (14) 

s—>co 

Since the system is decouplable for Wi(s), then there exists a constant matrix F 
such that 

F(sl - A)~lB = Im- GW^(s)T(s) (15) 

where G is given by (14). 
If the system is controllable, by Lemma 3 the matrix (si — A)~lB has no left 

constant kernel different from zero, thus matrix F is unique. • 

The decoupling state feedback (F,G) can also be obtained from the constant 
solution to a polynomial matrix equation as follows. If the system is decouplable, 
then there exists a constant solution X, Y, with X nonsingular [8] to the polynomial 
matrix equation 

XD(s) + YN(s) = Q-1 (s)D(s) (16) 

where N(s), D(s) is a right coprime matrix fraction description of (A, B,In), with 
D(s) column reduced. Then, the state feedback (F,G), given by 

F=-X~lY, G = X~\ (17) 

produces W(s) as the transfer function of the decoupled closed-loop system. 
Prom the previous results, it follows that if the system is controllable, then the 

solution X, Y to (16) with the aforementioned properties is unique. The uniqueness 
of such a solution to a polynomial matrix equation like (16) has already been proved 
in [4]; see also [7]. 
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5. EXAMPLE 

The following example is presented in order to illustrate the results of this paper. 

Example 1. Let the controllable system (_4,_9,C) be given by 

A = 

C = 

whose transfer function is 

- 2 3 1 3 -- i i 
1 0 1 D 0 0 

- 2 - 1 - 1 3 5 , в = 
0 0 1 0 0 
0 0 0 1 0 

0 1 0 --1 - 1 ' 
1 - 1 0 0 0 

on ІS 

(« 
i ) ° 

s+1 3 (s+2)2 J 
T(s) = 

(« -2)(«+2 

s - 1 

) ° 
s+1 3 (s+2)2 J L (• - 2 ) ( И -2) 

) ° 
s+1 3 (s+2)2 J 

0 1 " 
0 0 

- 1 1 
0 0 
0 0 

Since the row infinite zero orders of the system 

ni = 2 , n2 = 1, 

coincide with the infinite zero orders, then the system is decouplable. Further, we 

have that / x / x 

zi(s) = 1, z2(s) = s- 1, 

and 

Єl(s) = ••• = єQ(s) = 1, Є7(5) = (s + l)(s - 1), 

ł w - _ ± _ l l _ - . + 1 . 
s — 1 

Then, the set of matrices which can be obtained as transfer function matrices for 
the decoupled closed-loop system is given by 

W(s) = 
_ _ 

(s+ai)(s+a 2) 

0 

0 

Ыs-1) 
(«+_з)(s+_4) 

and there exists a fixed decoupling pole at s = —1, i.e. the system invariant zero 
at s = — 1 has to be cancelled in order to decouple the system, while it is not 
necessary to cancel the invariant zero at s = 1. Observe that s = 1 is an invariant 
row and global zero of the system, which is not evident from the system transfer 
function, since the system is not observable; thus, this zero can also appear in 
W(s) using a state feedback which decouples the system. Notice also that the 
system is decouplable with stability, since there are no fixed unstable poles, and 
that 4 out of the 5 system poles can be arbitrarily assigned. To see the importance 
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of characterizing the set of all attainable pole and zero finite structures for the 
decoupled system, observe that if the invariant zero at s = 1 does not appear as a 
zero of the closed-loop transfer function matrix (because it remains non observable or 
it is cancelled later on "by mistake") then the decoupled system would be internally 
unstable. 

Let us choose a pole-zero finite structure corresponding to the following matrix 

Wi(s) = 

1 
(s+l)( í+2) 0 

0 (*+2)2 

i.e. we aim to obtain a decoupled and internally stable closed-loop system, with 
poles at the positions specified by W\(s). 

Then, the unique state feedback producing IVi(s) is computed as described in 
the paper as 

ғ = 
3 - 6 3 9 6 " 

G = 
" 1 0 

2 - 7 0 1 - 1 ) w 0 1 

6. CONCLUSIONS 

In this paper, we completely characterized the closed-loop structure of a linear square 
multivariable system decouplable by static state feedback. A characterization of 
all matrices that can be obtained as transfer function matrices for the closed-loop 
decoupled system was presented. From this result, all possible combinations of 
attainable finite closed-loop pole and zero structures of the system can be readily 
established. The set of assignable modes was determined, as well as the set of 
fixed decoupling modes. The conditions presented in our results are simple, they 
have a nice interpretation in terms of system structure, and allow for simple design 
computations. 

Based on the results of the present paper, in [15] a numerical algorithm has been 
developed to solve the problem of decoupling and complete pole assignment. 

(Received October 17, 2003.) 
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