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The concept of /-divergences was introduced by Csiszar in 1963 as measures of the 
'hardness' of a testing problem depending on a convex real valued function / on the interval 
[0, oo). The choice of this parameter / can be adjusted so as to match the needs for specific 
applications. The definition and some of the most basic properties of /-divergences are 
given and the class of xa-divergences is presented. Ostrowski's inequality and a Trapezoid 
inequality are utilized in order to prove bounds for an extension of the set of /-divergences. 
The class of \ a -divergences and four further classes of /-divergences are used in order to 
investigate limitations and strengths of the inequalities derived. 
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1. INTRODUCTION T O / - D I V E R G E N C E S 

Let(X, .4)be a measurable space, satisfying \A\ > 2 and / i b e a cr-finite measure 
on (X, A) and let V be the set of all probability measures on (X,A) which are 
absolutely continuous with respect to /i. For P, Q G V let p = ^ and q = - ^ denote 
the Radon-Nikodym derivatives of P and Q with respect to /i. Two probability 
measures P,QeV are called orthogonal (Q1P) if P({q = 0}) = Q({p = 0}) = 1. 

Furthermore, let T be the set of convex functions / : [0, oo) »-> (—00,00] which are 
finite on (0,00) and continuous at 0 (i. e. / ( 0 ) = l im^n f(u)), To = {/ G T : / ( l ) = 
0} and let D-f and D+f denote the left-hand side derivative and the right-hand 
side derivative of / respectively. Further, if / G T then / * defined by 

/ u / ( i ) for u G (0,co) 
J (u) = S 

[ limv_>oo f(v)/v for u = 0 

is also in T and is called the * -conjugate (convex) function of / . 
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Definition 1.1. (Csiszar [2]) Let f e T and P,QeV. Then 

If(Q,P) = fxP-ffydvi 

is called the f-divergence of the probability distributions Q and P . 

The following two theorems contain the most basic properties of /-divergences. 
For their proof we refer the reader to, for example, Chapter 1 of [6]. 

Theorem 1.2. (Uniqueness and Symmetry Theorem) Let / , / i G T and /* be 
the *-conjugate of / . Then 

7 / l ( Q , P ) = / / ( Q , P ) V ( P , Q ) G P 2 iff 3ceR:fi(u)-f(u) = c(u-l) 

and Ir (Q, P) = If (Q, P) V (P, Q) G V2 iff 

(i) 3ceR:f*(u)-f(u) = c(u-l). 

Theorem 1.3. (Range of Values Theorem) Let / G T. Then 

/ ( i ) < / / (Q, P) < /(O) + /*(0) VQ,PeV. 

In the first inequality, equality holds if Q = P . Further, this equality holds if and 
only if Q = P , provided that 

(ii) / is strictly convex at 1. 

In the second, equality holds if Q_LP. Further, this equality holds if and only if 
Q-1P, provided that 

(iii)/(o) + r(o)<oo. 

Remark 1.4. In order for an /-divergence to be nonnegative, it is necessary to 
restrict oneself to the class To. Since the values of an /-divergence are not changed 
when replacing the function / G To by f(u) — c(u — 1), it is convenient to take a 
value c G [_D_/(1), .D+/(l)] in order to get a nonnegative function / . 

R e m a r k 1.5. If / G To, then 

/ / ( Q , P ) = / ( 0 ) - P ( { g = 0}) + r ( 0 ) . Q ( { p = 0})+ / P ' / f ^ d / i 
J{pg>0} \PJ 

holds, where P({q = 0}) is the amount of singularity of the distribution P with 
respect to Q and Q ({p = 0}) is the amount of singularity of the distribution Q with 
respect to P . Therefore /(0) = oo or /* (0) = co imply If (Q, P) = oo unless P <£ Q 
(i. e. P ({q = 0}) = 0) or Q <£ P (i. e. Q ({p = 0}) = 0) respectively. 

In the Sections 1 and 3 we consider five classes of /-divergences, from which the 
classes (I), (II) and (III) are well-known. All elements / of the five classes satisfy 
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/ ( l ) = 0, f(u) > 0 VTX G [0,OO) and property (ii). The elements of the classes 
(III), (IV) and (V) satisfy, in addition, (i) and (iii), and thus complete the basic 
requirements in order to allow for a metric divergence. We conclude this section 
by presenting the first class, which we need in Theorem 2.1, the main result of this 
paper. 

(I) x a-divergences. The /-divergences of this class, which is generated by the 
functions xQ> <* € [1>°°), defined by 

X
a(u) = \u-l\a , u e [ 0 , o o ) , 

have the form 

If(Q,P)= / p U - l Q d / i = f pl-*\q-p\ad», 
Jx \P Jx 

whereby, in view of Remark 1.5, we assume Q «C P provided a > 1. 

From this class only the parameter a = 1 provides a distance, namely the total 
variation distance V(Q, P) = fx \q — p\ d/j,. The most prominent special case of this 
class is, however, Karl Pearson's x2-divergence. 

The following result is a refinement of the second inequality in Theorem 1.3. 

Theorem 1.6. Let / G T0 satisfy condition (iii) and let / = ( / -F /*) /2 . Then 

/ / (Q, P) < 7(0) V W. P) V <2> P e V. (1.1) 

P r o o f . The proof relies on the following simple fact 

f( \<\ / ( 0 ) ( 1 ~ U ) f ° r U G [ 0 ' 1 ]
 r i 2 x 

\ / * ( 0 ) ( u - l ) for « € (l.oo). K'} 

First we consider the set {p • q > 0}. Setting u = £, multiplying the resulting 
inequality by p > 0 and integrating over the set {p • q > 0} yields 

f Pf(g)dfi < f(0)(P({p>q>0})-Q({p>q})) 
J{P,>O} \PJ 

+ r(0)(Q({q>P>0})-P({q>p})). 

Together with the part for the remaining set {p — 0} U {q — 0}, covered by Remark 
1.5, this yields 

If(Q,P) < f(0)(P({p>q})~Q({p>q})) 
+ r(0)(Q({q>p})-P({q>p})) 

= f(0)V(Q,P), 

where the latter is easily seen by splitting up X = {p > q} U {q > p} and applying 

/ x 9dM = / x P d M = l- D 
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Remark 1.7. For functions / G To which satisfy, in addition to (iii) also condition 
(i), /(0) = /(0) holds. The most simple example satisfying all conditions (i), (ii) and 
(iii) is x1 which corresponds to the total variation distance. Note that for functions 
/ G To given by equality in (1.2) equality holds in (1.1) as well. 

2. GENERAL INEQUALITIES FOR EXTENDED /-DIVERGENCES 

In the following result, the notion of the /-divergence is extended to the class T of 
functions / : [0, oo) —> R which are locally absolutely continuous functions on [0, oo) 
the derivative / ' of which is of bounded variation on each compact interval [l,u] (or 
[u, 1]). In this context v£ (g) denotes the variation of a function g over an interval 
with the endpoints a and b. Corresponding to the set To in Section 1 let, further, 
To = { / € E : / ( 1 ) = 0}. 

Theorem 2 .1 . Let / G T be such that the derivative / ' satisfies 

V? (/ ') <V\u- l\p~l for any u G (0, oo), 

where the constants V > 0 and p G (1, oo) are given. 

Then for any P, Q G V, with Q <3C P , one has the inequalities 

\If(Q,P)-f(l)\<VIxl,(Q,P) 

and 

If(Q,P)-f(l)-Ih^(Q,P) <^IX,(Q,P) 

(2.1) 

(2.2) 

(2.3) 

where the functions hj , i G {1,2} are defined by 

' \ i ( u - l ) / » for i = 2, 

and IXP(Q,P) is defined as in Section 1. 

u Є (0,oo) (2.4) 

P r o o f . In the first part we prove the inequalities (2.2) and (2.3) for the case 
i = 1. We use the following inequality obtained in [3]. If g : [a, b] -> R is of bounded 
variation over [a, b] then for any y G [a, 6] 

1 Ґ 
9(y) - 7 / 9(s) ds < 

1 

2 + 

y-Ч^ 
b — a 

<(9) (2.5) 

Now, the application of the inequality (2.5) for the choices for the choices g = 
/', a = min(l,u), b = max(l,u), u G (0,oo) and y = 1 yields in view of (2.2) 

!/(«) - /(i) - (« - i)/'(i)l < l« - 1 | vľ (/') < v \u -1|' (2.6) 
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for any u G (0,co). 

Choosing u = q/p in (2.6) we get, after multiplying by p > 0 

pf (?)- f(l)p-(q-p)f'(l) <ty-"k-p| 

Integrating this over X, using the triangle inequality and taking into account the 
fact that Jxpdfi = Jx qdfi = 1, we deduce the desired inequality (2.2). 

From the inequality (2.5), we also get by choosing g = f , a = min(l,w), b = 
mаx(l,u), u Є (0,oo) аnd y = ^^-

Д u ) - / ( l ) - ( U - l ) / ' ( ^ ) < 11« - ii v? (/*) < ̂  i« - ir 
(2.7) 

for any u G (0,co). 

If we choose u = J i n (2.7) we get, by multiplying with p > 0, 

, , ( í ) _ / ( 1 ) p _ ( , _ p ) / . ( i±E) ^fp^k-pr, 
which gives, by integration over X, the desired inequality (2.3) for the case i = 1. 

In the following second part we prove the inequality (2.3) for the case i = 2. 
For this part we use the following inequality obtained in [1]. If g : [a, b] -> E is of 
bounded variation over [a, 6] then for any y G [a, b] 

(6 - y)g(b) + (y- а)g(а) 

b — а 

1 _ Ѓ 

Ь-аJа 

g(s) ds 
1 
2 + 

V-Ф 
b — a vito) 

(2.8) 

The application of the inequality (2.8) for the choices g = / ' , a = min(l,w), 6 = 
max(l,u), u G (0, co) and y = ^^ yields 

T'O)+/» 
/ ( „ ) - . / ( i ) - ( t . - i ) . < 11« - 1| V? (/') < ү l« - iГ 

(2.9) 

for any ix G (0,co). 

Choosing, in (2.9), u = J and by multiplying with p > 0 and then integrating 
over X, we deduce the desired inequality (2.3) for the case i = 2. • 

Remark 2.2. The constant \ both in (2.5) and (2.8) is best possible in the sense 
that it cannot be replaced by a smaller one. Dragomir et al. [4] utilised Ostrowski's 
inequality to examine bounds for extended /-divergences, however, they assumed 
stricter conditions on the functions requiring absolute continuity. 
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Remark 2.3. As mentioned in Section 1, /-divergences frequently use (convex) 
functions / G To. For these and, more generally, for / G To the term / ( l ) in the 
inequalities (2.2) and (2.3) is to be dropped. 

Remark 2.4. For / G T we interpret f'(u) for those (at most denumerably many) 
points u G (O-oo) for which D-f(u) < D+f(u) as f'(u) = \ (D-f(u) -F D+f(u)). 
In this way we can extend (2.1) - and hence Theorem 2.1 - to the case p = 1. By con
sidering the function xl(u) = \u ~ M w e see> -n v*e w of (x1) (u) = signum(?z — 1), 
that (2.1) has the form V" ( (x 1 ) ) = 1 for any u G (0,oo)\{l} and, consequently, 
that (2.6) gives the form 

x1H = v\u-i\p 

with V = 1 and p = 1. This shows that (2.2) is sharp in the case of the total variation 
distance. It is not difficult to see when restricting the application of Theorem 2.1 to 
functions / G T that (2.6) - and consequently (2.2) - is sharp only for functions of 
the form 

f(u) = c | u - l | + d. (2.10) 

(By the way, the sign-function can be used to show that the constant | in (2.6) is 
best possible.) Finally we note that (2.1) - and consequently (2.2) - is in the case 
of the power p = 1 limited to functions of the form (2.10) whereas inequality (1.1) 
applies to all functions / G To satisfying condition (iii). 

3. INVESTIGATION OF THE RESULTS 

In this section we use the class of xa-divergences and four further classes of / -
divergences in order to investigate both applicability and quality of the inequalities 
(2.2) and (2.3) derived in Section 2. Note that the functions / of all these classes 
belong to To and satisfy (ii) and f(u) > 0 for any u G [0, oo). The investigation 
of the quality is mostly done by comparing the bound V achieved in (2.2) with the 
best possible bound for the given power p > 1. The latter is the smallest constant c 
which satisfies 

f(u) < c|ix — l|p VuG [0,oo) 

for the given f £ To. Note that c > /(0) with strict inequality provided that 
/ ( 0 ) > | D + / ( 0 ) | / p . 

When applying Theorem 2.1 we typically encounter two types of numerical losses. 
The first arising from the inequality (2.1) and the second by either the application of 
Ostrowski's inequality (2.5) or by the application of the Trapezoid inequality (2.8). 

Note that inequality (2.1) can only be applied to the derivative of a (convex) 
function / G T provided that 

|Z?+/ (0) |<oo . 

Although this condition is necessary but not sufficient for (2.1) the (finite) value 
|.D+/(0)| turns out to be crucial since it provides the constant V in (2.1) for all 
cases investigated, except in class (V) for the parameters a G (2,oo). 
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Remark 3.1. The functions hj\ i G {1,2}, defined in (2.4) satisfy 

h{;](l) = 0 and ffcW) (1) = \ 

Further, for functions / E J with continuous derivatives / ' on (0, oo) with the 
properties (ii) and / ' ( l ) = 0 it holds 

( < 0 for u < 1 
(hf) (u)= < = 0 for u = 1 and hence hf(u) > 0 V w G (0,oo), i G {1,2}. 
V ' ( > 0 for O l 

Functions / G ̂ o with continuous second derivative satisfying / " ( l ) > 0 yield, in 
addition, 

' / " ( l ) for i = 1 

2/ , ,(l) for t = 2 

Therefore, the corresponding divergences I.(i)(Q,P) are disparities as defined in 
nf 

Mendendez, Morales, Par do and Vajda [7]. For further applications of related dis
parities we refer to Wegenkittl [10] and [11]. 

Note, however, that the functions hj do not necessarily inherit the property of 
convexity from the functions /, so that I. <o are in general not /-divergences in the 

nf 

strict sense. 

From the following classes of /-divergences the classes (I), (II) and (III) are well-
known. A detailed discussion can be found for example in Liese and Vajda [6], 
Chapter 2. The classes (IV) and (V) were introduced respectively by Puri and 
Vincze [9] and Osterreicher and Vajda [8]. 

Our intention in the sequel is to give concise statements of our findings. Therefore 
we omit any of (the partially laborious) details. 

(I) x a " - D i v e r 6 e n c e s 

For this class 

\(x ) («) =<* « - i < rn 

{ V u € (0, oo) if a € [2, oo) 

holds. Therefore inequality (2.1) - and hence (2.2) and (2.3) - apply for all param
eters a € [l,oo). The corresponding powers and constants are p = V = a. In this 
case the inequality (2.2) has the trivial form 

Ix*(Q,P)<aIx-(Q,P). 

Obviously, for the parameter a = 1, which corresponds to the total variation dis
tance, equality holds. Note that although in (2.1) equality holds true in this case a 
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considerable loss is caused by the application of the inequality (2.7) for the param
eters a > 1. For this class of /-divergences for which the functions 

*!? = 2 

2 * 

TX" for i = 1 

for i = 2 

are elements of the set To of convex functions, the inequalities (2.3) are of a similar 
quality as (2.2). 

Concerning the discussion of the total variation distance, which appears as a 
special case also in the classes (III) and (IV) for the parameter a = 1 and in class 
(V) for the parameter a = oo, we refer to Remark 2.4 and the discussion in class (I). 

(II) Power Divergences 

From this class, generated by the functions 

u — 1 — ln U 

fa (u) = < 

for a = 0 

for a e l \ { 0 , l } , u€ [0 ,oo) , 

w 1 — u + u ln u for a = 1 

q ц + l — a — u a 

a(l— a) 

only the parameter a = | (fi/2(u)/2 = (\/u — 1) j allows for defining a distance, 

namely the Hellinger Distance 

H(Q,P) = 

The functions of this class satisfy 

ID+/«(0)| = \ 

I (VЯ-VP)" 
Jx 

dџ 
1/2 

j ^ ү for a Є ( l , o o ) 

oo for a Є (—oo, 1]. 

It can be shown that, in addition, fa fails to satisfy (2.1) for any power p for the 
parameters a G (2,oo). 

For the parameters a G (1,2], however, f'a satisfies (2.1) - and hence (2.2) and 
(2.3) - with p = 2 and V = ^--. In this case the inequality (2.2) has the form 

Ifa(Q,P)<CcJx*(Q,P), (3.1) 

with ca = j-^-y. Note that (3.1) holds for all a G (0,2] and that ca = fa(0) = £ is 
best possible. The functions 

Һ(fl^=\ ^u-l)( U ° : ' - l) 
^ ( ( ^ Г 1 - - ) for - = 1 

for ѓ = 2 
2 ( a - l ) 
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in the inequality (2.3) turn out to be elements of To, so that 

and 
Q - l 

W^ = wrT)L <'-»>((;)' - 1 jd / i a 6(1,2] 

are /-divergences in the strict sense. 

(III) Matus i t a ' s Divergences 

The elements of this class, which is generated by the functions ipa, a G (0,1], given 
by 

V>a(u) = \l-u*\1/a , u € [ 0 , o o ) , 

are prototypes of metric divergences, providing the distances [I<pa(Q,P)]a• 

These functions satisfy |L)+</?Q(0)| = oo for all a G (0,1). Therefore the results 
of Section 2 cannot be applied. 

Note, however, that the functions a »-> <pa(u) are strictly monotone increasing 
for every u G (0,oo)\{l) and hence 

ivAQ,P)<ivp{Q,P)<i<pAQ,P) = ix*(Q>P) f o r a 1 1 o < a < / ? < i . 

For the latter inequality compare also with Theorem 1.6, Remark 1.7 and Re
mark 2.3. 

(IV) Pur i -Vincze Divergences 

This class is generated by the functions $ Q , a G [l,oo) given by 

*« ( u ) = 2(1" + l r - ' u^°>^-

As shown in [5] this class provides the distances [I<t>a(Q,P)] • 

These functions satisfy 

and |.D+<I>a(0)| = a — | . Further, it can be shown that 

l*«(«)l < ( « - £ ) * I---I""1 Vue(o,oo) . 

Therefore Theorem 2.1 can be applied for all parameters a 6 (1, oo) with p = a and 
V = a-\. 
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The inequality (2.2) takes the form 

I*AQ,P)<CaIx-{Q,P) (3-2) 

with ca = a— | whereas, obviously, ca = $Q(0) = \ is best possible. Note also that 
none of the functions 

f |u- l | a (4a+u-l) r • _ j 
, ( i ) M I 2(u+3)a ior Z - 1 
^ ( U ) = Iu - i r (2a + t t - l ) for - _ 2 ^ ( 0 , O o ) , 

[ 4(u+l)Q IOr l - Z > 

which are used in inequality (2.3), have a nonnegative second derivative, so that 
I (i) (<5, P) are disparities in the sense of Menendez et al. [7] but not /-divergences 

in the strict sense. 

We finally note that for the parameters a > 2 the inequality (2.1) - and con
sequently (2.2) and (2.3) - holds not only for the power p — a but for all powers 
p € [ 2 , a ] . 

(V) Divergences of Ar imo to - type 

This class is generated by the functions 

( I=IA>- [(l + w ° ) 1 / Q - 2 1 / « - 1 (l + u)] for Q € ( 0 , O O ) \ { 1 } 

<M«) = < (l + u) ln(2) + u ln(u) - (1 + u) ln(l + «) for a = 1 

[ |1 — u\ /2 for Q = co. 

As shown in [8] this class provides the distances [Ifa(Q,P)]m a' for a G (0, oo) 
and V(Q, P)/2 for a = oo . 

These functions satisfy 

< ( „ ) _ / Î ^ [ < I + " " > , A , " " ° - ' - ^ - ] 
[ ln(2) + ln(«) - ln(гí + 1) 

for Q G ( 0 , O O ) \ { 1 } 

for Q = 1, 

( oo for Q _ (0,1] 
C ( « ) = «( l + « a ) 1 / a - 2 « a - 2 and |D+tM0) | = { a>/-» , . / i ^ 

I i=r/_- f o r a € ( l , o o ) . 

It can be shown that t/^ satisfies (2.1) - and hence (2.2) and (2.3) - with p = 

2 , V = 2 _ i7 a for Q 6 (1,2] and an intricate form of V for a € (2, oo). Therefore 

Theorem 2.1 can be applied for the parameters a 6 ( l ,oo) . 

The inequality (2.2) takes the form 

ha(Q,P)<caIx*(Q,P) (3.3) 
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with cQ = \_a
l/a for a € (1,2]. Note, however, that (3.3) holds for all a G (0,oo) 

and that 

, r m / 1r^i for « € ( 0 , o o ) \ { l } 
ca = ipa(0) = < ' 

[ ln(2) for a = 1 

is best possible for all a € (0 ,Q*] , a* = \2 - {jjjfj-) > 2. In addition, it can be 

shown that the best possible ca satisfies ca £ (i>a(0),da) for all a € (a*,oo) where 

da= max < ( u ) / 2 = ( 2 a - l ) 1 / a - 2 ( a - 2 ) 1 - 2 / Q ( l + a ) 1 + 1 / a / 2 , a > 2 . 
uE(0,oo) 

Finally we note that none of the functions 

J i_Tfe[(2a + (u + l ) Q ) 1 / a - 1 (u+l ) Q - 1 -2 1 /« - i ] for i = l 
,«) W 

2( 
т й E ÿ- т [( l+«a)-/«- l_a- l_ 2 i - l for i = 2, 

u G (0, oo), which are used in inequality (2.3), have a nonnegative second derivative, 

so that I (Q,P) are disparities in the sense of Menendez et al. [7] but not /-

divergences in the strict sense. 
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