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1. INTRODUCTION 

A challenge concerning the Kronecker invariants assignment to a matrix pencil that 
is completed by rows or columns has been introduced in [12]. This problem, called 
the matrix pencil completion problem therein, covers many questions of algebra and 
control theory, especially those describing the situations in which state feedback is 
used for altering the system dynamics. Some particular cases illustrating this point 
will be mentioned below. 

The aim of the paper is to discuss some results achieved recently and complete 
the picture of what has been done by some new results, and thus provide the reader 
with deeper insight into this very interesting problem. 

The notation used in the paper is standard; the basic symbols are E, C, R[s] that 
denote the fields of real numbers, complex numbers, and the ring of polynomials (of 
variable s) over R, respectively. Other symbols will be introduced in the text at the 
place where they are needed. 

1.1. Kronecker canonical form 

Two matrix pencils sE\ - Hi and sE2 - H2, where EUH\,E2, and H2 are r x c 
matrices, are said to be strictly pencil equivalent (s.p.e.), or just equivalent if it 
is clear from the context that the strict pencil equivalence is meant, if there exist 
nonsingular matrices Q and P such that 

sEi - Hi = P[sE2 - H2]Q 
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The strict pencil equivalence, denoted by ~ , defines an equivalence relation on the 
set of matrix pencils and the canonical form under this equivalence is the well-known 
Kronecker canonical form SEK~HK [3, 8] that consists of the blocks of the following 
forms: 

(i) 

S - Qj 1 

5 — dj 

Є R*-J **•; (2) 

1 5 

(П,-+1)X(ПІ + 1) 

(3) 

S 1 

S 1 

jc, x(c, + l) (4) ( r t + l ) x r i 

where the integers kij > 0, n, > 0, Ci > 0, r» > 0 and a,j € C is called a finite zero 
of sE — H. The case Ci = 0 (r, -= 0) for some i's means that there are zero columns 
(rows) in SEK — HK- Very frequently the above blocks will also be referred to as 
kij-, n,-, c,-, and r^-blocks. 

Associated with these blocks there are four types of invariants, the Kronecker 
invariants, which are defined by the above blocks, namely 

(1) finite elementary divisors (f.e.d.) represented by fcij-blocks, i.e. by the integers 
kij and complex numbers aj, 

(2) infinite elementary divisors (i.e.d.) represented by ni-blocks, i. e. by the inte­
gers nir 

(3) column minimal indices (c.m.i.) given by the integers Ci, 

(4) and row minimal indices (r.m.i.) given by the integers r*. 

More features and details concerning the Kronecker canonical form can be found 
for instance in [3]. It should be noted that the integers n\ are called the infinite zero 
orders in linear system theory and that f.e.d. of a pencil uniquely determine the 
invariant polynomials of the pencil. 

For a given r xc pencil sE — H there exists another special form, which could be 
called a standard (or system) form since it reminds of the system matrix of a linear 
system [20]. Denoting n :-= ranki? then 

sE-H ~ sEs - Hs := 
sln - A -B 

-C -D 

where the number of rows of [-C - D) is k, k + n = r, while t, n + t = c, is the 
number of columns of [—BT — DT]T. Such a form can be achieved, for example, by 
applying the SVD (singular value decomposition) algorithm to the matrix E. Hence, 
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any pencil sE — H defines a corresponding linear time-invariant system, defined by 
the quadruple (A,B,C,D), governed by the equations 

x = Ax + Bu 
y = Cx + Du. 

Following [20], the pencil sEs - Hs will be referred to as the system matrix. 
It is further observed that the matrices (A, B, C, D) are of particularly simple 

forms (having the least number of parameters) if sE — H is already in the Kronecker 
form. The system (A,B,C,D) is then in the Morse form, [19]. 

Remark 1. Many features of the matrices A,B,C,D, and E can be stated in 
terms of the Kronecker invariants of sE — H. The claims below immediately follow, 
by inspection, from the Kronecker canonical form. 

• n := rankE = £ i f j
 kij + E n - + E c i + .£r»> 

• sE — H is right invertible «£=-> SEK — HK has no rj-blocks, 

rankJS = r <==> there are no rii-blocks and ri-blocks in SEK — HK, 

• [C D] = 0 <==> there are no rii-blocks and r» = 0 Vi. 

Remark 2. The column minimal indices of sE — H aire the cm.i. of the pencil 
[sln — A — B], or - as we shall also say - of the pair (A, B). They are also called 
the controllability indices of (A,B) and can be obtained from a normal external 
description (n.e.d.) of (A,B), which is defined below. 

Let N(s),D(s) be polynomial matrices such that 

N(s) 
[sIn-A -B] D(s) 0, 

• U(sln — A)N(s) = 0 with II being the maximal left annihilator of B (i.e. the 
rows of II form a basis for the left kernel of B), 

• D(s) is column reduced (D(s) = Dnc diag {sKi}+ terms of lower degrees where 
Dnc is of full rank; see for instance [7, 23] for detail). 

Such matrices N(s), D(s) are said to form a normal (right) external description 
(n.e.d.) of (A,B) [26] and the column degrees, /q, of D(s) are equal to Cj. 

\sln - -41 
Analogously, the r.m.i., r», of -C 

are the column degrees of an n.e.d. of 

(AT,CT) and are called the observability indices of the pair (C,A). 

1.2. Matrix pencil completion problem 

The r x c pencil sE'-H' is said to be a subpencil of a given (r + / ) x ( c + g ) (l,q > 0) 
pencil sE - H if 

sE-H~ 
sE' -

(1) 
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where *'s stand for unspecified pencils of compatible dimensions. 

It is of interest to study the relationships between the pencil sE — H and its 
subpencil sE' - H1. Particularly interesting is the question under which conditions 
a given pencil sE1 - H' can be completed by some other pencils such that the 
relationship (1) holds, that is to say, the pencil sE—H will have prescribed Kronecker 
invariants. This problem is known as the matrix pencil completion problem] see [12] 
for detail. 

It has already been noted that the formulation of the matrix pencil completion 
problem was motivated by some control-theoretical questions. As an illustration, 
consider the problem of invariant polynomials assignment, which may be viewed as 
one of the basic problems of linear control theory. 

Example 1. Let a linear time-invariant system (A,B), 

i=Ax + Bu, AeRnxn
y BeRnxm, (2) 

with the state feedback 

u = Fx + v, F e R m x n , (3) 

around be given. This gives a closed-loop system (A + BF, B) governed by 

x= (A + BF)x + Bv. (4) 

The only difference between the equations (2) and (4) is that the matrix A is replaced 
by A + BF. And as the state trajectory of (2) is given in terms of the eigenstructure 
(a synonym for the eigenvalue structure given by the Jordan form of A and the 
structure of its right and left eigenvectors including the generalized ones) of the 
matrix A - see [7] for instance, the relationship (4) shows that the state feedback 
(3) will be a powerful tool when altering the behaviour of the system (2). Therefore 
the question to what extent the eigenstructure of A + BF can be changed by F is 
one of the fundamental questions of control theory. It will now be shown how this 
question is expressed in terms of the matrix pencil completion problem. 

Notice first that [sIn-A-BF, -B] ~ [sIn-A, -B] and let II denote the maximal 
left annihilator of B. Then 

U[sln -A-BF} = U[sln - A], 

which implies that the pencil II [s/„ - A] can be completed by rows (by a pencil 
denoted by •) such that 

sIn-A-BF ~ 
n(s/„ - A) 

• 
(5) 

which is a partial case of the matrix pencil completion problem (1). 
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The question under what conditions the relationship (5) holds is answered in [20] 
in the case of controllable systems, and a complete solution, when the system (2) is 
possibly uncontrollable, can be found in [24]. 

The relationship (1) implies that any study of the matrix pencil completion prob­
lem will involve the Kronecker invariants of sE' — H' and those of sE — H, i. e. eight 
lists of invariants. But there exists a trick using which the number of these lists can 
be lowered. The trick lies in applying the conformal mapping 

. = -1±=1, (6) 
w 

where a is not a zero of both pencils, to these pencils. The mapping shifts the pencil 
infinite zeros in the location 0, while keeping all other finite zeros in finite positions. 
In this way the problem with finite and infinite elementary divisors is reduced to 
that with finite elementary divisors only, see [16, 26] for detail. However, despite 
this simplification the problem still remains very complex and difficult. 

2. COLUMN COMPLETION OF RIGHT INVERTIBLE PENCILS 

For the time being the most advanced results concerning the matrix completion 
problem are established in the case of right invertible pencils (see Remark 1) where 
just column completion is considered. More precisely, given right invertible pencils 
sE — H and sE' — H', the pencil sE' — H' is to be completed in such a way that 

sE-H ~[sE' -H1, * ] . . (7) 

In the light of the conformal mapping introduced above, it can be seen that con­
ditions under which there exists a solution to this problem will be based on the 
solvability conditions for the pencils without infinite elementary divisors. Such con­
ditions will just comprise the c.m.i. and f.e.d. of transformed pencils and this will 
enable us to derive conditions for the original pencils. 

2.1. Conditions for pencils of the form [sln — A, —B] 

It is natural to start our discussion with the results established in [1] for pencils 
of the form [sln — A, —B] since these pencils are clearly right invertible, without 
i.e.d., and therefore described by f.e.d. and c.m.i. only. Thus, let [sln - A, -B] 
and [sln - A',-Bf], where A, A' e Rnxn, B e Rnx(m+*) with rankB = m + q, 
and B' 6 R n x m with r a n k £ ' = m, be given. It easily follows from the form of the 
pencils that the pencil [sln -A', —B'] can be completed just by constant (containing 
real numbers only) columns. 

Remark 3. The reader familiar with linear control theory can recognize in this 
case an application of the nonregular state feedback (a state feedback described by 
u = Fx + Gv with G e K ( m ^ x w , rankG = m) to the system (2). More facts on 
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the use of nonregular state feedback in linear control can be found for instance in 
[18] and references therein. In this terminology, A' = A + BF and B' = BG. 

Let further ci > c2 > • • • > cm+q, c[ > c'2 > • • • > c'm and ai(s),a2(s), • • • , a n ( s ) , 
a'i(s), a'2(s), - - , a'n(s) denote the c.m.i. and invariant polynomials of [sln — A, —B] 
and [sln — A', —B'], respectively. It is also assumed that the invariant polynomials 
are non-increasingly ordered, i.e. an(s)\ • • • \a2(s)\ai(s), where ai+i(s)\ai(s) means 
that aj+i(s) divides a»(s) (similarly for the polynomials a'^s)), and that N(s),D(s) 
and N'(s),D'(s) stand for normal external descriptions of (A, B) and (A',B'). 

With this notation (and that introduced above) we can now introduce the fol­
lowing four formulations of the matrix pencil completion problem. On the basis of 
these formulations the results known until know will be presented, which is a starting 
point for further considerations. 

Propos i t ion 1. Given pencils [sln—A, —B] and [sln—A', —B'] having Ci, ai(s) and 
c'j, a'j(s) as their column minimal indices and invariant polynomials, respectively, 
the following statements are equivalent. 

(a) There exist an (rn + q) xn matrix F and a n ( m + g ) x m matrix G, rankG = m, 
such that c[, c'2, • • • ,c'm and a[ (s), a2(s), • • • , a'n(s) are the c.m.i. and invariant 
polynomials of the pencil [sln — A — BF, —BG]. 

(b) There exist an n x q matrix over R, denoted by •, such that 

[sIn-A,-B] ~ [sIn-A',-B', *] 

(c) There exist an integer k and polynomial matrices W(s) G EmX(7[s], X(s) G 
lR9X9[8],y(5) G Rqxk[s],<mdZ(s) G Rkxk [s] with invariant factors ax (s), a2(s), 
. . . ,ajk(s) such that 

(1) the matrix 

(8) 

(9) 

D'(s) W(s) 
0 X(s) 

when column reduced, has column degrees c\, C2, • • • , cm+q, 

(2) and the matrix 

X(s) Y(s) 
0 Z(s) 

has invariant polynomials a[(s),a'2(s),• • • ,a'k+q(s). 

(d) There exists an q x n matrix pencil, denoted again by *, such that 

i r . - r . n i n ' [ S / n - A ' ] (10) 
n(sin - A) 

where II and IT denote the maximal annihilators of B and B', respectively. 



Some Remarks on Matrix Pencil Completion Problems 6 7 1 

P r o o f of Proposition 1. The assertion (a) means exactly that [sln — A — 
BF, — BG] ~ [sln—A', —B']. Since G is of full column rank, there exists an invertible 
matrix, say H G R(m+?)x(™+9), such that G = H[Im,OqXm]r. Then it can readily 
be verified that 

[sln - A, B] ~ [sln -A-BF, -BG, *] - [sln - A', -B', *] 

and reversely, which establishes the equivalence between (a) and (b). 
Similarly, if BG = B', then there exists a matrix P of full row rank such that 

n = PW, which implies 

PU'[sIn - A'] = n[5 /n - A - BF] = n[5 /n - A]. 

Further, since P is of full row rank, there exists an invertible matrix Q G R(n-™)x(n-m) 
such that P = [0(n_m_g)X g , /n_m_9](5 and (d) follows. 

Conversely, if there exist invertible matrices Q G R("-™)x(n-m) a n ( j — ^ p x n 
such that 

\(sIn-A)]=QU'^-A,1lT 

for some matrix pencil *, then n = [0(n_m_q)xq,In-m_q]QU'T, which implies that 
there exists a matrix G G I ( m + 9 ) x m , rankG = m, such that B' = TBG and 

HA = [Oq,In_m_q]QU'A'T = UT^A'T. 

This gives that A' = T[A + BF]T~l, F G R( m +^ X n , and the equivalence between 
(a) and (d) follows. 

Finally, the equivalence between (a) and (c) is proved in [15]. • 

Each of the above formulations has some strong points that suggest how the 
problem could be approached. At the first glance the statement (c) seems to be 
most useful. Indeed, it reveals that the whole problem consists of the subproblems 
(cl) and (c2) which are mutually related since the same matrix X(s) appears in 
(8) as well as in (9). We shall first pay attention to the subproblem (cl). In terms 
of matrix pencils this completion problem was studied in [1], where necessary and 
sufficient conditions of solvability were established, and then (later on and using the 
polynomial matrix approach) was reconsidered in [14]. 

Here, alternative conditions derived from those in [5] are presented. These con­
ditions are in certain sense simpler than those established in [1, 16] and moreover 
provide a natural generalization of Rosenbrock's and Heymann's results on the in­
variant polynomials and controllability indices assignment; see Remark 4 below. 

Lemma 1. When k = 0, the problems defined in Proposition 1 are solvable if and 
only if 

c*i{s) = 1 f o r i - 1,2-... ,n, (11) 
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Y, C'j^ S ci> « = l,2,...,n, (12) 
j\c'j<% j\Cj<Í 

J2&j > 5ZCJ' » = 1,2,... ,m + 9> (13) 
3 = 1 3=1 

where equality holds for i = m + q and Si > 0*2 > . . . > 8m+q is the non-increasingly 
ordered list {degaj(s)} U {c{}m. 

For the p r o o f of Lemma 1 see [5]. 

Remark 4. It is worth pointing out that the solvability conditions (12) and (13) 
reduce to simpler forms in some interesting particular cases. For instance, if m = 0, 
the condition (12) vanishes and (13) becomes 

i i 

^ d e g a ^ s ) > 5 ^ C j > i = 1,2,... ,n (14) 
3=1 j=1 

where equality holds for j = n and, by convention, C{ = 0 for i > q. These conditions 
are well-known (see e.g. [20]) and have been discussed many times in the control 
literature; see for example [9, 10, 24, 26] and references therein. 

Next, if the list {a'i(s)}q is not specified, the condition (13) reduces to 

i i 

Yl C'J - 5Z CJ; > *= lj • • • * m + q 

j = i i = i 

These conditions are implied by (12) and are necessary and sufficient for this par­
ticular case. They were given in [6] for the controllability indices assignment by 
non-regular state feedback; see also [1, 5, 10, 13, 18] and references therein. 

The second subproblem gives rise to another kind of completion problems that is 
considered in [21, 22], 

Lemma 2. Let Z(s) G )R/:><fc[s] be as in Proposition 1, i.e. with the invariant 
polynomials a i (s) ,a2(s) , • • • ,afc(s). Then there exist matrices X(s) and Y(s), as in 
Proposition 1, such that the matrix (8) has a[(s), a'2(s), • • • ,a'k+q(s) as its invariant 
polynomials if and only if 

^(8)^(8)1^(8), 1 = 1,2,...,* (15) 

The only problem now is whether the conditions stated in Lemma 1 and Lemma 2 
can be tied together. This query is answered in [15]. 
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Lemma 3. If there exists a solution to the problems of Proposition 1, then the 
invariant polynomials of the matrix X(s), say </>i(s)><Ms), • •. ,0g(8), satisfy the 
condition 

3 j 

Y[(Ji(s) is divided by JJ&(s) , j = l , 2 , . . . , g (16) 
t= i i= i 

with equality for j = g, and where 

_____________________ , . _ , , „ ,17, 

and 

P)(s) = \cm(aj(s),a,
j+q_i(s)), i = 0 ,2 , . . . , 9 , j = 1,2,... ,n + i (18) 

where ai(s) = 1, a^(s) := 1 for i > n. 

With the help of Lemmas 1 - 3 we are now able to establish new solvability con­
ditions for the problems stated in Proposition 1. 

Theorem 1. The problems stated in Proposition 1 have a solution if and only if 
the following conditions hold. 

^'i+q(s)\ai(s)\a,
i(s) , i = 1 , . . . ,n (19) 

where by convention a[(s) := 1 for i > n, 

£ c'j^ E c i> t = l , 2 , - . . , n (20) 
j | c : < i i | c j < t 

and 
i i 

J2SJ^Y,CJ> t = l i 2 , . . . , m + gJ (21) 
i = i j = i 

with equality holding for i = m + q and where {^}m+<7 denotes the non-increasingly 
reordered list {cJmU{deg<7j}g. The polynomials &i(s) and /3j(s) are defined in (17) 
and (18). 

P r o o f of Theorem 1. (A sketch). The conditions (19) and (20) are conditions 
established in Lemma 1 and Lemma 2 for the subproblems that are a fortiori solved 
in Proposition 1 implying that they must hold in this case, too. The conditions 
(21) are based on the conditions (13) where {5i}m+q is now given by the reordered 
list {c'i}m U {deg0i}g where, as in Lemma 3, {<j>i(s)}q is the list of the invariant 
factors of X(s). Observe that, since {5-}m+<7 is the reordered list {c'Jm U { d e g a ^ , 
conditions (16) imply that 

i i 

^i>]_Z6^ * = 1 . 2 , . . . , m + <7. 
j=l j=l 
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This leads to the necessity of conditions (21). 
The sufficiency of the conditions (19) - (21) follows from a constructive procedure 

that is similar to that in [5, 15]. • 

Remark 5. The conditions (21) can also be written in the following form. 

n+ti i—ti i n 

]Tdeg/^(s) + ^ c ; . ^ ^ c . + ^ d e g a ^ s ) , 1 = 1,2,...,™ + ? 
3 = 1 3 = 1 3 = 1 3 = 1 (22) 

where U is the number of elements of the list {aj} in the sublist {Sj}i of {Sj}m+q. 
These inequalities were already derived in [16]. They avoid the calculation of ai(s), 
i = 1 , . . . , q, or at least their degrees, and hence they could be more convenient from 
the computational point of view. 

2.2. Conditions for right invertible pencils sE — H 

Going back to the original problem, i. e. the column completion of right invertible 
pencils, it can be seen that finding solvability conditions is just a matter of applying 
the conformal mapping (6) to the pencils. The proposition below exactly describes 
how the Kronecker invariants are transformed. 

Lemma 4. Let (sE-H) be a right invertible matrix pencil with E, H e RnX(n+m+<i) 
whose Kronecker invariants are column minimal indices ci,C2,.. . ,cm+q, invariant 
polynomials a\ (s), OL<I(s),... ,an(s), and infinite zero orders n\, n 2 , . . . , np that are, 
by convention, non-increasingly ordered. The mapping C defined by 

sE-H^-> C(sE -H) = wE-H , 

where E = aE - H and H = —E, is a one-to-one correspondence on K™x("+™+9) x 
^nx(n+m+q) jf a j s n o t a z e r o 0fsE-H, then the Kronecker invariants oiwE-H are 
column minimal indices C\, C2,... , cm+q and invariant factors 5L\ (W) , 6t2 (W) , . . . , an (w), 

ai(w) = on (]~^) wd*sQi^wni , (23) 

where ni = 0 for i > p by convention. 

Assuming now that [sE - H, *] ~ sM - IV, it readily follows that [wE - H, *] 
~ [wM — IV] and reversely. Hence, the problem of column completion of right 
invertible pencils comes down to the problem of completing a pencil that has no 
infinite elementary divisors, the case that is treated in Theorem 1. And as the 
conformal mapping C is a one-to-one correspondence between matrix pencils, it is 
also a one-to-one correspondence between their Kronecker invariants. This implies 
that the necessary and sufficient conditions stated below can directly be deduced 
from Theorem 1. 
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Theorem 2. Given a right invertible pencil sE' - H' G RnX(n+m)[s] with invari­
ant polynomials a'i(s), i = 1,2,... ,n, column minimal indices c'{, i = 1,2,... ,m, 
and infinite zero orders n'{, i = 1,2,... ,p and a right invertible pencil s__? — HE 
^nx(n+m+q) . - . j ^ invariant polynomials ai(s), i -= 1,2,... ,n, column minimal in­
dices Cj, i = 1,2,... , m + g, and infinite zero orders n*, i = 1,2,... ,p, then there 
exists an n x q pencil • such that 

[sE' -H', *]~sE-H 

if and only if 

a ' i+>) M * ) K 0 0 , t = l , . - . , n (24) 

where by convention a'^s) := 1 for i > n, 

™'i+</ < ™i < n\ , i = 1 , . . . ,p (25) 

where nj := 0 for i > p, 

_C c i ^ _C c ' ' » = 1,2,... ,n, (26) 
J\c'j<i j\cj<i 

i i 

J^S'J >Y,Cj,i = 1,2,..., m + q (27) 
j = i j'=i 

with equality holding for i = m + q, where {<$"}, denotes the reordered list 

{c.}mU{deg(£.(«;))}<, and 

0j-(t_) = lcm (a i(t_)>aj+ ,_ i(t_)), t = 0 , . . . ,q, j = 1 , . . . ,n + » 

with d.(uj) and a'^w) being defined in (22). 

Remark 6. Similarly, as in Remark 5, denoting U the cardinality of the list {CT,} 
in the sublist {S'J}% of {S'J}m+q, the inequalities (27) can be rewritten in the form 

n+ti _ i—ii i n p 

_£{deg/J}'(a) +max(n j,n;.+._..)} + ] T ^ > £ C j - + £degay(*) + £ n * 
j=i j=i j=\ j=i j=i 

for i = 1,2,... , m + q where /3j(s) is defined in (18). 

Remark 7. The fact that the pencil sE' — H' as well as the completed pencil 
sE — H are right invertible implies that p < p' < p + q. An interesting particular 
case is when the number of infinite elementary divisors is not modified. In the 
case when p = p', the completion can be performed with a constant matrix •, and 
reversely. 
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3. ROW COMPLETION OF RIGHT INVERTIBLE PENCILS 

The statement (d) of Proposition 1 reveals another particular case of the matrix 
pencil completion problem that is called the row completion problem. The most 
general case of this problem is described by the following relationship. 

sE' - H' 
* ~ sE-H. (28) 

In words, given pencils sE'- H' G R< n + m ) x n [s ] and sE-H e R<n+m+*>x n[.s], find 
conditions under which the pencil sE1 — H1 can be completed by another pencil, 
denoted by •, such that the relationship (28) holds. 

It is easy to see that, under the condition that the above pencils are left invertible, 
the row completion problem (28) is just the dual version (taking transposition) of the 
column completion problem solved in Theorem 2. Thus, the solvability conditions 
for this problem are an obvious analog of the conditions (24)-(27). 

Corollary 1. Given a left invertible pencil sE' - H' G R( n + m > x n [ s ] with invari­
ant polynomials a'i(s), i = 1,2,... ,n, row minimal indices r[, i = 1,2,... ,m, 
and infinite zero orders nj, i = 1,2,... ,p, and a left invertible pencil sE — H G 
^(n+m+q)xn w ^ invariant polynomials cti(s), i = 1,2,... ,n, row minimal indices 
r*, i = 1,2,... ,m + qr, and infinite zero orders n-;, i = 1,2,... ,p, then there exists 
an q x n matrix pencil • such that 

sE' -
* ~ sE-H 

if and only if 
« i + g ( s ) l Q i ( 5 ) l a - ( s ) , i = l , . . . ,n 

where by convention a^(s) := 1 for i > n, 

K+q < ni < ni > * = !»••• >P 

where n\ := 0 for i > p, 

j\r'.<i j\rj<i 

m+q m+q 

i = l j = i 

where {6"}m+ denotes the reordered list {r;-}m U {deg (ai(w))}ql 

- , 0{(w)fo(w)...pn+i(w) 

°AW) ft-Hw^M-RŮ-iM 
, . = !,. ,Q, 
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and 
P)(w) = 1cm (ajMt&j+^iiw)) , i = 0 , . . . ,g, j = 1 , . . . ,n + i, 

with di(u;) and aj(w) defined analogously to (6). 

But there exists another relationship between the row and column completion 
problems, which is based on the equivalence of the statements (b) and (d) of Propo­
sition 1. To this end, suppose that the pencil s£ — H is already in its system form 
given by the matrices A,B, and C, i.e. 

sS-Ћ = 
sln - A - B 

-C 0 

and consider the pencil 

s£-Ҡ:= 
n(«/„ - A) 

-c 

with II being the maximal left annihilator of B. The pencil s£ — H will be called 
the reduced pencil of s£ — T~L. Thus, according to Remark 1, we consider just pencils 
the ni-blocks of which are of sizes n, > 1. 

Remark 8. 

(si) If the pencil s£ — H is right invertible, then the corresponding reduced pencil 
s£ — 7l is right invertible, too. 

(s2) If there exists another pencil 

s£' - H' = 
sIn-A' 

-C 

-B' 

0 

that can be completed by columns such that [s£ — H, *]~s£' - H', then the 
pencil s£' — H' can be completed by rows such that 

sS' - П' 

* ~ s -Ћ 

(s3) If the reduced pencil s£ — H of s£ — W. is described by the invariant factors 
ai(s), column minimal indices c*, infinite zero orders n*, and row minimal 
indices r*, then the pencil s£ — 7i has the same invariant polynomials a»(s) 
and row minimal indices r», while its column minimal indices and infinite zero 
orders are given by c\ + 1 and n* + 1, respectively. 

(s4) Any matrix pencil sE - H is equivalent to the reduced pencil s£ — H that is 
defined by a triple -4, S , C. 
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Remark 8 summarizes the facts enabling to solve the matrix pencil completion 
problem (28) for the right invertible pencils. Based on (s2) and (s4) of Remark 7, 
this can be done by applying Theorem 2 to the pencils s£' — %' and s£ — W. The 
resulting conditions can finally, using (s3), be rewritten in terms of the Kronecker 
invariants of s£ — H and s£' — W. 

Theorem 3. Given a right invertible pencil sE' - H' G Kn X(n + m )[s] with invari­
ant polynomials a'i(s), i = 1,2,.. . , n, column minimal indices cj, i = 1,2,... ,rn, 
and infinite zero orders n'iy i = 1,2,... ,p ' and a right invertible pencil sE — H G 
fl£(n+g)x(n+m) ^ ^ i n v a r iant polynomials <*i(s), i = 1,2,... , n, column minimal in­
dices Ci, i = 1,2,... , rn — q, and infinite zero orders n*, i = 1,2,... ,p, then there 
exists an q x (n + m) pencil, denoted by *, such that 

sE' -
~ sE-H 

if and only if 
ai+q(s)\a'i(s)\ai(s) , i = 1 , . . . ,n, 

where by convention a'^s) := 1 for i > n, 

™i+<7 <ri'i<m, i = l , . . . ,p' , 

with ni := 0 for i > p, 

_y2(cj + l)< J2 (^ + 1 )^ = 1,2,... ,n, 
j\cj<i j|c^.<i 

i i 

j=i j=i 

a n ( l m ?n 

£«; = E4. 
j = i j = i 

where {S'i}m+q denotes the reordered list {ci + l}m_q U {deg (&i(w))}q, 

- ( ^ P\(w)p2(w)...pn+i(w) . 
(JAW) := -z—— ——: r̂—: , i = 1 , . . . , a, 

0j(ti>) := l c m ^ ^ . a ^ f c . ^ u ; ) ) , i = 0,... ,q, j = 1 , . . . ,n + i, 

where ati(w) and a'^u;) are defined by 

and 

- i \ (\ + aw\ 

ai{w) := в ł ( _ _ _ j 
. , jl + aw^ 
a.(«0 === «* ^—Ü;—j 

^ d e g a ^ s j ^ n i + l 

^ d e g a j ( s ^ n j + l 
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R e m a r k 9. As the pencils sE' — H' and sE — H are right invertible, it follows 
that p' < p < p' + q. This implies, in case the number of infinite zero orders is 
not modified, tha t p = p ' , and the conditions of Theorem 3 are satisfied, i .e. the 
completion can be realized with a q x (n + m) constant matrix only. 

Analogously, when sE — H and sE' — H' are left invertible pencils, necessary and 
sufficient conditions for the existence of a column completion such tha t (7) holds 
can be obtained by a "dualization" of Theorem 3. 

4. CONCLUSIONS 

Several results concerning the matr ix pencil completion problem, which were achieved 
during the last five years, are discussed and summarized in the paper. The basic 
results on which the paper is built up are introduced in Proposition 1, subsequent 
lemmas, and Theorem 1. A generalization to the right invertible pencils is then 
achieved in Theorem 2. The second line of generalization (row completion of right 
invertible pencils) is based on the assertion (d) of Proposition 1. This approach is 
somewhat novel and completes the picture about the right/left invertible pencils. 

The matr ix pencil completion problem is still unsolved in its full generality and 
the authors of the paper believe tha t the reader interested in tha t problem will find 
items of useful information in the above text . 
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