
K Y B E R N E T I K A — V O L U M E 4 0 (2 0 0 4) , N U M B E R 3, P A G E S 3 6 5 - 3 7 9

THE DIAMOND TOOL: A WAY OF EFFECTIVE
DEVELOPMENT AND UTILIZATION OF KNOWLEDGE

ZDENKO STANÍČEK AND F I L I P PROCHÁZKA

This paper presents the Diamond Tool for knowledge management. The main objective
of its specification and implementation was to create a universal and easily extendable tool
for efficient work with knowledge. One of its extensions is the eTrium technology.

The principal idea behind this technology is to represent explicitly the knowledge used
by the information system by means of a knowledge agent built on the Diamond Tool - in
contrary to current approaches, where knowledge is present implicitly (in a disintegrated
form) in the program code, the database structure and internal regulations of the firm.
Explicit representation of knowledge and the method of work with knowledge that is sug
gested in this article, allows to build information systems of much higher quality in lesser
time. Equally important is also the possibility of automatic or semi-automatic verification
of knowledge managed by the knowledge agent.

The paper shows how this can change the way applications are created and what it can
be used for. Several commercial projects has already been implemented in the Diamond
Tool - by means of the eTrium technology.
Keywords: knowledge management, information system architecture, knowledge represen

tation, business rules, business rules engines
AMS Subject Classification: 68N30, 68P20, 68Q55, 68T30, 68U35

1. INTRODUCTION

Despite all the efforts in creating new methods, techniques and technologies of IS
development, the problem of inadequate and untimely IT support of the changing
business requirements remains topical. In search of a solution to this problem, we
aim at improving the quality of the description of required system functions, and,
possibly, of processes that should be supported by the system; and also at the
description of the required information capability.

A very important fact is that it is not feasible to enumerate all the possible
functions of such a system. Today we do not know the form and requirements of
business actions that we will urgently need in half a year [13]. Therefore, the entire
system has to be flexible enough to allow support of business activities with new
ways of information processing and new types of information records.

At present, a substantial growth of the importance of rule based systems [1, 2]
can be noticed. These systems can be best characterized by the following quotations

366 Z. STANÍČEK AND F. PROCHÁZKA

from the Business Rules Manifesto [3]:

• Rules, and the ability to change them effectively, are key to improving business
adaptability.

• A business rule system is never really finished because it is intentionally built
for continuous change.

• Rules define the boundary between acceptable and unacceptable business ac
tivity.

• Rules are explicit constraints on behavior and/or provide support to behavior.

• Rules are about business practice and guidance; therefore, rules are motivated
by business goals and objectives and are shaped by various influences.

• Rules are basic to what the business knows about itself - that is, to basic
business knowledge. Rules need to be nurtured, protected, and managed.

• Rules are essential for, and a discrete part of, business models, system models,
and implementation models.

• Terms (of natural language) express business concepts; facts (in a form of
connections) make assertions about these concepts; rules constrain and support
these facts.

The Gartner Group [5] predicts a dramatic growth of commercial importance of
rule based systems and various business rule engines (BREs) for the years after 2003.
All these systems use, in fact, work with knowledge that is explicitly stored in the
form of rules.

The wreb pages of Pegasystems, Inc., [7] provide quite a complex range of com
mercial solutions built on the so-called PegaRULES Process Commander, which is
their patented BRE. Solutions include building of enterprise process flows, managing
complex works, web services, security model, etc.

In the article "Business RULES-Show Power, Promise" [4], Ellen Gottesdiener
describes business rules - what they are, why they are important, how they are used.
She also deals with their relations to expert systems and information systems, and
with their impact on ICT paradigms. Moreover, she enumerates various examples
of applications of the business rule approach, e.g., among others: ObjectPool from
Sapiens, Tel Aviv, or Performer, a model-driven application development tool from
Texas Instruments, Inc. Both of them are application generators that integrate
business rules. Another examples are the Vision Builder from Vision Software,
Oakland, or the Usoft Developer from Usoft Corp., Brisbane, Calif. These are
repository-driven application generators. The latter use the notion of declarative
business rules and a business rules engine to drive the development process and
permit an automatic generation of application components based on business rules.
Usoft Developer, for example, uses business rules as the central paradigm for all
aspects of the application development lifecycle.

Another perspective of the state-of-art in business rules driven applications is pre
sented in the article [6]. This article explains the role of business rules in information
systems, classifies individual types of business rules, and especially, compares vari
ous traditional methodologies of IS design from the point of view of their suitability

The Diamond Tool: A Way of Effective Development and Utilization of Knowledge 367

for easy business rules specification. The article shows that common methods are
insufficient or at least inconvenient for complete and systematic modeling of business
rules.

Our solution, that is presented in this paper, has been developed separately from
the above cited solutions. Only at the stage of test operation of pilot applications
built over the Diamond, we learned about the above quoted results. From what we
know about the BRE solutions ([1, 2, 3, 4, 6, 7]), it can be concluded that the general
basis of BRE in the form of the Diamond slightly differs from these solutions and, in
certain aspects, it seems to provide rather promising solutions. Its advantage is its
elaborated formal model (cf. further in this text) and especially the fact that due to
a universalistic approach it provides a sufficient and convenient tool for complete and
systematic modeling of business rules. The main differences between this approach
and the above mentioned solutions could be described by the following statements:

(1) We do not create an application generator where modeling is separated from
using the model. Instead, we create one system that can be used for both - the
modeling of business and using the models to support the business.

(2) We have no special tools to maintain and handle business rules; business rules
arc handled as any other object of our interest.

Our approach could be effective if the need for efficient changes is crucial. Tradi
tional BRE solutions could be more efficient if the performance of IS is crucial.

2. THE DIAMOND TOOL DEFINITION

At the beginning of the Diamond Modeling Tool there was the integration of ideas
belonging to two, seemingly remote, areas: the area of conceptual modeling and
attempts to find a universal modeling tool for the work of analysts and data modelers,
[9, 10, 14], and the area of modeling of cognitive processes and attempts to find a
universal tool for modeling of cognitive agents [8]. The outcome of this integration is
the specification and implementation of the Diamond Modeling Tool. This tool can
be used for modeling and simulation of any conceptual system, i, e., for example, for
modeling of a conceptual system that an analyst aims to discover in the analysis of a
given business area, or for modeling of the conceptual system of an agent simulating
the behavior of a particular biological system.

If we want to get to know something, we have to focus first on individual objects
(#Object) of the world we are getting to know. This world may be represented by
anything: the material world around us, documents containing records about this
world, but also the world of ideas, or the world of ants. To focus on an individual
object means to differentiate it from everything else, to identify which phenomenal
instances represent the same object, and finally, to be able to describe the properties
of this object.

Objects alone are, however, usually less interesting for us than their particular
connections (^Connection). These connections are, in a certain sense, stable, and
may play the role of factual knowledge of these objects. Connections can be deter
mined by a mere grouping of objects that shows visible stability (n-tuples of objects),

368 Z. STANÍČEK AND F. PROCHÁZKA

or by a function that assigns objects of one type to objects of the same or a different
type with a certain meaning, i.e. semantics.

If we want to work with objects and their connections in any way (record them,
delete them, assign some properties to them, search for objects of given properties
that participate in given connections, e tc) , we have to introduce operations ^ O p
eration). They are introduced, particularly, in order to be used. If we could only
speak about operations, we could not use them for work. However, to speak about
operations is also meaningful, for example, in order to clarify which operations are
crucial for us.

But let us return to connections. We frequently speak about connections - we
make different assertions about them. Further, we use connections. For example,
the answer to the question "Which particular documents have been approved?",
is acquired by using the connection "documents that are placed into the category
Approved documents".

Knowledge does not concern only individual objects, individual connections or
individual operations. Knowledge concerns also our classification of individual items
into categories (#Category), and our stating rules (#Rule) about it. Knowledge is
that an object belongs to a category, or that a certain rule is valid for a certain
category of objects.

When we speak about a category, we speak about it as about any arbitrary object.
But when we want to use a category, we have to know by means of which connection
it was created (defined) and by means of which operation we can evaluate what
belongs to the category and what does not belong there.

Rules, similarly to categories, are determined by a specifying connection and an
evaluating operation. The specifying connection describes, in the language of objects,
what is the test carried out for the given model by a respective evaluating operation
about. Further, when we speak about a rule, we do so as in case of categories: as
about any arbitrary object. However, if we want to use a rule, then we use specifying
connections and evaluating operations.

Anything that we want to mention is an object, i.e. an element of the class
(#Object). Class (#Object) forms the centre of the "Diamond Diagram", cf. Fig
ure 1.

Any ideational construct that can be used for arrangement of some elements,
where an element can be anything on which we can focus, will be called a container.
Elements can be inserted into the container as well as removed from it. Containers
used in the Diamond will be defined by specification of elements that belong to
them. Every element stored in DMT that represents an object of the examined
reality (an entity) on which we are able to focus will be called a dmt-object. We will
say that a dmt-object represents an object of the examined reality for the purposes
of modeling.

Definition 1. Container (#Object) is defined in such a way that it contains all
such dmt-objects which can be mentioned in DMT, i.e. which can be assigned
certain properties.

If the object on which we focus turns to be a connection or an operation or a

The Diamond Tool: A Way of Effective Development and Utilization of Knowledge 369

category or a rule, and we will want to use this connection or operation or category
or rule, then we connect it to (#Connection) or (#Operation) or (#Category) or
(#Rule), respectively, by an edge Rl or R3 or R2 or R4. Then we say that this
object from the class (#Object) represents this connection or operation or category
or rule - cf. Figure 1. Note: an object may represent only one of the four mentioned
possibilities.

Category Rule

Operation

Fig. 1. The Diamond Tool diagram.

Definition 2. Container (#Connection) is defined in such a way that every of its
elements is an n-tuple of dmt-objects, where n is some finite natural number. Every
eiement of the container (#Connection) is called a connection.

Definition 3. Container (#Operation) is defined in such a way that every of its
elements is an algorithmically computable transformation of one state of DMT to,
generally, another state of DMT. By the state of DMT we mean one particular
filling of DMT (as a container) by elements-instances, that may dwell in DMT. The
elements of the container (#Operation) are called operations.

Definition 4. Container (#Category) is defined in such a way that every of its
elements has the following properties:

1. it is a container for dmt-objects,
2. it is one-to-one mapped to the pair (Cn, Op), where Cn £ (#Connection),

Op € (#Operation); and,
3. it holds about the operation Op that by means of the connection Cn it can

recognize whether a given object is or is not in this container.
The elements of the container (#Category) are called categories. The connection
Cn is called a defining connection of this category. The operation Op is called a
defining operation or an evaluator of this category.

370 Z. STANÍČEK AND F. PROCHÁZKA

Definition 5. Container (#Rule) is defined in such a way that every of its elements
has the following properties:

1. it is a dmt-object,
2. it is one-to-one mapped to the pair (Cn, Op), where Cn G (#Connection), Op

G (#Operation); and,
3. operation Op, by means of the connection Cn, carries out a test whether the

rule is valid, i. e. the operation returns the value True if the test is successful,
and value False in the opposite case.

The elements of the container (#Rule) are called rules. The connection Cn is called
a specifying connection of this rule. The operation Op is called a specifying (or
testing) operation of this rule.

The edges 01 and 02 in Figure 1 link a category with, respectively, a defining
connection and an evaluating operation of this category. The edges 03 and 04 link a
rule with a specifying connection and an testing operation of this rule. The Diamond
Diagram contains, moreover, the so-called P-edges (projection edges) that link indi
vidual objects with a connection that describes the given relationship between these
objects.

The Diamond Tool has to be provided with a set of operations in order to per
mit its utilization and modeling of business rules by means of it. These operations
are divided, according to their semantics, into families of operations. We need a
family of operations for creating, deleting, updating, making accessible and rec
ognizing dmt-objects (CREATE, DELETE, WRITE, READ, OBTAIN, LABEL),
a family of operations for "traveling" around the circumference of the Diamond
(GET.CONNECTION, GET.OPERATION, GET .CATEGORY, GET.RULE), and
a family of operations for work with P-edges (projection of a static connection onto
its component, adding and removing an element to/from a dynamic connection,
testing if an element belongs to a connection, e tc) .

In the following text, we will discuss in greater detail those operations that make
the Diamond Tool a universal modeling tool. Edges Rl, R2, R3 and R4 are jointly
called R-edges. R-edges are used for execution of transition between mentioning
(operation MENTION) and using (operation USE) and vice versa. If we stand on
some particular object of the class (#Object), which we have mentioned somehow,
then by the operation USE we cross, along the respective R-edge, to the represented
connection (#Connection) or operation (#Operation) or category (#Category) or
rule (#Rule), which we can then use directly. The particular operation is specified
as follows (+ stands for an input parameter, and — for an output parameter):

2.1. use_obj(+Idobj,-Idnode)

Used for acquiring a dmt-object - an instance of a Diamond vertex that is represented
by the given object, i. e. for transition from the centre of the Diamond to the
respective vertex. The operation fails if the given object does not represent anything.

Operation USE may fail on objects belonging to (#Object) that are a "mere"
object and do not represent any category, operation, rule or connection. An example
of such an object can be a concrete document.

The Diamond Tool: A Way of Effective Development and Utilization of Knowledge 3 7 1

2.2. mention(+Idnode , -Idobj) .

If we are on one of the vertices of the Diamond Diagram, then the operation MEN
TION takes us, along the respective R-edge, to the representing object which we
can then mention directly. Formally:

Used for acquiring a representative object of a given dmt-object that is an instance
of one of the Diamond vertices, i. e. for transition from the given vertex to the centre
of the Diamond. If Idnode is an instance of a dmt-entity (#Object), then Idobj will
be unified with Idnode.

2.3. use_con(+Idcon,-IdobjJist)

Operation USE applied to a connection belonging to (#Connection) permits to use
this connection (to find out what is connected to what, or possibly, to have the
possibility to complete a record about a particular connection). Formally:

It returns a list of objects - its components Idobj Jist - to the given connection
Idcon.

2.4. use_ca t (+Idca t ,+Arg l i s t)

Similarly, the operation USE applied to a category belonging to (#Category) permits
to use this category (to find out about its current content, whether a given object
belongs to it, or possibly, to add further elements to this category). Formally:

Using a category means to run an operation, linked with the category by the rela
tion 02. The arguments of this operation are the category used Idcat, a connection,
linked with this category by relation 01, and arguments listed in the list Arglist.

2.5. use_ope(+Idope,+Arglist)

Operation USE applied to an operation belonging to (#Operation) simply executes
this operation. Formally:

It runs a given operation Idope and gives it as its arguments the content of the
list Arglist. Arglist may contain both instantiated as well as free variables. What
happens in case of free variables in Arglist is determined by how the used operation
was defined within the respective operation CREATE.

2.6. use_rul(+Idrul,+Arglist)

Finally, operation USE applied to a rule belonging to (#Rule) runs execution of a
test that checks the validity of the given rule. Formally:

Using a rule means to run an operation linked with the rule by the relation 04.
The arguments of this operation are the rule used Idrul, a connection, linked with
this rule by relation 03, and arguments listed in the list Arglist.

Thanks to the universal construction of categories we can work with different
types of categories. For example, we can work with categories specified by the list
of their elements (the specifying connection of a category then contains directly the
elements of the modeled category), or with categories that use their relationships

372 Z. STANÍČEK AND F. PROCHÁZKA

to other categories for the evaluation of their own content, or fuzzy categories, or
categories that are evaluated by means of neural networks. Similar freedom can be
applied in rules creation (#Rule).

Thanks to representative edges Rl, R2, R3 and R4, we can mention any of the
entities in Figure 1 - i.e. to relate it with other entities, categorize it and fill its
attributes. We can create connections, e.g. between categories (more accurately,
between representative objects of these categories), or between categories and rules,
we can categorize the categories, e t c This is the major difference when compared to
the majority of modeling tools where the modeled world is strictly separated from
the world by means of which we model. There is only one world for DMT. Further,
in DMT it is possible to integrate models of various extent of abstraction and diverse
purposes. Thus, we can create one model, and another above it which is used for
tuning of the first model; and still another model above these two that learns from
their interaction.

The Diamond is used within business as follows: when we support execution of
business processes, we focus on the centre of the Diamond. We record and evaluate
information about objects on which we focus, and we do so by means of the Diamond
vertices. When we improve the model for support of business process execution, we
focus just on categories, connections, rules and operations, i.e. on the diamond ver
tices. Thus we may imagine that alternation of utilizing knowledge and developing
knowledge is represented by regular "throbbing" of the Diamond, as if it were a
heart of a living creature.

DMT is implemented in Prolog (current version is 1.4.3) and it is used as the core
for building of other systems in the form of its plug-ins.

3. IS ARCHITECTURE

One of such plug-ins is the knowledge agent (KM agent) that is the key component of
information'systems built in the eTrium technology. In this chapter we will present
further components of the eTrium technology and the way they communicate.

Design of the architecture is shown in the diagram in Figure 2. The meaning of
its three key components (Communication and Interface - Database - KM Agent)
is the following:

Communication and Interface means a web solution, i. e. a company intranet;
the logic of display and communication of information (in the directions system-user
and system-system) is programmed there.

D a t a b a s e is a store of facts prepared in such a way that it is easy to report them
from the database according to arbitrary requests. Technologically, it is solved as a
relational database.

K M A (Knowledge Management Agent) is a program, by its nature belonging
to the sphere of AI, that implements the whole business logic with the help of a
centralized knowledge base; the knowledge (management) agent can provide for work

The Diamond Tool: A Way of Effective Development and Utilization of Knowledge 373

with knowledge in the rhythm of the Diamond's throbbing, because technologically
it is a plug-in to DMT.

The basic principle underlying the co-operation between these components is:
The component Database serves as a data store. It records not only facts explicitly
entered by users, but all other facts that are inferred from the entered facts by the
KM agent (contrary to deductive databases, where facts are inferred during queries).
The component Communication and Interface then benefits from the fact that all
necessary facts have been already prepared and inferred in such a way that it can
read them directly from the Database. Its program code therefore does not include
the knowledge of how to infer facts (for example, facts about the approval procedure
of these documents) from another kind of facts (for example, facts concerning the
matter-of-fact content of documents).

Request for J /

ґ >
Communication

and interface
^ J \ \ Queriesand

DB u p d a t e X

üpdate by requested
and derived facts

\ \ answers

ґ ^
üpdate by requested

and derived facts f
Database

(data store)
KMA

f
Database

(data store) V J Known facts

f
Database

(data store)

Fig. 2. Architecture of IS in the eTrium technology.

We will show now that a system built in this architecture can be used both as an
IS for the support of operative execution of business processes, and as a modeling
tool in which it is possible to develop and modify its way of functioning (in the role
of an IS).

The description of logic of communication (co-operation) between components is
divided into four cases [13]. Case A describes routine queries for information during
the support of operative execution of business processes in a company/organization.
In case B, the same system is used for a necessary update of the state of the informa
tion database. In both cases the system is used in a situation when the information
process is used. Case C describes tuning of business and the model. Here, the same
system is used in a situation when it is necessary to mention (i. e. to analyze and
develop) changes in operative processes. Case D describes revisions of strategy and
creation of a model. Again, it is a situation when it is necessary to mention methods
of process execution.

Case A. A user or another system requires an answer to a query: The pair of edges
"Queries about the state of the database, and answers" represents internal commu
nication between technological components in the process of answering queries. The
component "Communication and Interface" provides that the system environment is
able to formulate a query and send it to the component "Database". The component
"Database" interprets the query and returns an answer (in the form of a list of facts)
to the component "Communication and Interface". This component then provides

374 Z. STANÍČEK AND F. PROCHÁZKA

display of information for users or another system in the required form. Correctness
of the inquiry action (no interruptions caused by an update, etc.) is guaranteed by
the component "Database" by its inner mechanism-which is a common function of
every reasonably usable database engine (DBMS). The KM agent therefore does not
participate when facts are read from the data store.

Case B. A user or another system wants to update the content of the facts database:
When a user or another system expresses a "Request for update of the database"
(see the respective edge in the diagram in Figure 2), then:

1. The component "Communication interface" allows to formulate this request
(provides the necessary form) and sends the update request to the KM agent.

2. For each update request the KM agent asks the database for known facts that
concern the record being updated (relevant context).

3. The KM agent, on the basis of knowledge base and relevant contexts, infers
further update actions that have to be done.

4. The KM agent executes both requested and inferred update actions over the
database in the component "Database".

Case C. Users find out that it is necessary to modify business rules or the method of
their IT support:

There is a range of facts and rules of the KM agent that can be changed by
the user through forms offered by the component "Communication interface". This
range of facts and rules constitutes the "tunable" part of the model. The change of
the KM agent is carried out as follows:

1. the knowledge base is updated

2. facts that are stored in the database are made consistent with the new knowl
edge base.

This procedure may have the following form: in the database, all the facts that
were inferred by the previous version of the KM agent are forgotten and they are
inferred anew by the new version of the KM agent. The whole process has the form
of an update transaction, analogically to case B.

Case D. Users find out that it is necessary to revise the whole business logic or
methods of its IT support:

When an agreement on the changes has been reached and new (modified) sets
of rules, facts and categories accepted, a change in the system is carried out in the
following steps:

1. The state of the KM agent before the change is archived. The data base of
the "Database" is archived.

2. A new version of the KM agent, enriched with new categories, facts and rules,
is created.

The Diamond Tool: A Way of Effective Development and Utilization of Knowledge 3 7 5

3. New business rules and all their implications are tested. Debugging rules,
completeness tests, e t c , are used for this operation.

4. Review of the results of testing of the new business logic is carried out with
the client.

5. The data in the component "Database" are made consistent with the current
state of the knowledge base by the KM agent.

The system is ready to be used with the new "business logic", i.e. new business
rules and rules of business support by means of ICT.

4. THE KNOWLEDGE BASE OF KMA

Now we will deal in greater detail with the structure of the conceptual system of the
KM agent and its realization in the Diamond Tool.

First of all we need to separate the participating objects classify them into
types. This means to create a set of categories with such a characteristic that each
object belongs to only one category of this set (a set of categories is modeled as a
category the elements of which are categories). For example, the KM agent for a
concrete application of the eTrium technology that is called eDialog (cf. [12]) has
the following primary types: "Document", "Publication Project", "Editor". The
fact that a particular object is of a certain type is expressed by a fact in the form:
object belongs to a category.

Further, it is necessary to classify objects more finely according to their properties.
Again, we will use categories for this classification. It generally holds that we are
interested in those categories the instances of which we have to treat differently than
other objects in the field of business or its IT support. In case of documents, we
will need for example the categories "Document to be approved," "Document not
to be approved," "Document is displayed in the upper right window," "Document
is displayed in the News window," e tc Concrete knowledge then may have the
following form: "Price list of courses 2004" belongs to the category "Document to
be approved."

In order to be able to find our way, we need to focus also on the classification of
categories. Categories therefore will now become the objects of our focus, knowledge
will be expressed in the form: category is in a category (in the sense: "is an element
of a category"). Consider for example the categories "Possible approval states" or
"Document displaying category". Concrete knowledge then may have the form: the
category "Document to be approved" belongs to the category "Possible approval
states".

Another kind of knowledge is expressed by means of relationships between cat
egories. Frequently, we have to express knowledge of the type: if an object is in
category X, then it has to belong to category Y - e. g. if an object is in the category
"Schedule", it has to belong to the category "Document is displayed in the upper
right window". These relationships between categories are expressed by means of
rules (cf. the container #Rule in Section 2).

376 Z. STANÍČEK AND F. PROCHÁZKA

5. TWO CONCEPTUAL SYSTEMS

One of the most significant ideas of using the Diamond within the eTrium technology
is that the KM agent has two conceptual systems at its disposal: 1) the conceptual
system of the given business area, 2) the conceptual system of IT support.

Definition 6. A category that is used for the classification of objects focused on
from the point of view of some business activity, and that is not used for controlling
the IS behavior is called a business category. A category that is used for the control
of IS behavior is called an IT-category.

The crucial role of the agent is to manage the transition from the conceptual
system of business to the conceptual system of IT support. This actually means:
1) To carry out an analysis of the examined record and its relevant context by
means of the conceptual apparatus of the given business area (cf. step 3 in case
B, Section 3). 2) Based on this analysis, to describe the examined record and its
relevant context by means of the conceptual system of IT support (ibid.).

An example may be the examination of business properties of a document, and,
finding out that it is a "price list" that has already been "approved" (concepts from
the business area), this document is placed into "documents that should be displayed
on the web" (an IT-support concept).

The main reason for the existence of two conceptual systems of the KM agent is
the attempt to simplify and streamline the design and maintenance of an IS. The
reason for the existence of some category in the conceptual system of the IS is the
requirement that IS should treat the elements (objects) of this category differently
than other objects. Identification of objects that should be treated uniformly by the
IS must be straight and free of business properties.

The advantages of this approach can be shown in the following example: When
a programmer asks: "How can the program recognize those documents that can be
already displayed on the web?", there is an immediate answer to this: Those, that
belong to the category "documents that should be displayed on the web". Apply
ing a traditional solution, we would have to explain to the programmer something
like: Those, that have to undergo an approval procedure and are approved of, or
those that do not need to undergo the approval procedure and has been prepared.
Then the programmer would encode this knowledge somewThere into the program (in
other words: he would represent the knowledge by a code of an imperative program
ming language, which is one of the least suitable methods of representing knowledge
whatsoever - and it is really surprising that it is still the most used method).

When using the eTrium technology, we do not have to explain anything to the
programmer. It is sufficient to tell him the category in which he can find objects
of required properties (in our example it is the category "documents that should be
displayed on the web"). Elements are placed into the category by the KM agent
according to rules in the knowledge base. If it is necessary to change these rules (i. e.
to adjust the information system to current requirements of the client), we do not
need the programmer for this. It is enough to change the knowledge base and the
information system can immediately start working according to it (cf. Chapter 3,

The Diamond Tool: A Way of Effective Development and Utilization of Knowledge 3 7 7

case B).
In this way the eTrium technology differs from traditional approaches, where it

is necessary to find the respective programmer, explain to him what we want, then
he has to identify the place where this particular knowledge is encoded, he has to
re-code it and, finally, he has to verify that this re-coding has no side effects. In the
eTrium technology, programmers need not (and must not) be interested in business
properties of objects. Only IT properties are relevant for them. As a result, the
testing and verifying of the whole information system is also simplified.

6. KNOWLEDGE BASE DESIGN AND MAINTENANCE

It is clear that conceptual systems of knowledge agents managing real life information
systems are rather extensive, similarly to rules systems in BRE based systems [2].
Therefore, it is necessary to support somehow the design and maintenance of these
conceptual systems. We will describe two possible methods:

The first method is based on using categories as it has been described above.
The objects of focus are now categories and rules used for the specification of a
KM agent. We introduce new "tuning/testing" categories, such as, for example,
"Rules not verified yet", "Business categories that are not mapped to IT categories",
"Business categories not approved yet", "IT categories yet not supported by SW",
etc In other words, the "conceptual scaffolding" by means of which we "build" the
KM agent can be built in the same way as the KM agent is built.

The other method is based on the method of automatic verification. We want
to have verified that something cannot happen (e. g. that a document that has not
been approved yet will not be published on the web) or when something happens,
that it happens in a particular way (e. g. that in the news column only the news will
be displayed and nothing else). To find this out, we can use some of the algorithms
of artificial intelligence for state space searching, or use some of the methods for
automatic verification of knowledge systems.

7. CONCLUSION

Efficient handling of knowledge is the key that opens the way to an innovative orga
nization or firm. By means of knowledge we control processes. If we want to improve
our business processes, we have to utilize efficiently the knowledge that controls these
processes. The Diamond Tool was introduced as a means for knowledge management
together with its universal modeling capability. Its MENTION and USE operations
bring a consistent and easy way of the development and utilization of business and
IT knowledge. However, though this solution seems to be sufficient for handling of
knowledge, it does not meet the most important requirement - efficiency in practical
utilization. Therefore, a further step is necessary - the eTrium architecture. As we
have described above, the eTrium architecture is based on the combination of three
different technologies: a Java object-oriented code for the communication interface,
a database engine for universal data store, and an AI approach to the knowledge
management agent. The KM agent is built as an extension of the Diamond Tool.

378 Z. STANÍČEK AND F. PROCHÁZKA

The structure of t h e database (a universal d a t a store) is an extension of t h e Dia
mond structure. T h e world view as defined by the Diamond is also used within the
communication interface; and this part icular solution presents also the easiest way
of achieving universality of this interface. Therefore, we expect t h a t information sys
tems built within the eTrium technology will have many fundamental advantages,
compared to tradit ional solutions. Some of them could be:

• Substantial shortening of the t ime necessary for the implementat ion of an
information system - the programmers do not have to encode knowledge into
programs, the creation of the knowledge base of the KM agent is jus t about
conceptual master ing of the given business area.

• Possibility of continuous and smooth adjustment of the running information
system to the changing needs of the client by means of changing the knowledge
base, without lengthy and risky re-programming.

• Substantial increase in quality of the information system - the design can use
methods of automat ic verification of the knowledge base.

• Existence of a constantly up-to-date description of business and IS (knowledge
base). T h e business description does not lie idle in a drawer, but it determines
the run of IS. At the same t ime, the logic of the information system is not
enchanted in any program code or potentially out-dated documentat ion.

In this technology, the key role is played by the knowledge agent t h a t manages
knowledge of the information system. The motivation was not a futuristic vision of
intelligent information systems of the future, but the still more apparent necessity
to build information systems in lesser t ime and of higher quality, and especially,
to make them continuously adjustable to changes in the supported business area
without constant expensive, lengthy and risky re-programming.

(Received November 2, 2003.)

REFERENCES

[1] Business Rules Group (R. G. Ross and K.A. Healy, eds.): Organizing Business Plans
- The Standard Model for Business Rule Motivation, www. BusinessRulesGroup.org.

[2] Business Rules Group (D. Hay and K. A. Healy, eds.): Defining Business Rules - What
Are They Really? www.BusinessRulesGroup.org.

[3] Business Rules Group (R. G. Ross, ed.): Business Rules Manifesto.
www. BusinessRulesGroup.org.

[4] E. Gottesdiener: Business RULES - Show Power, Promise. EBG Consulting, Inc.
Application Development Trends 4 (1997), 3.
www.ebgconsulting.com/powerpromise_article.htm.

[5] J. Sinur: The Business Rule Engine 2003 Magic Quadrant. Gartner, Research Note
Markets, 2003. www.gartner.com/reprints/fairisaac/114166.html.

[6] H. Herbst, G. Knolmayer, T. Myrach, and M. Schlesinger: The specification of business
rules: A comparison of selected methodologies. In: Methods and Associated Tools for
the Information System Life Cycle (A. A. Verijn-Stuart and T. W. Olle, eds.), Elsevier,
Amsterdam 1994, pp. 29-46.

[7] www.pega.com

The Diamond Tool: A Way of Effective Development and Utilization of Knowledge 379

[8] F. Procházka: Modeling of Cognitive Processes. Diploma Thesis. Masaryk University,
Faculty of Informatics, Brno 2002.

[9] Z. Staníček, M. Benešovský, and K.G. Jeffery: Formal specification and tools for
strategic planning (An introductory discussion on the StraDiWare project). In: P r o c
Systems Integration 97, Prague 1997.

[10] Z. Staníček: Universální modelování a jeho vliv na tvorbu IS (Universal modeling
and its influence on IS creation). In: Proc. Conference DATAKON'2001, Masaryk
University, Brno 2001.

[11] Z. Staníček: Knowledge management: The words and the actions. J. Per Partes on
Knowledge Management, Knowledge in Action, Per Partes Consulting s.r.o. 2002,
119-125.

[12] Running applications based on eTrium architecture: eDialog. Expertis s.r.o., Praha,
www.expertis.cz, EuroSet, Clever Office s.r.o., www.euroset.cz.

[13] Z. Staníček and F. Procházka: Technologie eTrium a její aplikace (eTrium technology
and its applications). In: Proc. Conference DATAKON 2002, Masaryk University,
Brno 2002, pp. 113-132.

[14] Project STRADIWARE, contract No. COPERNICUS 977132, web site:
www.itd.clrcac.uk/activity/stradiware/.

Zdenko Staníček and Filip Procházka, Faculty of Informatics, Masaryk University Brno,
Botanická 68a, 602 00 Brno, and eTrium Corporation, Inc., Technological Incubator of
VUT, U Vodárny 2, 616 00 Brno. Czech Republic.
e-mails: staniček, xprocha3@fi.muni.cz, zdenko.staniček, filip.prochazkauetriumgroup.com

