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GENERALIZED IMMERSION AND NONLINEAR 
ROBUST OUTPUT REGULATION PROBLEM 1 

B . C A S T I L L O - T O L E D O , S . Č E L I K O V S K Ý A N D S . D I G E N N A R O 

The problem of output regulation of the system affected by unknown constant parame
ters is considered here. Under certain assumptions, such a problem is known to be solvable 
using error feedback via the so-called immersion to an observable linear system with out
puts. Nevertheless, for many interesting cases this kind of finite dimensional immersion is 
difficult or even impossible to find. In order to achieve constructive procedures for wider 
classes, this paper investigates a more general type of immersion. Such a generalized immer
sion enables to solve robust output regulation problem via dynamic feedback compensator 
using error and exosystem state measurement. When the exosystem states are not com
pletely measurable, a modified observed-based generalized immersion is then presented. 
The main result obtained here is that under reasonable assumptions both the full and par
tial exosystem measurement problems are equivalently solvable. Examples together with 
computer simulation are included to clarify the suggested approach. 
Keywords: output regulation, robust, nonlinear, immersion 
AMS Subject Classification: 93C10, 93D20 

1. I N T R O D U C T I O N 

A central problem in control theory and applications is to design a control law to 
achieve asymptotic tracking with disturbance rejection in nonlinear systems. When 
the class of reference inputs and disturbances are generated by an autonomous dif
ferential equations, this problem is called nonlinear output regulation problem, or, 
alternatively, nonlinear servomechanism problem, see e.g. [8] and [9]. The problem 
can precisely be formulated as follows: 

Consider a nonlinear plant described by 

i = /(x,w,7i,/x) 

e = h(x,w,fi) 

where the first equation of (1) describes the dynamics of a plant, whose state x is 
defined in a neighborhood U of the origin in Rn, with control input u £ Rm and 
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subject to a set of exogenous input variables w G E r , which includes disturbances 
(to be rejected) and/or references (to be tracked) and /i G i p is a vector of un
known parameters. The second equation defines an error variable e G Rs, which 
is expressed as a function of the state x, the exogenous input w and the vector of 
unknown parameters \x. Suppose /i = 0 to be a nominal value of the parameter ji 
and assume f(x,w,u,ii) and h(x,w,[i) to be smooth functions of their arguments 
with /(0,0,0, /x) = 0 and h(0,0, /i) = 0 for each value of /i. 

The family of the exogenous inputs w(-) affecting the plant will be taken as the 
family of all functions of time which are the solution of the autonomous differential 
equation 

w = s(w) (2) 

with initial condition w(0) ranging on some neighborhood W of the origin of Rr. 
This system, which is viewed as a mathematical model of a "generator" of all possible 
exogenous input functions, is called exosystem. Through the paper, (2) is assumed 
to be neutrally stable, which is a standard assumption for exogenous systems. 

Beginning with the pioneering works [8] and [6], the nonlinear output regulation 
problem has been studied intensively during the last decade. Basic results on full 
information feedback case, error feedback case and the so-called robust output regu
lation are collected in [9], some results on full information nonsmooth feedback were 
obtained in [2], and [3]. For further robust aspects of the output regulation see [7] 
and [1] and references within there. In particular, it has been shown that the inclu
sion of an internal model in the controller structure was necessary and sufficient for 
having robust regulation [5]. Following these ideas in [9], an error feedback controller 
which relies on the existence of an internal model, which represent an immersion of 
the exosystem dynamics into an observable one, was presented. This immersion 
allows to generate, as in the linear case, all the possible steady state inputs for the 
admissible values of the system parameters. 

Nevertheless, in general, the corresponding necessary and sufficient conditions 
are quite abstract and nonconstructive in the general case, even if only sufficient 
conditions are taken by requiring to find an immersion of the exosystem into a linear 
observable system. This later approach has been shown to have an explicit solution 
for the class of systems for which the steady state input is given in a polynomial 
form with respect of the exosystem states. This paper explores the possibility of 
using a generalized immersion, in the sense that the immersion is allowed to depend 
explicitly on the exosystem states. By some characteristic examples, it is shown 
that in some cases in which the linear immersion is difficult, or even impossible to 
find, the suggested approach gives an alternative solution to the Robust Regulation 
Problem (RORP). 

More precisely, it was shown in [4] that the existence of the generalized immersion 
provides solvability of RORP, provided the measurement of the exosystem state is 
allowed. Here, we aim to further enhance this result by showing that (under certain 
reasonable condition), one may use a suitable exosystem output measurement only. 
Typical candidate for such an output might be reference to be tracked in case when 
RORP represents tracking problem. In other words, it seems to be quite realistic 
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in many applications to assume that tracking error is not measured directly but is 
computed as difference between the measured output to be controlled and measured 
reference to be tracked. 

In a broader perspective, our approach may be used to distinguish between ex-
osystem components describing the reference and those describing unknown distur
bances. Main idea here would be to find immersions that would eliminate only the 
disturbance related components, thereby soften restrictions for its existence. The 
present paper, nevertheless, will consider the more simple version when the whole 
exosystem state is observable from a suitable additional exosystem output and will 
show how to combine this property with existing (if any) generalized immersion. 

The paper is organized as follows. In next section we summarize the basic defini
tions and known results on the robust output regulation problem. The contribution 
of the paper is presented in Section 3, while Section 4 presents several illustrative 
examples and simulations. Conclusions and some ideas for the future research are 
drawn in the final section. 

2. ELEMENTS OF ROBUST OUTPUT REGULATION 

2.1. Error feedback solution to RORP and linear immersion problem 

Definition 1. (Robust Output Regulation Problem (RORP).) Given a nonlinear 
system of the form (1) and a neutrally stable exosystem (2), find , if possible, an 
integer v, two mappings 0 (0 and rj(^e) (with £ G E C W,0 : R" -> Mm,7/ : 
r x R M K ' ) and a neighborhood V of /x = 0 in W such that, for each / z G P : 

(S) the equilibrium (x,£) = (0,0) of 

x = f(x,0,6(0,fi) 

^ = rj(^h(x,0^)) 

is asymptotically stable in the first approximation, 

(R) there exists a neighborhood V C U x E. x W of (0,0,0) such that, for each 
initial condition (z(0),£(0), w(0)) £ V, the solution of 

x = f(x,w,6(£),fi) 

£ = fj(f,/i(x,W-{i)) 

w = s(w) 

is such that limt_>oo e(t) = 0. 

The following result, which can be found in [9], gives conditions for the existence 
of a solution to the RORP. 

Theorem 1. (N&S condition for RORP.) The Robust Output Regulation Problem 
is solvable if and only if there exist mappings xss = rca(w, /i) and uss = ca(w,fi), with 
7ra(0,/i) = 0 and ca(0,/i) = 0, both defined in a neighborhood W° x V C W x IRP 

of the origin, satisfying the conditions 
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^ S ^ s f и ) ) = f(ҡa(w,џ),w,ca(w,џ),џ) 

0 — h(ҡa(w,џ),w,џ) 
(3) 

for all (w,n) G W° x V, and such that the autonomous system with output denoted 
as {W° x V,sa,ca) and given by 

d̂  

dŕ 
w 
Џ 

s(w) 
0 

:= sa(w), u = ca(w,џ), (w,џ) Є W° x V 

is immersed into a system 

£ = Vit) 
u = 7(0 

defined on a neighborhood E° of the origin in W, in which ip(0) = 0 and 7(0) = 0, 
and the two matrices 

are such that the pair 
*=[8fL- г=fëL 

/ Л(0) 0 ^ ( BlfS) 

NC(0) $ J ' V 0 

is stabilizable for some choice of the matrix N, and the pair 

(CO) 0), (*°> - - f ) 

is detectable, where -4(„) = [ g ] ( ( w ) j 0 <BM = [ ^ ] ,„,„.„,„, ^ < " ) = I ^ W ) 

(4) 

Corollary 1. The RORP is solvable by means of a linear controller if the pair 
(A(0),B(0)) is stabilizable, the pair (C(0),A(0)) is detectable, there exist mappings 
xss = 7ra(w,/i) and uss = ca(w,/z), with 7ra(0,/i) = 0 and ca(0,/i) = 0, both defined 
in a neighborhood VV° x V C W x E p of the origin, satisfying the conditions (3) and 
such that, for some set of q real numbers an,ai, . . . ,a g _i, 

Lq

sc
a(w,n) = a0c

a(w,fi) +aiLsc
a(w,ii) + . . . 

... + a(7_iLr1caK/i) 

for all (w,fi) G W° x V, and, moreover, the matrix 

( .4(0)-A/ 5(0) \ 

^ C(0) 0 J 

is nonsingular for every A which is a root of the polynomial 

p(\) = a0 + ai A + . . . + aq-i A 9" 1 - A9 

having non-negative real part. 
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Remark 1. The mapping xss = 7ra(i0,/x) represents the steady state zero output 
submanifold and uss = ca(iu,fi) is the steady state input which makes invariant the 
steady state zero output submanifold. Conditions (4) expresses the fact that this 
steady state input can be generated, independently of the values of the parameter 
vector, by the dynamical system 

(5) 

where 

and 

6 = 
ü = 

г = 

гť = 

ф 

Фi 

Ь = Ф& 

uss = Гf2 1 

( Ö ð ••• &)т 

{ć>{w,џ), Lscf{w,џ),.. 

/ Гx 0 ••• 0 \ 

1 

-,ьү- -ЧK/І)) 

o г2 '•• 0 
V o 0 ••• г m ) 
( 1 0 ••• 0 ), 

) 

c liag( Ф ь Ф2, ••• 

/ 0 1 ••• 0 
0 0 ••• 0 
0 0 ••• 1 

\ <*o a\ ••• a\.. 

\ 

- 1 ) 

Þm ) ; 

2.2. A generalized immersion 

As it has been shown in the previous section, if it is possible to find the immersion 
$ or equivalently, the constants a n , a i , . . . , a 9 - i , then the robustness property is 
achieved. Nevertheless, the classes of systems where it is possible are quite narrow. 
In fact, it is possible to show that for the case of linear systems, and in the case when 
the mapping uss = ca(w,fi) is polynomial in the state variables w, a solution can 
be readily obtained [1], but for many interesting cases, however, as in the case when 
the mapping uss = ca(w,fi) includes sinusoidal, exponential or rational terms, this 
solution is hard, or even impossible to find, since the dimension of the immersion 
would be infinite. A possible way to deal with this situation would be to use an 
approximate solution [1], or to seek for an alternative solution. In this sense, we will 
show that if we allow the immersion to depend explicitly on w, then in many cases 
it is possible to find a finite dimensional immersion. We will call this a generalized 
immersion. More precisely, we say that the extended exogenous system 

dť 
w 

Џ 

s{w) 

0 
(6) 
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having the output ca(uv,/i), allows generalized immersion if it is smoothly immersed 
into a system of the form 

dť 
w s(w) 

Ф(ш)í (7) 

Obviously, if we were able to find such an immersion, the robust regulator would 
have also a solution, provided we are allowed to measure directly the exosystem 
state. Without going into the detailed definition, we will call such a problem in 
the sequel as the RORP with the full exosystem measurement, cf. [4] where the 
following result has been obtained. 

Theorem 2. Consider system (1) with s = 1 and m = 1. The RORP with full 
exosystem measurement is solvable if and only if there exists mappings 7ra(uv, /i) and 
ca(u»,/i), 7ra(0,0) = 0, ca(0,0) = 0, solving the regulator equation (3), such that 
extended exogenous system (6) with output ca(it;,/i) is immersed into (7) and the 
following conditions hold 

a) the pair 

A 

NC 

0 

Ф(0) 

B 

0 
(8) 

is stabilizable for some choice of the matrix IV; 

b) the pair 

[c 0], 
A BГ 

0 Ф(0) 
, Г = [ 1 0 (9) 

is detectable. 

R e m a r k 2. As a matter of fact, the structure of the controller solving RORP with 
exosystem measurement is similar to that given in [1], namely, 

t K ° 
\ o $M 

u = Mfi+re,, 
where the matrices K, L, M, N of the appropriate dimensions are such that 

A BY B 

NC Ф(0) 0 

L[C0] J 

м 

к 

(10) 

has all eigenvalues with negative real parts. The existence of K, L, M, N is the direct 
consequence of assumptions a) and b) of Theorem 2. 
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3. MAIN RESULT 

A natural question arises, whether the measurement of exosystem state does not 
present additional obstacle for practical implementation. As a reasonable motivation 
one can consider the case when exosystem produces a reference to be tracked only. 
In this case it is acceptable to assume that we can measure a desired reference signal. 
As a matter of fact, it seems to be natural to suppose that in case of tracking the 
output of the exosystem, say yw = h(0,w,0) =: r(w), by the output of the system 
to be controlled, say y = /i(x), not only the error e = y — yw, but also yw is available 
for measurement. 

Let us note that there still exists uncertainty in the studied problem represented 
by unknown parameters fi. One can also consider splitting exosystem into two 
parts, one of them responsible for the reference to be tracked and another one for 
unknown disturbances to be rejected obtaining thereby further generalization to our 
problem. This is left to future research, nevertheless, the main message here is 
that the unknown disturbances should be treated in a different way than the known 
references to be tracked. When finding the immersion, only unknown part should 
be eliminated what increases chances for its existence. 

For simplicity, we concentrate in this paper to the case when the system w = 
s(w), Vw = r(w) is observable and yw = r(w) can be independently measured, so 
that the only uncertainty is due to unknown parameters \x. Anyway, even with such 
a simplification, this still does not mean we are able to measure the full exosystem 
state so that the results of [4] are not applicable. For this reason we introduce the 
RRORP with partial exosystem measurement. 

Definition 2. (RORP with partial exosystem measurement.) Given a nonlinear 
system of the form (1) and a neutrally stable exosystem (2) with additional output 

Уw = r(w), yw Є ps 

find , if possible, an integer l/, two mappings 0(£) and r)(£,e,yw) (with ( E H c 
R",0 : R" -> Rm,77 : f x r x Rs' -> R") and a neighborhood V of /x = 0 in W 
such that, for each /i eV: 

(S) the equilibrium (x,f) = (0,0) of 

i = /(x,O>0(O>/i) 

C = r/(e,/i(^0,/i),r(0)) 

is asymptotically stable in the first approximation, 

(R) there exists a neighborhood V C U x S x W of (0,0,0) such that, for each 
initial condition (x(0),£(0),w(0)) e V, the solution of 

x = f(x,w,0(£),ii) 

Z = ri(Z,h(x,w,iJ,),r(w)) 

w = s(w) 

is such that limt_»ooe(£) = 0. 
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The main contribution of this paper is the following result showing that under 
reasonable observability assumption there is no difference between full and partial 
exosystem measurement. For simplicity and to pick up the key idea of our approach, 
we limit ourselves to the case when the controlled input, error and the additional 
exosystem outputs are all scalars. 

T h e o r e m 3. Consider system (1) with 5 = 1, m = 1 and the exosystem (2) with 
an additional output yw = r(w) G R, i.e. s' = 1. Further, let us assume that there 
exists local asymptotic observer for the exosystem state w given by 

w = g(w,yw) 

with the corresponding error dynamics for e = (w — w) as 

e = <f)(e,w) 

where ^ | (0,0) is a Hurwitz matrix. Then RORP with partial exosystem measure
ment is solvable if and only if RORP with full exosystem measurement is solvable. 
Moreover, the corresponding controller has the following form the controller 

0 
Ф(w) 

6 
£2 ( ! ) • ( o 

w = g(ti,yw) 

u = Mfi + rfc, r = [ i o 

where K,L,M,N are as in Remark 1. 

+ 
L 
N (И) 

(12) 

(13) 

P r o o f . The "only if" part is obvious by formulation and Theorem 2. 
To prove "if part", consider the controller (11). Using assumption of the Theorem 

on exosystem observer, we may represent it as follows 

( ! ) - ( 

K 0 
0 Ф(w - e) 

é = ф(є, w) 

U = M £ i + Г . í a . 

6 
£2 + 

L 
N 

(14) 

(15) 

(16) 

Since the matrix Se = §f (0,0) is Hurwitz by assumption and conditions a) and b) 
of Theorem 2 hold, the following matrix 

A BГ 

NC Ф(0) 

L[C0] 

" в ' 
0 

м 
0 

к 
0 & . 

(17) 

is also Hurwitz. Moreover, (17) is the matrix of linear approximation of system in 
the condition (S) of Definition 2, so that this condition is proved. To prove condition 
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A BГ B м 
NC Ф(0) 0 

м 
0 * 

L[CO] K 

0 5 < . 
0 £(o) 

(R) of Definition 2, notice that the matrix of linear approximation of the closed loop 
system considered there is 

(18) 

so that there exists locally attractive center manifold for that closed loop system. 
At the same time, writting down the partial differential equation for this center 
manifold graph, one can see that it coincides with PDE part of FIB equation for the 
extended system. By the theorem assumption on solvability of FIB equation that 
means, in particular, that also algebraic part of FIB holds. In other words, the closed 
loop system in condition (R) of the theorem being proved posseses locally attractive 
center manifold and on this center manifold e = 0. That obviously guarantees that 
locally e(t) —> 0 as t -> co and the theorem has been proved. • 

4. SOME ILLUSTRATIVE EXAMPLES 

The main point in the previous discussion is how to find the generalized immersion. 
The following examples, for which an immersion of the form (5) does not exist, give 
a possible procedure for some interesting cases. The exosystem for all the cases is a 
simple linear oscillator given by w\ = w2 ,w2 = —w\. 

Example 1. Consider the term ca(w,fi) 
successively this term, we get 

^p-- =: z\. Then, differentiating 
l-fгt!2 

Z\ = z2 

and the immersion is 

aw\ 
+ 

aw2 

z2 = 

í = 

(I + W2Y 1 + ^ 2 
w\ aw2 

1 + W2 1 + W2 

- 1 + w% +wj 

(1 + 1Ü2Г 

-l+wj+wţ 
(1+UІ2)2 

-zi + 
W\ 

1+W2 

Z2 

1 
W\ 

l+w2 

í-

Example 2 . Let ca{w, p) = wxe
W2. Then 

Z2 = w2e
W2 - w\eW2 = w2e

W2 - wxz\ 

ž2 = -w2z\ - w\w2e
W2 - w\z2 

= - ( l + 2w2)2l - ^1*2, 
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and the immersion is 
0 1 

(1 + 2w2) - tщ £• 

Example 3. For the case ca(w,fi) = aw\ cosw2, we have: 

z2 = «̂ I2 cos w2 + aw\ sin w2 

z3 = 3aw\W2 siniH2 — (1 + w\)z\ 

z4 = Zaw\ s\nw2 + 3aw2 cosw2 - 5w\w2z\ 

-(4 + w\)z2 

z4 = — Zw\aw\ cos W2 — 3w2awi smw2 

—3aw\ cosw2 — 5w%z\ + 5w\z\ 

-lw\w2z2 - (4 + w\)zz 

= ( - 4 + 4w\ - 8wl) zi - 7w\w2z2 

-(5 + w\)z3 

and 

ç = 

/ o 
0 
0 

V ai(to) 

1 
0 
0 

a2(w) 

0 0 \ 
1 0 
0 1 

a3(w) 0 / 

with 

a\(w) 

a2(w) 

a3(w) 

( -4 + Aw\ - 8tw|) 

—7w\w2 

-(5 + wl). 

Example 4. Consider the well-known model of the inverted pendulum together 
with the exosystem being a simple linear oscillator 

x\ = x2, x2= gs\w(x\) — cu, w\ = aw2, w2 = —aw\, a G i . 

The regulation goal is to make zero the following error y = e = x\ — w\. The 
parameters g, c are supposed to be known only approximately, so that the algorithm 
should be robust with respect to them. The solution of the regulator equations (3) 
is 7ra = w\, 71*2 = aw2, and 

ca(w,џ) = 
a2W\ + gsin(wi) 

= aw\ + bsm(w\), 
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where a = a2/c, b = g/c is the reparametrization of the unknown parameters made 
to simplify further exposition. To find the generalized immersion, let us take 

z\ 

Z2 

Z3 

ZA 

ca(w,fi) = aw\ + bsin(i0i), 

z\ = aw2 + W2bcosw\, 

—aw\ — w\b cos w\ — w\b sin w\ 

—aw\ — W\b cos w\ — w\z\ + aw\w\ 

w\z2 
—aw2 + aw\ — 2aw\w2 + 2w\w2z\ 

—w2bcosw\ + W\w2bsinw\ 

= aw\ — 3aw\w2 + 3w\w2z\ — (1 + w\)z2; 

at this step, we note that all the sinusoidal terms have disappeared, and it remain 
only polynomial terms. Since for polynomial terms, it is possible to find an immer
sion of the form (5), we may then guarantee that a generalized immersion can be 
obtained. In fact, in this case, straightforward computations give 

z6 = z5 = 15W\W2Z\ - (9 + 8w\ + w\) z2 

+7w\w2z3 - (10 + w\) z4, 

i. e. the generalized immersion is 

Ф(w) = 

\ 01 02 03 04 0 / 

01 = 15W\W2, 02 = - (9 + 8t0i + w\) , 03 = 7W\W2, 04 = - (10 + w\). 

Figure 1 shows the behavior of this controller when variations on the parameter d 
is introduced at time t = 20 sec Figure 2 shows the simulation results of the robust 
controller when an observer-based generalized immersion is introduced. As we may 
observe, the performance of the controller is similar to that of the case when the 
generalized immersion depend directly on the state w. 

For the previous examples, even if for a particular case of exosystem, we conjecture 
that in many interesting cases, like those arising in physical systems, it is possible to 
obtain a generalized immersion by first performing successive differentiations of the 
mapping ca(w, /x) until an expression containing only polynomial terms is derived and 
then, depending of the maximum degree of the polynomial terms, a finite additional 
differentiations will allow to get the desired generalized immersion. 

( ° 1 0 0 °\ 
0 0 1 0 0 
0 0 0 1 0 
0 0 0 0 1 
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0.02 

-0.02 

-0.04 h 

-0.06 

-0.08 
15 20 25 30 35 

Fig. 1. Output tracking erгor. 

5. CONCLUSIONS 

The paper presents an alternative solution to the case when the well-known Isidori 
and Byrnes solution to the robust output regulation problem is difficult or even 
impossible to find, namely, the existence of an immersion of the exosystem dynamics 
into a linear observable one, which generate, as in the linear case, all the possible 
steady state inputs for the admissible values of the system parameters. Here has 
been illustrated that by measuring the exosystem state and using it in the design of 
the compensator, it is possible to find a robust solution for a wider classes of systems, 
in particular, those for which the steady state input contains non-polynomial terms 
(i.e. sinuses, cosinuses and exponential terms). Moreover, it has been shown that 
the introduction of an observer for the exosystem, helps to overcome the necessity 
of measuring all the exosystem states, thereby further motivating the problem of 
finding the generalized immersion for a particular system. 

A procedure for obtaining such generalized immersion has been outlined and 
shown in several examples. The simulation results on a model of a pendulum demon
strates a potential of the presented approach. 
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0.04 
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Fig. 2. Output error with observer modification. 

50 

Future research will explore the existence of generalized immersion for some more 
particular classes of systems as well as the possibility of giving a precise character
ization of the dimension of the immersion. Another interesting and open problem, 
is to study an immersion with respect to part of exosystem components only and to 
find the largest collection of exosystem componets still allowing finite-dimensional 

Immersion. 

(Received March 13, 2002.) 
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