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in R3 from the intersection counts of the process with test planes. A new approach is 
suggested based on Bayesian statistical techniques. The method is derived from the special 
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1. INTRODUCTION 

The analysis of the anisotropy of random fibre systems is a frequent problem in many 
applied sciences like biology and metallography. If we model these systems as sta
tionary fibre processes in R3 then the anisotropy can be quantitatively characterized 
by the directional distribution V. Throughout the paper the non-oriented directional 
distribution, called also the rose of directions, is studied, while the oriented one is 
typical for surface normal orientations of particle systems. The fibre systems are 
usually examined using section probes of lower dimension. In R3 the data which are 
used for the estimation procedure are the intersection counts (observed in finitely 
many test windows) of the fibre process with test planes. Several methods have been 
suggested for the estimation of V including parametric models, interpolation with 
smooth functions or the use of the associated zonoid. See e.g. Cruz-Orive et al [3], 
Hilliard [4], Mecke and Nagel [11], Campi, Haas, Weil [2], Kiderlen [7]. 

In this paper we present a new approach, based on Bayesian statistical techniques. 
In Section 2 we recall definitions and notation that will be needed in the sequel. In 
Section 3 we formulate our assumptions and review the two estimators of Kiderlen [7]. 
In Section 4 we present the new estimator of V. We consider a discretized parametric 
version TZ of the directional distribution V. The support supp7£ of the measure TZ 
is a finite set of vectors which depends only on the intersecting test planes, not 
on the data. Using the relation between the rose of directions and the rose of 



704 M. PROKEŠOVÁ 

intersections we determine the likelihood of the observed rose of intersections and 
also the posterior distribution on possible values of TZ. The posterior mean is then 
our estimator of V. Since we do not make any assumptions about the functional 
form of the distribution V nor we use smooth functions for the approximation of V 
the resulting estimator we get using the 'discretization' procedure is able to detect 
also sharp anisotropics and multimodal directional distributions. Consistency of the 
estimator is shown for general stationary fibre processes. 

Since it is not possible to compute the estimator for concrete data analytically we 
need to use one of the Markov Chain Monte Carlo methods to get a numerical solu
tion. In Section 5 we describe the algorithm that we use, and discuss its properties 
including the uniform ergodicity. Finally in Section 6 we show simulation results 
- we apply the estimation procedure to several examples and compare empirically 
the new estimator with the EM and LP estimators of Kiderlen [7] by measuring the 
Prohorov distance between the original rose of directions and its estimate. 

2. BACKGROUND 

As a standard notation we use the scalar product |(., .)| in E3 , S2 the unit sphere in 
E , Hk, k G N, the /^-dimensional Hausdorff measure, li\eh the Lebesgue measure in 
E , B(A) the Borel <r-algebra on the set A. We shall call a measure on S2 even, if it 
assigns the same mass to the set B G B(S2) and to its reflection at the origin —B. 

By a line process $ in E3 we mean a random variable with values in the set 
L of locally finite collections of lines in E3 equipped with the cr-algebra T = A\L 
- the restriction of the hitting cr-algebra A to the set F where A = G{FK,K C 
E , K is compact} is the smallest cr-algebra generated by the sets FK and FK — 
{F C E3 , F closed : F n i v " ^ 0 } f o r K a compact set (Matheron [9]). If the number 
of lines hitting an arbitrary compact test set is Poisson distributed then $ is a 
Poisson process. 

We consider a stationary line process $ in E3 . Its distribution is translation 
invariant and can be characterized by the length intensity and the directional distri
bution. For the definitions let A be a Borel set of unit volume. The length intensity 
A is the mean length of the union of all line segments from the intersection of the 
process with the set A, A = EPT1(* n A). We suppose throughout the following 
that A > 0. The directional distribution V of the process is an even measure on S 
defined by V(B) = 11jp-, where B G B(S2) is a centrally symmetric set and rj(B) 
is the mean length of the union of all line segments from the intersection of A with 
the lines of the process which have directions in the set B. Since rj(S2) = A, we see 
that V is really a probability measure. Both A and V are uniquelly determined and 
do not depend on the set A. 

Let h G S2 be a unit normal vector of a plane hL. Then the intersection ^ f l / i 1 is 
almost surely a point process. It is a stationary process in h1- and its intensity (the 
mean number of points per unit area in h1) as a function of h is an even continuous 
function on S2 called the rose of intersections. (Since the process $ is stationary 
the distribution of the intersection process does not depend on the location of the 
plane h1- but only on its normal vector orientation). 
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Let us denote by Tv the cosine transform of the directional distribution V 

Tv(h)= [ \(h,u)\V(du), heS2. (1) 
JS2 

Then the function V(h) = A!Fv(h), h e S2 is the cosine transform of the directional 
measure rj = AV of the line process $, hence it determines AV uniquely (Schnei
der [14]). Moreover, V(h) is exactly the rose of intersections (Stoyan, Kendall, Mecke 
[15], Chapter 9.4), which is the fact that makes the estimation of 77 possible. 

3. MODEL 

In this section, we shall present a new estimator for the directional distribution of a 
stationary Poisson line process 3>. Let h^...h^ be n test planes with corresponding 
normal unit vectors hi,..., hn (due to the stationarity of $ we restrict to planes 
containing the origin). Set H = {/ii,... ,/in} C S2. Let V*, i G { l , . . . , n } be the 
random number of points in the intersection $ D hf- which lie in a given Borel test 
set A{ C hf-. Without loss of generality we may assume H2(A{) = 1, i = 1 , . . . ,n. 
According to the Poisson assumption and equation (1), the random variable Vi is 
Poisson distributed with the mean value V(hi). A sample of the random vector 
(Vi,..., Vn) denoted by v = (vi,..., vn) presents the measured data. 

We shall make three assumptions for the derivations as follows. 

Assumptions, (i) Test planes do not contain a common line, l in{/i i , . . . , hn} = 
l 3 . Here lin D denotes the linear hull of a set D C E3. 
(ii) Random variables Vi,...,Vn are stochastically independent. (This can be achieved 
using independent copies of the process $ to obtain the intersections with the test 
planes hj-.) 
(iii) It holds v ^ 0. (Otherwise the zero measure would be a reasonable estimator 
for 77.) 

During the estimation procedure we first define a suitable discrete approximation 
H (a probability measure on S2 with finite support and depending on a finite num
ber of parameters) which we use as a model for V. Then by the use of Bayesian 
techniques we estimate the parameters of this model TZ from the measured data. 
Substituting the estimated parameters into the formula for TZ we get the resulting 
estimate 11 of the rose of directions V. 

Let Stj be an even probability measure with the support formed by the vectors 
±tj G S . Then 1Z can be written as a finite mixture of such measures: 

k k 

n=Y, <*A. a3 > 0, ] £ aj = 1, tj G T. (2) 
i= i i=i 

The choice of the set T C S2 is essential for the quality of the approximation. 
We define 

T^{hrxht\hr^hie 11} (3) 
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as the set of all (different) vector products of the vectors from T~i. Optimality of this 
choice is proved in Kiderlen [7]. Let us briefly review the problem and its solution 
here. 

Kiderlen [7] considered the problem of finding a measure-valued maximum likeli
hood estimator of the directional measure r\ of a Poisson line process $ in Rd, d>2. 
We refer to the case d = 3. Let us denote by M the set of all centrally symmetric 
measures on S2 and compute the log-likelihood function /i —» log P(H°($C\Anhj-) = 
Vi), i — 1 , . . . ,n (where A is some unit volume test window). The following equality 
holds up to an additive constant. 

n 

L{n) = J2(vi log ( -M^)) " ?v(hi))- (4) 
i= l 

The original problem can now be reformulated as a convex optimization problem 

minimize: ~L(^i) (r, 
subject to: JJ, G M . 

A solution of problem (5) always exists and any two different solutions fi*, a* are 
tomographically equivalent, i.e. T^(hi) = J>*(/ii), i = 1 , . . . ,n (for proofs see 
Mair [8]). However, (5) cannot, in general, be solved in a closed form and a numerical 
optimization has to be used. Since M is infinite dimensional it has to be replaced 
by a finite dimensional subset M(T) = {a G M : supp a CT} where T = {tj}k

=l 

is a finite subset of S2. So we get a modified problem 

minimize: —L(/JL) , * 
subject to: fieM(T). W 

Again according to Mair [8], this problem is solvable and a measure /i* G M(T) is 
a solution of (6) if and only if 

E' -rT—^'W - X>^>i (7) 
i=l,Vi^0 ^ *' i = l 

for j = 1 , . . . ,fc with equality for all tj in supp fi*. We get only finitely many 
inequalities here and the measure /z* solving the problem (7) can be computed 
numerically using the iterative EM algorithm (the algorithm is described in detail 
in McLachlan [10]). 

We get the following proposition as a special case of Theorem 1 (Kiderlen [7]) 

Proposition 1. Let the Assumptions (i)-(iii) be fulfilled. Then (5) has a solution. 
If T is chosen according to (3) then any solution of the discretized problem (6) is a 
solution of the original problem (5). 

Thus the directional measure and the rose of directions as its 1/ A multiple can be 
effectively approximated by finite-support measures with support in T. Kiderlen [7] 
suggests two estimators. 
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The first estimator of r\ is the solution of (7). It is found using the iterative EM 
algorithm. The concrete iteration procedure for the problem (7) is the following. 
We start with (5)(°) = (1 ,1 , . . . , 1) e R*. Then, given (a)(m> = (a[m\... 4 m ) ) , we 
define (a)<™+1) = (a[m+1\... ,a{m+1)) by 

,("0 
v m4-l ì c 

a) <-«> = *_ £ -^кмл, , , = !,...,*, 
^ ^1=1,1/^0 7t 

where 
A. 

S = l 

аnd 

/°i = $3l^r,řJ')l' •! = !,••. ,*. 
Г = l 

If we denote (a)* = lim (a)(m) then y \ = 1 a*5/ is the solution of (7) and setting 
n—j>oo J J 

(a)EM = ,ffi^, for an m G N big enough the first estimator of F> is £ * = 1 afMStj. 
Denote it by EM. 

The second estimator of 77 is defined by _Cj=i aT^t5 where (a)** is the solution 
of the linear program 

mimmize: E (vi-Ei=iaiKti)Ml)» 
i= l v 7 

subject to: S j = i aiK*i>'l*)l -̂  vu i = l , . . . , n , v ; 

«i > 0, j = 1 , . . . ,fc. 

The solution of (8) is found using the simplex algorithm. Thus defining again 

(a)LP = ijfwTT we get the second estimator (denoted by LP) _Cj=i afP$tj of V. 

4. METHOD 

Our estimation procedure is different from those of Kiderlen [7] but since it makes 
use of the likelihood we have chosen the set T in (3) as the support of the discrete 
approximation 71 of V again. Note the important fact that T is completely deter
mined by the set 7i and depends neither on the sample v nor on the distribution 
V. 

Now we proceed with the Bayesian estimation of the parameters (a\,..., a&) = a, 
and A. Under our model the rose of intersections satisfies 

k 

V(hi) = ATn(hi) = A j ^ K M , - ) ! , i = l ,- . . ,n, A G K + . 

i=i 
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Under the assumption (ii) the components of the random vector (Vi , . . . , Vn) 
are independently Poisson distributed with mean values (A !Fn(hi), • • •, A^r7^(/in)), 
hence the likelihood under our model is 

A n n 

L(A,ai,...,ak\v) oc A<=>Viexp{-AY,Fn(hi)}l[(Fii(hi))Vi. (9) 
1 = 1 1 = 1 

We assume that there exists an upper bound Amax of possible values of the length 
intensity A (which is not a restrictive assumption in practical applications). We use 
independent noninformative priors for A and the vector a. Let the distribution £(A) 
be uniform on [0, Amax] and let C(a) be uniform on the simplex 

k 

N = {(au..:,ak) eRk :J2aJ = 1>aJ ^ °> J G { 1 , . . . ,*;}}. 
3=1 

Then the posterior distribution II of (A, a i , . . . , ak) given v has the density 

A n k n I k 

7r(A,a1 , . . . )a<; | i ;)ocA-=' ' ' ,exp{-A^5Zo J |(/ji,t i)|}.JJ [^a^h^t^ 
i= l j=\ i = l \j=l 

' (10) 

on [0, Amax] x N = M, with respect to // x /}, where /x is the Lebesgue measure on 
[0, Amax] and jl is the uniform measure on N, ji(N) = 1. It holds 7r(A, a i , . . . , ak \v) = 
0 outside M. 

We define the estimators for the ^parameters A , a i , . . . ,ak as the marginal pos
terior means and denote them by A,ai,...,Ofc. By substituting these values in 
the general formula (2) for 71 we get the desired estimator 71 for the directional 
distribution V of the line process $ 

k 

n = ^2aj6tj. (11) 
3=1 

Because of the complicated form of the density 7r, the mean posterior values are 
not accessible directly and have to be computed numerically. In the next section we 
give the detailed description of this procedure. 

Even though the presented estimator was derived from the Poisson assumption it 
is applicable to the general stationary spatial processes. In this case consistency of 
the ML estimator was proved under mild assumptions in Kiderlen [7], Theorem 3. It 
is easy to see that for a compact parametric space (as is our M) from the consistency 
of the ML estimator the consistency of the Bayes estimator based on the posterior 
mean follows. 

For the comparison of the different estimators we used the empirical mean Pro-
horov distance of the precise directional distribution and the estimator. Since the 
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Prohorov distance corresponds to the weak convergence on the set of measures M. 
(Matheron [9]) it is a convenient metric for comparing the precision of the estimators. 
Another quantitative property is the variability of the estimators which is evaluated 
in various ways from the empirical covariance matrix of the estimated a. 

5. ALGORITHM 

For the approximation of the posterior means of the parameters A , a i , . . . , a*;, we 
use the method of Markov chain Monte Carlo (MCMC), specifically the random 
walk Metropolis algorithm (Metropolis et al [12]). This method is generally used 
for the approximation of such mean values of various functions of a probability 
distribution II on a state space S that cannot be computed analytically. The method 
proceeds as follows. A homogeneous Markov chain A" = {X(t)}J=l, T G N on S 
with limiting distribution II (x) is constructed and the desired mean values En / = 
J f(x) II(dx) are then approximated by the ergodic averages f = -f Ylt=i / ( ^ W ) 
of one realization of the chain. The transition probability kernel P of the chain X 
is constructed from an arbitrary transition probability kernel Q on S. We suppose 
that Q has a density q(x, y) with respect to some reference measure v on the state 
space S. Defining the acceptance probability 

{ m i n { í l M g M i \ 
\n(x) q(x,y)' / ' ҡ(x)q(x,y) > 0, x,y Є S, 

ҡ(x)q(x,y) = 0 , x,y Є S, 

where n(x) is the density of the limiting distribution II with respect to v, and 

p(x, y) = a(x, y)q(x, y) for x^y, x, y G S, 

p(x,x) = 0, 

r(x) = / (1 - a(x, y))q(x, y)v(dy), 
Js 

and putting, 

P(x, dy) = p(x, y)v(dy) + r(x)Sx(dy) x, y G S, 

where Sx is the unit mass at x; the resulting probability transition kernel P has the 
stationary distribution IT. 

If the proposal density q(x,y) depends only on the difference (x — y), then the 
MCMC algorithm is called random walk Metropolis. For a general introduction into 
MCMC algorithms the reader is referred to Geyer [5]. 

The limiting distribution is the posterior distribution II(A,ai, . . . ,ak \v) and the 
state space S = R x{x G R* : Y2i=i xi = 1} i n o u r c a s e - F° r simplicity of notation, 
we write 7r(A, a) instead of 7r(A, a\,...,a* \v) in (10). 

Let E be the canonical base of R* - 1 , B an orthonormal base of the hyperplane 
L = {x G R* : Yll=i xi = !} a n d /? : R* - 1 -* £ a linear mapping satisfying p(E) = 
B. Define the reference measure v by the fc-dimensional Lebesgue measure o n l x L . 
Let L\ be the one-dimensional centred normal distribution with the variance o\ > 0, 
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and £2 the (k — l)-dimensional centred normal distribution with the covariance 
matrix all, a\ > 0 and denote by f(z), z G S the density with respect to v of the 
probability distribution £1 x £ 2 (3~l on R x L . The proposal density is defined by 

q(~,y) = f(~-y),~,y e § . 
With the notation 

C = {Cili = |(/.i,t i>|}?=l*1J=1, «7 = C5, 

the acceptance probability is 

a((A,5),(A',o')) = 1 , (A,S)iM, (12) 

= 0, (A, 3) € M , (A', a') g Af, 

{l .(^)E--xp{Ag-1-A'E-.}Ilg|^}. 

(A, a), (A', a') e M. 

Since the set M is absorbing, it is sufficient for the simulation to consider the 
resulting Markov kernel P restricted only to the set M x B(M) (B(M) denotes the 
Borel cr-algebra); let us denote it by P = P\MXB(M)-

Note that if we had restricted to the set M already the proposal distribution 
Q then we would need to normalize the density q(x,y) = r f?~_z\dz which could 
be done again only numerically and, moreover, the density q(x,y) would not be 
symmetric and we would get into further problems when computing the acceptance 
probability a. None of these problems occur with our choice, the algorithm is easy 
to implement and it has good properties as will be shown in the sequel. 

L e m m a 1. Let the Assumptions (i) and (hi) be fulfilled. Then the Markov kernel 
P is aperiodic and irreducible. 

P r o o f . The matrix C has no row with all zeros according to the assumption (i). 
It follows that p(x,y) = q(x,y).a(x,y) > 0 for all x,y G relint M (here relint M 
means the interior of M in the space S). If we denote by i/; the fc-dimensional 
Hausdorff measure on M, P(x, A) > 0 will hold for all A G B(M), ip(A) > 0, x G M, 
hence the kernel P is -0-irreducible and aperiodic. ---

T h e o r e m 1. Under the Assumptions (i) and (iii) the Markov kernel P is uniformly 
ergodic. 

P r o o f . According to the Theorem 16.2.2 in Meyn and Tweedie [13], it is enough 
to show that the whole set M is small. We need to find a probability measure p on 
B(M) and S > 0 such that 

P(x,A) > 6p(A), V xeM,VAe B(M). 
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Trivially a sufficient condition for this is the existence of I > 0, Mi C M, v(M\) > 0 
such that p(x,y) > /, V y G Mi, x G M. 
Let us define 

Mi = [Ai, Amax] x {a G E* : ̂ Ta,- = 1, a, > dmi YJ}, 
i=i 

with some fixed 0 < Ai < Amax , dmi > 0 such that v(M\) > 0. Then Mi and 
M are compact sets and the proposal densities {q(x,y), x G M} are positive and 
continuous on Mi which implies the existence of a lower bound qm > 0 such that 
q(x,y) >qm, Vx eM, y e Mi. 
The last step now is to bound from below the acceptance probability a(x,y). This 
can be done easily, as the following inequalities show 

£ v k ^ 

*(x) < (Am«)« \ 1 - П £ < 4 i 

£ VІ 

i=i \ j=i 

n k 

т(l/) > (Лi)ť=1 \ exp ̂  -Лm a x ]Г J2dj 
i=l j=l 

The choice of / = ^ Z L completes the proof. • 

Prom the uniform ergodicity of V, the central limit theorem holds for ergodic av
erages of any square integrable function of the limiting distribution II and any initial 
condition (any starting value of the realization of the chain X) (see Tierney [16]). 
Thus the ergodic averages converge to the estimated posterior means as 0(1/y/n). 

6. SIMULATIONS 

We present some simulation results in this section. The aim is to compare our 
estimator (11) denoted by MH with two estimators of Kiderlen [7]. First, let us 
present one particular example before a more detailed comparison will be made. 

Let us recall here the definition of the Fisher distribution on S2. This distri
bution is determined by two parameters - the axis of symmetry u € S2 and the 
concentration parameter K G E + . The density of the distribution is then defined as 

e/c|(z,u)| 

f(x) = "7 u \\ 7T-T> X £ S , 
/(S2e«l^^>lcJ2(d-r), 

where U2 is the spherical Lebesgue measure on S2. We denote by P i the Fisher distri
bution with concentration parameter K, = 10 and the axis UQ = [0.572,0.572,0.588]. 

In the example, we considered a stationary Poisson line process with length in
tensity A = 100 and the directional distribution V\. The set % were normals to the 



712 M. PROKEŠOVÁ 

faces of a regular icosahedron in the standard orientation (the intersection with the 
x1- plane being the regular hexagon with one vertice on the z axis). Thus n = 10 and 
10 independent realizations of intersection processes were evaluated in order to get 
the input data vector v. The set T chosen according to (3) consists of k = 45 (pairs 
of) vectors. We determined the parameters A,cfi,... , 5^ according to the MCMC 
algorithm described in the previous section. For the algorithm we set the starting 
iteration 

a\0) = i , for all t G { l t } , (13) 

A(o) = 2 I > (w) 
n 

A ^ is an unbiased estimator of the length intensity in the isotropic case due to the 
assumption 
H2(A{) = 1, i = 1 , . . . ,n, and (a)(°) corresponds to the uniform distribution on T. 
The variances of the proposal distributions were o\ = 1 and o\ = 0.001. 

The rate of the convergence of the algorithm depends on the variances of the 
proposal distributions radically. It is necessary to balance the mixing of the chain 
(the proposal steps must not be too small) and the average acceptance rate a (the 
proportion of the proposed steps in the chain which were accepted according to (12) 
- bigger steps are more likely to be rejected). However, the problem of optimal 
tuning of the parameters exceeds the scope of this paper and the parameters were 
chosen as fairly reasonable even if not optimal (for references on optimal tuning see 
for example Tierney [16]) as shows also the value of a = 0.322 of our simulation. 

We took 5000 iterations from the simulated Markov chain as the burn-in and then 
took 10 000 values with the step of 100 iterations 

n 10000 

a- - V r^1 0 0 '*5 0 0 0) j - i h t l5) 
fl»- 10000 ^ l ' i - 1 ' " - ' * - ^ 

Figure 1 shows the resulting MH estimator. In each point ±tj, tj G T C <S2, a 
sphere is drawn with radius proportional to dj. The axis of the estimated directional 
distribution is denoted by the triangle. We can see that the estimator detects the 
anisotropy oiV\ well and it also reflects its symmetry. 

We proceed with the comparison of the Kiderlen's estimators. We applied the 
estimators to two stationary Poisson line processes with the same length intensity 
A = 100 but different directional distributions. The first distribution was the dis
tribution V\ already defined above and the second distribution V2 was a mixture 
of three Fisher distributions with the same concentration parameter K = 10 and 
different axes 

ux = [0.572,0.572,0.588], 

u2 = [-0.572,-0.572,0.588], 
u3 = [-0.588, 0,0.801]. 

We considered three different types of input data corresponding to three differ
ent sets of H: normals to the faces of a cube, a regular octahedron and a regular 
dodecahedron. 
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Fig. 1. The MH estimate of the rose of directions for the original directional distribution 
V\ being the Fisher distribution. The intersection planes were parallel to the faces of the 
regular icosahedron. The direction of the axis of the Fisher distribution is marked by the 

triangle. 

The parameters d\,... Ok of the MH estimate (11) were computed in the same 
way as in the previous example using the formula (16) with the starting iteration 
given by (14) and (15). The values of the proposal variances <J\, o\ used for the 
different sets H (the same for both V\ and V<±) are given in Table 1 as well as the 
average acceptance rates a. The explanation concerning the choice of the parameters 
from the preceding example applies here as well. 

For the comparison of the estimators we used the empirical mean Prohorov dis
tances of the precise directional distribution and the estimators. 

The Prohorov distance PD of two measures /i, v on B(S2) is defined by 

PD(ii, v) = inf{e > 0 | /i(A) < v(Ae) + e, v(A) < fi(Ae) + e, 

for all closed subsets A of<S2}, 

where Ae is the set of all unit vectors whose spherical distance d from A is strictly 
less then e. 
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Table 1. Parameter values for the MH estimator for different types of input data. The 
input data are the intersection counts with planes determined by the set 7i of their 
normal vector orientations. Here % are unit normal vectors to the faces of a cube, a 
regular octahedron and a regular dodecahedron, respectively. The parameters are: n 
- the number of different intersection planes (equivalently the number of elements in 
H), k - number of different vectors in T (in the support of the MH estimator), crA, a\ 
- variances of the proposal distributions, a(V\), a(V2) - the average acceptance rates 
when estimating the directional distribution Vi, V2j respectively. 

4 4 n k õ(P i ) ã(V2) 
. cube 

octahedron 
dodecahedron 

i 
i 
i 

0.05 
0.02 
0.01 

3 
4 
6 

3 
6 
15 

0.50 
0.50 
0.20 

0.52 
0.63 
0.34 

For the evaluation of PD we modified the algorithm of Benes and Gokhale [1]. 
The original algorithm was defined for measures on the set Z = [0,7r). However we 
can reformulate their Lemma 2 also for measures on <S2, the proof being the same. 
Thus we have 

P r o p o s i t i o n 2. Let nn be a discrete measure on S2 with a finite support supp nn = 
{ z i , . . . , zn} and V a measure on <52. Then it holds 

PD(Kn,V) = inf{e > 0 | Tln(A) < V{A€) + e for all A e s u p p R n } . (16) 

Thus we get a reduction to finitely many conditions, however to test if PD < e 
for some e > 0 is still a problem of exponential complexity and efficient heuristics 
have to be applied to avoid testing (and computing JAe V(dx)) for all the (2n — 1) 
subsets of supp7£ n . 

Table 2. The mean empirical Prohorov distances (computed from 200 samples) of 
the exact distributions V\ (a Fisher distribution) and V2 (a mixture of three Fisher 
distributions) and its MH, EM and LP estimators. The values are computed for three 
different sets of intersection planes (that means three different types of input data) -
planes parallel with the faces of a cube, a regular octahedron and a regular dodecahedron. 

V\ v2 
cube octahedron dodecahedron cube octahedron dodecahedron 

MH 0.5475 0.3977 0.3032 0.4975 0.4010 0.2992 
EM 0.5475 0.3975 0.2850 0.4975 0.3997 0.3027 
LP 0.5475 0.3975 0.2897 0.4975 0.3995 0.3030 

Two hundred samples of the input da ta v were generated in our simulation for the 
roses of intersections T-p\ and T-p2 f ° r a-l three choices of % and three estimators 
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were computed. The empirical Prohorov mean distances are given in Table 2. The 
variability of the estimators was quantified by means of traces, determinants and 
maximal eigenvalues of the empirical covariance matrices of the vector a, se e Tables 
3, 4 and 5 respectively. 

Table 3. The traces of the empirical covariance matrix (computed from 200 samples) of 
the vector a of the estimated parameters of the directional distribution. The values are 
computed for all three examined estimators, three different sets of intersection planes 
H (faces of a cube a regular octahedron and a regular dodecahedron) and two different 
original roses of directions V\ (the Fisher distribution) and V2 (mixture of three different 
Fisher distributions). 

V\ V2 
cube octahedron dodecahedron cube octahedron dodecahedron 

MH 0.0094 0.0363 0.0745 0.0115 0.0404 0.0663 
EM 0.0102 0.0271 0.0952 0.0121 0.0372 0.1203 
LP 0.0102 0.0225 0.1034 0.0121 0.0345 0.1119 

Table 4. Decadic logarithms of determinants of the empirical covariance matrix (com
puted from 200 samples) of the vector a of the estimated parameters of the directional 
distribution. The values are computed for all three examined estimators, three different 
sets of intersection planes 7i (faces of a cube a regular octahedron and a regular dodec
ahedron) and two different original roses of directions V\ (the Fisher distribution) and 
V2 (mixture of three different Fisher distributions). 

V\ V2 
cube octahedron dodecahedron cube octahedron dodecahedron 

MH -25 -22 -58 -10 -17 -48 
EM -10 -19 -43 -9 -17 -43 
LP -10 -17 -40 -9 -33 -41 

Many plots of the type shown in Figure 1 and the corresponding Prohorov dis
tances are presented in Hlawiczkova et al [6], where fibre processes of tessellation 
edges in E3 are investigated for Voronoi tessellations generated by various point 
processes. Only the EM estimator is used for the rose of directions estimation in 
this paper. 

7. CONCLUSIONS 

It makes sense to compare estimators EM, LP and MH. Theoretically, maximum 
likelihood and Bayesian estimators are asymptotically equivalent but their small 
sample properties may differ. Bayesian estimators are always admissible (Wald [17]) 
which need not hold for the maximum likelihood estimators. The consistency of all 
estimators valid for the general stationary fibre processes is an important property 
for practical applications. 
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Table 5. Maximal eigenvalues of the empirical covariance matrix (computed from 200 
samples) of the vector a of the estimated parameters of the directional distribution. The 
values are computed for all three examined estimators, three different sets of intersection 
planes H (faces of a cube a regular octahedron and a regular dodecahedron) and two 
different original roses of directions Vi (the Fisher distribution) and V2 (mixture of 
three different Fisher distributions). 

Vi v2 
cube octahedron dodecahedron cube octahedron dodecahedron 

MH 0.0021 0.0173 0.0371 0.0062 0.0180 0.0181 
EM 0.0060 0.0115 0.0304 0.0066 0.0163 0.0327 
LP 0.0060 ^ 0.0830 0.0238 0.0066 0.0160 0.0293 

Only minor differences between the estimators EM, LP and MH were revealed by 
our simulations. According to the Prohorov distances the estimators perform almost 
equally. However, the variability is smaller for MH estimator in the most interesting 
dodecahedral case. This effect corresponds to the general knowledge tha t Bayesian 
est imators may yield smaller variances. 
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