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CONSTRUCTION OF AGGREGATION OPERATORS 
NEW COMPOSITION METHOD 

TOMASA CALVO, ANDREA MESIAROVÁ AND L'UBICA VALÁŠKOVA 

A new construction method for aggregation operators based on composition of aggre
gation operators is proposed. Several general properties of this construction method are 
recalled. Further, several special cases are discussed. It will be also shown, that this con
struction generalize recently introduced twofold integral, which is exactly a composition of 
the Choquet and Sugeno integrals by means of min operator. 
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1. INTRODUCTION 

Basic definitions, properties and constructions methods for aggregation operators are 
given in [2] and thus we will not repeat them. Recall only that given a binary aggrega
tion operator A and two general aggregation operators (n-ary aggregation operators) 
B, C, the composite D = A(B,C), D(x\,... ,xn) = A(B(xi,... , x n ) , C ( x i , . . . ,xn)) 
is again a general aggregation operator (n-ary aggregation operator). Obviously, 
the continuity, idempotency, symmetry of all three A,B,C ensure the continuity, 
idempotency, symmetry of D, respectively. Among more sophisticated construction 
methods based on the composition of aggregation operators we recall hierarchical 
two-step (n-step) integrals discussed in [1, 7, 11], and double aggregation introduced 
and discussed in [4, 6], 

In this contribution, we introduce and discuss a new construction method based 
on composition of aggregation operators. We restrict our considerations to n-ary 
aggregation operators, as the case of general aggregation operators can be then 
straightforwardly derived. We will discuss several special types of our construction 
and the properties of newly constructed operators. 

2. *-COMPOSITION OF AGGREGATION OPERATORS 

For a given t-norm T and its dual t-conorm 5, their convex combination C\ = 
(1 - X)T + AS, A G [0,1] can be understood as a composite C\ = W\(T,S), where 
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W\ is the weighted arithmetic mean with weights w\ = 1 — A and W2 = A. Recall 
that the operator C\ is called a linear convex compensatory operator [9, 16, 17]. In 
the theory of compensatory operators as studied and discussed in [8, 18], the high 
inputs are supposed to be aggregated in t-conorm style with upwards effect (i.e., 
output is even higher than any of inputs) while the low inputs are aggregated in 
t-norm style with downwards effect (similarly as by summation of positive inputs 
versus summation of negative inputs when acting on the real line). Yager and Filev 
[18] have proposed to "measure" the degree of highness of inputs x\,... ,xn by 
T(x\,... ,xn) and the degree of their lowness by T(l — x\,... ,1 — xn) and then to 
choose the parameter A (which thus is dependent on the input vector (x\,... ,xn)). 
For a given input vector ( x i , . . . , xn), the parameter A is chosen to fulfil (1 — A) : A = 
"lowness":"highness" = T( l — x\,... , 1 — xn) : T(x\,... ,xn). Then the aggregation 
D = C\ leads to 

D(xu... ,xn) = 

T( l - xu... , l - z n ) 
T(xu... ,xn)+T(l-xu... ,l-xn) 

1 \X\, . . . , Xn) 

T(xu... ,xn) +T(1 - x u . . . , 1 -xn) 

1 \X\,... , xn) 

T(xi,... ,xn) + 

u{Xi, . . . , Xn) = 

T ( x i , . . . ,xn) +T(1 -xi,... , 1 -xny 

where T is supposed to have no zero divisors and the convention ^ = | is ap
plied. Observe that for T = Tp we obtain the famous 3-II-operator D(x\,... , xn) = 
Yix-Hi(i-x) > s e e [18]- In what follows, we will propose a new method of construction 
aggregation operators generalizing the above discussed ideas. 

Let A : [0, l ] n —> [0,1] and * : [0, l ]2 -» [0,1] be two aggregation operators and 
let b e [0,1] be a given constant. Define an operator Cb : [0, l ] n —> [0,1] by 

Cb(xu... ,xn) = A(xi * 6 , . . . ,xn *6) (1) 

Evidently, Cb is a non-decreasing operator; however C&(0, . . . , 0 ) = 0 and 
C&(1.... ,1) = 1 need not to be fulfilled, in general. Following the ideas of Yager 
and Filev [18] and the ideas of Calvo et al [2] with "flying parameter", we replace the 
constant b (independent of input (x\,... , xn)) by a constant B(x\,... , xn) (depen
dent on input (x\,... ,xn)), where B is an (arbitrary chosen) aggregation operator. 
Now, our operator C : [0, l ] n —> [0,1] is given by 

'C(xu... ,xn) = A(xi *2?(xi , . . . , x n ) , . . . ,xn *B(xu... ,x n ) ) . (2) 

Proposition 1. Let A,B : [0, l ] n -> [0,1] be two n-ary aggregation operators 
and let * : [0, l ]2 -> [0,1] be a binary aggregation operator. Then the operator 
C : [0, l ] n -> [0,1] given by (2) is an n-ary aggregation operator. 

P r o o f . The monotonicity of all involved aggregation operators A,B and * 
ensure the monotonicity of C. Moreover, 
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C(0,... ,0) = 4 ( 0 * 5 ( 0 , . . . , 0 ) , . . . , 0*H (0 , . . . ,0)) = 4 ( 0 * 0 , . . . ,0*0) = 
,4(0,... , 0) = 0, and similarly C ( l , . . . , 1) = 1. D 

To illustrate the difference between the standard A * B composition and the *-
composition introduced in Proposition 1, let A be the product and B and * the 
maximum operator. Then for any n G N, x G [0, l ] n , 

n n n 

(A * B)(x) = A(x) * B(x) = ( [ ] xi) V ( \ / xi) = \J xu 

t=i t=i t=i 

while for the operator C introduced via (2) it holds 

C(x) = A(Xl * B(x),... ,xn* B(x)) = 

f[(xjV(\/xi)) = (\/xi)
n. 

j=l i=\ i=\ 

Observe, however, that both composition-based construction methods coincide 
whenever A and * commute (for deeper discussion on commuting aggregation op
erators we recommend [10]) and A is idempotent. For example, if A is the max
imum operator and * is the product, then in both cases we obtain as output 
C(x) = (Wxi) • B(x) independently of B. 

Several properties of A, B, * are herited by C. Mostly the proofs are trivial and 
thus we omit them. 

Proposition 2. Under requirements of Proposition 1 the following hold: 

(i) if A, J5, * are continuous then C is continuous 

(ii) if A, B are symmetric then C is symmetric 

(iii) if A,B, * are idempotent then C is idempotent 

(iv) if A, B, * are kernel operators then C is kernel operator 

(v) if A, B, * are shift invariant then C is shift invariant. 

(vi) if A, B, * are homogenous then C is homogeneous 

(vii) if A, B, * are stable under linear transformations then C is stable under linear 
transformations. 

(viii) if A, B, * are self-dual then C is self-dual 

(ix) if A,B, * have the annihilator a then C has the annihilator a. 

(x) if B, * have the annihilator a and a is idempotent of A then C has the annihi
lator a. 
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Recall only that an n-ary aggregation operator A is a kernel operator [3, 12] if 
for any (xx,... ,xn),(y\,... ,yn) G [0, l ] n it holds 

\A(x\,... ,xn) - A(y\,... ,yn)\< max \x{ - y{\. 
ie{ly... ,n} 

By means of the following examples it can be shown that the next properties are 
not herited: bisymmetry, associativity, neutral element e, 1-Lipschitz property. 

Example 1. Let -4,2?,* be binary aggregation operators, where A(x\,x2) = x\ • 
x2, B(x\,X2) = x\ * X2 = Xl+X*. Then all three operators are bisymmetric, but 
C(x\,x2) = A(xx* B(xux2),x2 * B(x\,x2)) = (3gi+^Hgi+3ga)> and we can see 
that C is not bisymmetric. 

Example 2. Let -4,2?,* be binary aggregation operators, where A(x\,x2) = 
min(a:i,X2), B(x\,X2) = x\ * X2 = x\ • X2. Then all three operators are associative, 
but C(x\,x2) = A(x\ *B(x\,X2),x2*B(x\,X2)) = mm(x\-x2,x\ -x\). This operator 
is not associative. 

Example 3. Let A,B,* be binary aggregation operators, where A(x\,x2) = 
B(x\,x2) = x\ * x2 = x\ - x2. Then all three operators have 1 as a neutral element. 
On the other hand C(x\,x2) = A(x\ * B(x\,x2),x2 * B(x\,x2)) = x\ • x\. We can 
easily see that 1 is not neutral element of operator C. 

Example 4. Let A,B,* be binary aggregation operators, where A(x\,X2) = 
B(x\,X2) = x\ * X2 = SL(X\,X2), where SL(X\,X2) is the Lukasiewicz t-conorm, 
SL(X\,X2) = min(xi + X2,l). Since the Lukasiewicz t-conorm has the 1-Lipschitz 
property all three operators have it too. However, the composed operator 

C(x\,x2) = A(x\ * B(x\,x2),X2 * 2?(:ri,.Z2)) = 

min(min(xi + min(xi + x2,1), 1) + min(a:2 + min(xi + x2 ,1), 1), 1) = 

min(3xi + 32,1) = SL (3XI , 3x2) 

does not have the 1-Lipschitz property. Recall that an n-ary aggregation operator 
A has the 1-Lipschitz property if for any (x\,... , xn), (y\,... , yn) G [0, l ] n it holds 

n 

\A(x\,... ,xn) - -4(2/i,... ,yn)\ < ^2\xi - y{\. 
i=l 

3. SPECIAL TYPES OF *-COMPOSITION 

Evidently, if x * y = x (i.e., * is the projection to the first coordinate) then C 
constructed by means of A, B and * via (2) is just A, independently of B. Similarly, 
if * = p2 (i.e., x *y = y), then for any idempotent A we get C = B. Moreover, for 
idempotent aggregation operators A, B, * we have the next observations: 
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a) A = V, * = A ensures C = B\ 

P) A = A, * = A ensures C = A; 

7) B = V, * = V ensures C = V; 

S) B = A, * = V ensures C = A\ 

tf) A = A, * = V ensures C = B\ 

0 B = V, * = A ensures C = A; 

rj) A = B = * binary bisymmetric ensures C = A. 

For associative symmetric aggregation operators (which are determined by their 
binary form) we have the next observations 

(i) A = B = * is idempotent ensures C = A 

(ii) A = B = * symmetric ensures C = A^n+l\ i.e., 

C ( # 1 , . . . , xn) = A\X\,... , X i , . . . , xn,... , xn) 

(n-f-l)-times (n+1)-times 

Special types of idempotent, kernel, continuous aggregation operators are the 
Choquet and the Sugeno integrals [5, 14] and related general fuzzy integrals [11]. 
For a given fuzzy measure m : V({1,... , n}) -> [0,1], the corresponding aggregation 
operators derived by means of the Choquet and Sugeno integrals will be denoted as 
Cm and SVn, respectively. 

Recall that 
n 

Cm(xu... ,x n) = X>( i ) (m(A w ) -m(A ( i + 1 ) ) ) 
i=l 

and 
n 

Sm(xu... ,x n ) = V (x(i) Am(A ( i ))), 
i= i 

where (.) is a permutation of ( 1 , . . . ,n) such that x(x) < ... < x(n)y and A(i) = 
{(i), (i + 1 ) , . . . , (n)} with convention A(n+1) = 0. 

Let mi,m2 be two fuzzy measures on { 1 , . . . , n} . Due to Propositions 1, 2 and 
claims a) , /3), 7), 6) we have the following results: 

— if A = C m i , i? = Cm 2 , * is weighted mean with weights w and (1 — w) then 
C = Cm with m = wmi + (1 — i0)m2 = m\ * rri2 

— if A = Sm!, B = Sm2, * is weighted maximum with weights Wi,W2, W\ Vi02 = 1, 
i.e., x * y = (tu! A x) V (uv2 A y), then C = Sm with m = mi * m2. 

The next result illustrates the power of the newly proposed composition method. 

Proposition 3. Let mi and 7712 be two fuzzy measures on { 1 , . . . , n} . If A = C m 2 , 
B = 5 m i , * = A then C is the two-fold integral recently introduced by Torra [15], 
see also [13]. 
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P r o o f . We need to show that the formula of Torra expressing the twofold 
integral r / m i i m 2 : 

TImum2 = ] T \J(x(j) Ami(A ( j ) ) ) (m2(A(i)) - m 2 ( A ( m ) ) ) 
i = i \ i = i / 

is equal to expression 

XI I s(0 A I V XU) A m i ( A i ) ) ) (m2(A(i)) ~ m2(A(i+1))) J , 

•using the notation introduced above. It is clear that it is enough to prove that for 
all k e { 1 , . . . ,n} 

V (iC(i)) Ami( .4 ( j )) J = x(k) A I V x(j) Ami(A ( j ) ) J . 

If 

X{k) < V x 0 ) Ami(A(j)) 
j = i 

/ n \ 
then £(£) = X(fc) A I V x^ A ra^-A^)) . As far as it holds x^ > X(p) for all p G 

V=i / 
{ 1 , . . . , k} and m^A^) < mi(A^) for all p G { 1 , . . . , k}, it is obvious, that X(p) < 

k 
mi(^4(p)) for all p G { 1 , . . . ,&}. This means that we have V xy) Arai(A(j))) = 

.7 = 1 

£(*) = x(A.) A V x(j) Arai(A ( i )) 
V = 1 

On the other hand, if 

x(k) > V x(j)AmЛAu)) 
J = I 

all 
n In \ 

then V X(j) Ami(A(j)) = X(&) A I V X(j) /\mi(A^) J and since X(̂ ) < X(p) for 
j=i \ i = i / 

p G {& + 1,... ,n} and rai(>l(fc)) > rai(.A(p)) for all p G {k + 1,... ,n}, necessarily 
A; 

X(p) > rai(A(p)) for all p G {& + 1,.. . ,n}. Consequently we get that V (xy)) A 
j = i 

n / n \ 
mi(A{j)) = V ^(j) Arai(.A ( j )) = x{k) A V ^(j) A mi(A ( i ) ) . • 

j=i \ i = i / 

Observe that all properties of the two-fold integral shown in [15] can be obtained 
easily looking on it as a special *-composition. For example, for any subset E C 
{1,2,... ,n} we can straightforwardly show 

TImum2(lE) = Cm2(Smi(lE) A 1E) = mi(E)Cm2(lE) = ml(E)m2(E). 
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Similarly, because of Proposition, evidently TImi,m2 < Cm2 and T7 m i . m 2 < Sm2. 
Note that if A = C m i , B = 5 m 2 , * = V then C can be understood as a dual of 
two-fold integral given by 

5Z XWV A XU) Vm2(%)) (^1(^w)~mi(^(i+i))) • 
2=1 \ \ i = i + l / / 

Indeed, denoting C constructed via (2) from -4,B,* by C,4*B we have 

Ccmivsm2 = (Cbm? ASmJrf, 

where md(^4) = 1 — m(.Ac), i.e., md is the dual fuzzy measure to m and (C(x))d = 
1 - C(l — x). Moreover, 

Ccmivsm2 + CcmiASm2 = Cm i + 5 m 2 . 

We list some properties of the above introduced aggregation operators. Let 
ra* and m* be the strongest and the weakest fuzzy measure on {1,2 , . . . , n } , re
spectively. Then Cm* = Sm* = V and Cm„ = Sm^ = A. Consequently, from 
a), V), 7), *), tf), O w e get: 

CCmASm* = Cm 

Ccm*ASm = Sm 

CcmASm, = Ccm+ASm = A 

CCmVSm. = Cm 

CCm+VSm = Sm 

CCmVSn* = Cn.VSm = V« 

4. CONCLUSION 

Newly introduced *-composition allows to build more complex aggregation operators 
from simpler operators, and thus it allows a flexible modelling of several aspects and 
expected attitudes of constructed operators. 
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