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studied. The characterization of 1-Lipschitz aggregation operators as solutions to a func
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1. INTRODUCTION 

The aim of this paper is to study 1-Lipschitz aggregation operators, and specially 
quasi-copulas. The study of these problems was motivated by several papers on 
fuzzy preference modeling [5, 6], or by papers concerning some problems in fuzzy 
probability calculus, e.g., by [10] and others. A distinguished example of 1-Lipschitz 
aggregation operators are copulas [17], Well-known is the importance of copulas, 
as functions joining a multivariate distribution function to its one-dimensional dis
tribution functions in statistical modeling and probability theory. The notion of a 
quasi-copula was introduced by Alsina, Nelsen and Schweizer in [1] and was used for 
characterizing operations on distribution functions that can be or cannot be derived 
from operations on random variables, cf. [17]. A simple characterization of quasi-
copulas as special 1-Lipschitz functions has recently been given by Genest et al in 
[9], also see below. In [5] the construction of fuzzy preference structures by means of 
so-called generator triplets was studied. It was shown that a generator triplet (p, z, j) 
is monotone if and only if the indifference generator i is a commutative quasi-copula. 
Copulas and quasi-copulas also appear in applications of fuzzy logic where they are 
used for modeling conjunctors. 

Let us start with recalling some basic notions that will be useful. 
Let n (E N, n > 2. n-ary aggregation operators are denned as non-decreasing func
tions A : [0, l ] n -> [0,1] satisfying the boundary conditions .4(0, . . . , 0 ) = 0 and 
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.A(l,..., 1) = 1. In this paper we will deal with binary aggregation operators only, 
i.e. with n = 2, and therefore, if no confusion can appear, their name will often be 
shorten to aggregation operators only. 

Aggregation operators satisfying the Lipschitz condition with constant 1, i.e., satis
fying the property 

|-4(xi,2/i) - A(x2,y2)\ < |xi - x2\ + \yi - y2\, 

for all x\, x2, yi, y2 £ [0,1], will be called 1-Lipschitz aggregation operators. 

From well-known types of binary aggregation operators, for example, the arithmetic 
mean M, the product operator II, Min and Max operators, as well as weighted 
means, OWA operators, copulas, quasi-copulas, Choquet integral-based aggregation 
operators, Sugeno intergal-based aggregation operators are 1-Lipschitz aggregation 
operators. More details on these classes 'of aggregation operators can be found, e.g., 
in [2]. 

Distinguished classes of 1-Lipschitz aggregation operators are the classes of cop
ulas and quasi-copulas. 

A (two-dimensional) copula C is defined as a function C : [0, l ] 2 -> [0,1] with the 
properties 

— C(0,x) = C(x,0) = 0 a n d C ( x , l ) = C(l,x) = x for all x G [0,1]; 

— C(xi,yi) + C(x2,y2) > C(x2,yY) + C(xi,y2) for all xu x2,yuy2 G [0,1] such 
that x\ < x2 and y\ <y2. 

The first property means that zero is annihilator and the element 1 neutral element of 
a copula. The second one is the moderate growth property or 2-monotonicity. From 
this property it follows that copulas are non-decreasing functions in each variable 
and also satisfy the Lipschitz condition mentioned above. 

We turrit the original definition of a (two dimensional) quasi-copula of Alsina et 
al in [1] and recall the more transparent one of Genest et al [9], who characterized 
quasi-copulas as functions Q : [0, l ] 2 —» [0,1] with the properties: 

— Q(0, x) = Q(x, 0) = 0 and Q(x, 1) = Q(l,x) = x for all x G [0,1]; 

— Q is non-decreasing in each of its arguments; 

— Q satisfies Lipschitz's condition (with constant 1). 

Due to the 1-Lipschitz property, copulas as well as quasi-copulas are continuous 
functions on the unit square. 
The relationship between copulas and quasi-copulas is given by the following char
acterization of quasi-copulas in terms of copulas [18]: the function Q : [0, l ] 2 -> [0,1] 
is a quasi-copula if and only if there exists a set S ^ 0 of copulas such that for all 
(x, y) G [0, l ] 2 , Q(x, y) = snp{C(x, y);Ce S}. 

Note that the conditions in the first item of the definition of a quasi-copula mean that 
quasi-copulas are aggregation operators with zero annihilator and neutral element 
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equal to 1. One of these properties is superfluous because for 1-Lipschitz aggregation 
operators these properties are equivalent. Any aggregation operator A whose neutral 
element is eA = 1, has the annihilator a A = 0. However, in the case of 1-Lipschitz 
aggregation operators also the property a A = 0 implies eA = 1 (which is not true in 
general). This means that a 1-Lipschitz aggregation operator has neutral element 
eA = 1 if and only if it has annihilator a A = 0. Therefore quasi-copulas can be 
equivalently characterized as 1-Lipschitz aggregation operators with neutral element 
1, or as 1-Lipschitz aggregation operators with zero annihilator. The set of all quasi-
copulas will be denoted by Q. 

For any Q G 2, define the function Q* : [0, l ] 2 -> [0,1] by Q*(x,y) = x + y -
Q(x,y), which is called the dual of a quasi-copula Q. The dual of any quasi-copula 
is also a non-decreasing and 1-Lipschitz function, but with zero neutral element and 
annihilator equal to 1. Denote by V the set of all functions / : [0, l ] 2 -» [0,1] with 
mentioned properties. They will be called dual quasi-copulas. For each / G V there 
is a quasi-copula Q such that / = Q*, namely, Q(x,y) = x -F y — f(x,y). 

The paper is further organized as follows. In the next section, the characterization 
of 1-Lipschitz aggregation operators as solutions to a functional equation similar to 
the Frank functional equation [8] is given, and moreover, it is shown that quasi-
copulas and dual quasi-copulas play an important role in describing the structure 
of 1-Lipschitz aggregation operators with arbitrary annihilator or neutral element. 
Section 3 contains a characterization of quasi-copulas as solutions to a special type 
of functional equation, and also an additional necessary condition for being a quasi-
copula. Section 4 is devoted to the study of composition of 1-Lipschitz aggregation 
operators, and again, a special attention is paid to quasi-copulas. The paper ends 
with several concluding remarks. 

2. BINARY 1-LIPSCHITZ AGGREGATION OPERATORS 

In the first subsection of this section we will characterize 1-Lipschitz aggregation 
operators in general. Then, in the second and third subsections, we describe the 
structure of 1-Lipschitz aggregation operators with any annihilator or neutral ele
ment from the unit interval. 

2.1. Characterization of binary 1-Lipschitz aggregation operators 

The following theorem shows that 1-Lipschitz aggregation operators can be charac
terized as solutions to a simple functional equation which is similar to the Frank 
functional equation [8]. 

Theorem 1. A binary aggregation operator A is 1-Lipschitz if and only if there is 
a binary aggregation operator JB, such that for all x, y G [0,1] it holds 

A(x,y)+B(x,y) =x + y. (1) 



618 A. KOLESÁROVÁ 

P r o o f , (i) Let A be a 1-Lipschitz aggregation operator. We show that then the 
function B defined by B(x,y) = x + y — A(x,y) is an aggregation operator. It is 
clear that B satisfies the boundary conditions 6(0,0) = 0 and 6(1,1) = 1. We 
prove that the 1-Lipschitz property of A implies the monotonicity of 6 . 
Let y,x\,x2 G [0,1] are any points such that x\ < x2. Then 

B(x2,y) - B(x\,y) = x2 - x\ + A(x\,y) - A(x2,y). (2) 

Due to the 1-Lipschitz property and monotonicity of A we have A(x2,y) — A(x\,y) < 
x2 — x\, which together with (2) gives B(x\,y) < B(x2,y). Thus B is monotone 
in the first coordinate. An analogous claim is valid for the second coordinate and 
therefore B is monotone as an aggregation operator. It is clear that the pair (A, B) 
solves the equation (1). 

(ii) Next, assume B is an aggregation operator. Mention that because of the 
inequality 

|-4(xi,3/i) - A(x2,y2)\ < \A(x\,y\) - A(x2,y\)\ + \A(x2,y\) - A(x2,y2)\ 

which holds for all x\, y\, x2, y2 G [0,1], the 1-Lipschitz property of A follows from 
the 1-Lipschitz property of functions A(.,y), A(x,.), x, y G [0,1], 
Let x\,x2,y G [0,1] be any points, and without loss of generality, let x\ <x2. Then 
due to monotonicity of B we have 

0 < B(x2,y) - B(x\,y) = x2-xx - A(x2,y) + A(xx,y), 

which leads to A(x2,y) — A(x\,y) <x2—x\, that is, to the 1-Lipschitz property of 
the function A(.,y). The proof for the 1-Lipschitz property of A(x,.) is similar. • 

In the sequel, for a given aggregation operator A denote A*(x, y) = x+y — A(x, y). 
By the previous theorem, A is a 1-Lipschitz aggregation operator if and only if the 
function A* is an aggregation operator. Repeating this, we obtain that A* is a 1-
Lipschitz aggregation operator if and only if (A*)* is an aggregation operator. Since 
(A*)* = A, we have that aggregation operator A is 1-Lipschitz if and only if A* is a 
1-Lipschitz aggregation operator. 
In the framework of aggregation operators the standard dual to an aggregation 
operator A is defined by Ad(x,y) = 1 — A(l — x, 1 — y). However, the property 
(A*)* = A also expresses certain type of duality between A and A*. 

If A is a 1-Lipschitz aggregation operator A then certainly 

x + y - 1 < x + y - A*(x,y) < x + y, 

that is, 
max(.r + y — 1,0) < A(x,y) < min(x + y, 1). 

This means that the condition 

TL<A<SL, • ' (3) 
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where TL(:r,2/) = max(x + y —1,0) is the Lukasiewicz t-norm and SL(X^) = min(a; + 
y, 1) is the Lukasiewicz t-conorm, is a necessary condition for a binary aggregation 
operator to be l-Lipschitz. 

Finally, suppose that a l-Lipschitz aggregation operator A has neutral element 
tA- Then for Vx G [0,1], A*(X^A) — A*(e^,x) = e^, which means that the 
element e^ is the annihilator of the operator A*, i.e., e^ = a .4*. Analogously, for 
the annihilator of A, if it exists, we have a A — eA+-

2.2. The structure of binary l-Lipschitz aggregation operators with 
annihilator 

In this subsection we show that each 1-1 pschitz aggregation operator with annihi
lator a G]0,1[ is built up from a dual quasi-copula, a quasi-copula and the value 
a. 

Let A be a l-Lipschitz aggregation operator with annihilator a A G [0,1]. Accord
ing to the previous discussions: 

— if a A = 0 then A is a quasi-copula; 

— if a A = 1 then e^* = 1, which means that the operator A* is a quasi-copula, 
and thus A is a dual quasi-copula. 

Now, let a A — & G ]0,1[, Define the mappings </?a, tpa by 

<Pa(x) = - , , ^a(-c) = z • (4) 
a 1 — a 

Then the function QA : [0, l ] 2 -> [0,1], 

QA(X,V) = Va (A (rpa1(x)^-1(y))) (5) 

is a quasi-copula, and the function DA • [0, l ]2 -.> [0,1] 

DA(x,y) = <Pa(A{tp-1(x),<p-1(v))) (6) 

is a dual quasi-copula. We omit the details because the proofs go similarly as in the 
case of nullnorms, [3] . 
Therefore 

AU „ \ _ / Va1 (DA (<Pa(x),<pa(v))) if (x,y) G [0, a] x [0, a] 
[ ' y ) - I ^al(QA^a(x)My))) if (* ,v)e [a, l ] x [a, 1]. 

If (x,y) G [0,a[x]a, 1], then 

a = A(x,a) < A(x,y) < A(a,y) = a, 

which means that A(x,y) = a, and the same is true for the rest of the unit square 
]a , l ]x[0,a[ . . 
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2.3. The structure of 1-Lipschitz aggregation operators with neutral 
element 

A similar situation to the previous one is for 1-Lipschitz aggregation operators with 
neutral element. 

Let A be a 1-Lipschitz aggregation operator with neutral element e^ G [0,1]. 
Trivially, 

— if eA = 1 then A is a quasi-copula; 

— if eA = 0 then a A* = 0, and because A* is a 1-Lipschitz aggregation operator, 
A* is a quasi-copula, which implies that A is a dual quasi-copula. 

Finally, assume that e^ = e G ]0,1[. Then the function QA '• [0, l ] 2 —> [0,1], 

QA(x,y) = <pe (A (<p71(x),lpj1(y))) (7) 

is a quasi-copula, and the function DA ' [0, l ]2 —> [0,1], 

DA(x,y)=iPe(A(tp:1(x),^1(y))) (8) 

is a dual quasi-copula. Therefore 

A(~ „\ - I Vel (QA(<Pe(x),<pe(y))) if (~,v) € [0,e] x [0,e] 
A{x,y) - | V)_1 {DA irj,eix)My))) if ( X ) y ) 6 [ e > 1 ] x [ e > 1 ] . 

In the case of uninorms [7] which is similar to this one, the values on the rest parts 
of the unit square are not determined uniquely, they are between the values of Min 
and Max operators, in general. In the case of 1-Lipschitz aggregation operators the 
values at the points (x,y) G [0,e[x]e,l] U ]e, 1] x [0,e[ are determined uniquely. 
Indeed, if the operator A is 1-Lipschitz aggregation operator, the same is true for 
A*, and moreover, a A* = e. Using the results of the previous subsection, the values 
of A* at these points are A*(x,y) — e, that is, A(x,y) = x + y — e at all points 
(x ,7/)G[0,e[x]e , l ]U]e, l ]x[0,e[ . 

3. CHARACTERIZATION OF QUASI-COPULAS 

In the previous section we have shown that all 1-Lipschitz aggregation operators 
with annihilator or neutral element are fully characterized by quasi-copulas and 
dual quasi-copulas. In the case of commutative 1-Lipschitz aggregation operators 
also the corresponding quasi-copulas and dual quasi-copulas will be commutative. 
In this section we give a characterization of commutative quasi-copulas as solutions 
to a certain type of a functional equation. 

Let us start with a slight modification of a given definition of a quasi-copula, 
showing that the boundary conditions characterizing quasi-copulas can be simplified. 
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Lemma 1. A function Q : [0, l ] 2 -» [0,1] is a quasi-copula if and only if it satisfies 
the following conditions: 

(i) Q is non-decreasing; 

(ii) Q is 1-Lipschitz; 

(iii) Q(0,1) = Q(l, 0) = 0 and Q(l, 1) = 1. 

P r o o f . It is clear that each quasi-copula fulfills the properties (i)-(iii). Con
versely, from the 1-Lipschitz property and the conditions in (iii) we obtain the in
equalities 

Vx E [0,1] : Q(x, 1) = Q(x, 1) - Q(0,1) < x and Q(l, 1) - Q(x, 1) < 1 - x, 

which give x < Q(x, 1) < x, that is Q(x, 1) = x. Analogously, for each x E [0,1], 
Q(l,x) = x, that is, 1 is the neutral element of Q. The fact that 0 is its annihilator 
follows from the monotonicity of Q and the properties in (iii) or from the discussion 
in Introduction. • 

Remark 1. Since an aggregation operator A is always monotone and satisfies 
the property J 4 ( 1 , 1 ) = 1, A is a quasi-copula if and only if it is 1-Lipschitz and 
,4(0,1) = 4(1,0) = 0. 

As mentioned above, quasi-copulas can be characterized as solutions to a certain 
type of a functional equation. For simplicity, we prove the claim for commutative 
quasi-copulas. 

Theorem 2. A commutative aggregation operator A is a commutative quasi-
copula if and only if there exists an aggregation operator B such that for all x, y E 
[0,1] we have 

A(x,y) + B(l-x,y)=y. (9) 

P r o o f , (i) Let A be a commutative quasi-copula. Define a function B : [0, l ] 2 —r 
[0,1] by 

B(x,y) =y-A(l-x,y). 

Then evidently 5(0,0) = 0 and 5(1,1) = 1. Next, let x, y E [0,1] be any elements 
and let e > 0 be an arbitrary number such that x + e E [0,1]. Then 

B(x + e,y) - B(x,y) = A(\ -x,y)-A(l-x- e,y) > 0, 

which follows from the monotonicity of A. Thus, B is monotone in the first coordi
nate. 
For any x, y E [0,1] and e > 0 such that y + e E [0,1] we also have 

B(x,y + e) - B(xyy) = e - (A(\ -x,y + e)-A(l- x,y)) > 0, 
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because, due to the 1-Lipschitz property of A, it holds A(l — x,y+e) — A(l — x,y) < e. 
The function B is also monotone in the second coordinate. This means that B is an 
aggregation operator and moreover, the pair (A,B) solves the equation (9). 

(ii) Let A be a commutative aggregation operator, which together with some 
aggregation operator B fulfills the equation (9). To show that A is a commutative 
quasi-copula, it is enough to show that A is 1-Lipschitz and A(1,0) = 0. 
Put in the equation (9) y = 0. Then for each x G [0,1], it holds A(x, 0)+JB(l-x, 0) = 
0, which implies A(x, 0) = 0 for each x G [0,1]. 
On the contrary, suppose that A is not a 1-Lipschitz operator. Then there is a 
y G [0,1[ and an e > 0 such that y + e G [0,1] and 

A(x,y + e) - A(x,y) > e. 

Then 
B(l -x,y + e)-B(l-x,y) = e- (A(x,y + e) - A(x,y)) < 0, 

which contradicts the monotonicity of B. So, A is a 1-Lipschitz aggregation operator 
with the property A(0,1) = -4(1,0) = 0, and by Lemma 1 it is a quasi-copula. • 

Remark 2. The previous claim without the commutativity condition should have 
to be reformulated in the following way: An aggregation operator A is a quasi-
copula if and only if there exist aggregation operators B and C such that for each 
x, y G [0,1] we have 

A(x, y) + B(l - x, y) = y and A(x, y) + C(x, 1 - y) = x. 

In [10], the Bell inequalities were studied. It was shown that each commutative 
quasi-copula satisfies for each x, y, z G [0,1] the inequality 

x-f(x,y)-f(x,z) + f(y,z)>0. (10) 

However, this inequality, together with commutativity and monotonicity of / and 
neutral element equal to 1, does not fully characterize commutative quasi-copulas. 
Fulfilling the inequality (10) is only a necessary condition for functions to be com
mutative quasi-copulas, as is shown in the following example. 

Example 1. The function / : [0, l ] 2 ->> [0,1] defined by 

f(x,y)=TL(x,y).(2-SM(x,y)) (11) 

is non-decreasing, commutative, with neutral element e = 1 and fulfills the inequality 
(10), but it is not a quasi-copula. 

To see this, consider the following subsets of the unit square: 

Uo = {(x,y)\ x + y <!}, Ux = {(x,y); x + y>lAx<y} 
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and 
U2 = {(x,y)\ x + y> 1 A x>y}. 

Then (x,y) G U0 => TL(x,y) = 0 => /(x,y) = 0. 
Next, for all (x,y) G CIi we have 

/ (x ,y) = (x + y - l ) ( 2 - y ) , 

and for all (x,y) G C/2, it is 

f(x,y) = (x + y-l)(2-x). 

It is clear that / is commutative and with neutral element e = 1. It is also continuous 
and partial derivatives at all inner points of U\ are |^(x,y) = 2 — y > 0, and 
7^(.r,y) = 3 — 2y — x > 0. The commutativity of / ensures similar inequalities for 
U2, and therefore / is non-decreasing on [0, l ] 2 . 
However, the function / is not 1-Lipschitz. For example, for the point (0.5,0.9) the 
value of partial derivative is |£(0.5,0.9) = 1.1 > 1, which contradicts the 1-Lipschitz 
property of / . 

Despite / is not a quasi-copula, it fulfills the inequality (10), To show this, 
consider only the case x > max(y,z), since in all other cases any commutative non-
decreasing function / with neutral element 1 satisfies the inequality (10). Moreover, 
because of the commutativity of/, it is enough to pay attention to the case y < z < x 
only. 

• Consider first that x + y < 1. Then 
f(x,y) = 0, f(y,z) = 0, and for the expression E(x,y,z) on the left-hand side of 
(10) we obtain 

E(x,y,z) = x- / (x ,z) = f(x, 1) - f(x,z) > 0, 

which follows from the monotonicity of / . 
• Now, consider the case x + y > 1. Then because of y < z < x, also x + z > 1, and 
for the left-hand side expression E(x,y,z) of (10) it holds 

E(x,y,z) = x-(x + y- 1).(2 - x) - (x + z - 1).(2 - x) 

+ max(y + z - 1,0)(2-*) 

= x- (2 - x).(2x + y + z - 2) + m<ix(y + z- 1 ,0)(2-*) . 

(12) 

• If y + z < 1, then TL(y, z) = 0 and 2x + y + z - 2 < 2x - 1. Therefore 

E(x,y,z) >x-(2-x)(2x-l) = 2(x-lf > 0. 

• If y + z > 1, then TL,(y,z) = y + z — 1, and since 2 — z > 2 — x, from (12) we obtain 

E(x,y,z) >x-(2-x)(2x-l) = 2(x - l ) 2 > 0. 

This ends the proof of the claim that / fulfills the inequality (10) despite it is not a 
quasi-copula. 
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4. ON COMPOSITION OF 1-LIPSCHITZ AGGREGATION OPERATORS 

If A, B are n-ary aggregation operators and F is a binary aggregation operator then 
a function F(A, B) : [0, l ] n -> [0,1] defined by 

F(A, B)(xi,..., xn) = F(A(xi,..., xn),B(xi,..., xn)) , 

is also an n-ary aggregation operator and is called a composed aggregation operator. 
It is known, that although all three aggregation operators A, B, F are 1-Lipschitz, 
the composed aggregation operator F(A, B) need not be of this property. For exam
ple, despite the Lukasiewicz t-conorm SL is a 1-Lipschitz aggregation operator, the 
composed operator SL(SL,SL) does not possess this property [12]. However, if the 
outer operator F is a kernel aggregation operator, and A, B are 1-Lipschitz, then 
F(A, B) is always 1-Lipschitz aggregation operator [4, 12]. 
Recall that a binary aggregation operator F has a kernel property if 
for all i/i,i/2, ^i , ^2 G [0, l ]2 we have 

\F(ui,vx) -F(u2,v2)\ < max(|t/i ~u2\,\vi - v2\). 

It is clear that each kernel aggregation operator is also 1-Lipschitz. More details on 
kernel aggregation operators can be found in [13, 14, 15]. It can be shown that the 
kernel property of an outer operator is also a necessary condition for the 1-Lipschitz 
property of a composed aggregation operator. In the sequel, we will again deal with 
binary aggregation operators only. 

Proposi t ion 1. Let F be a binary aggregation operator. Then for any binary 1-
Lipschitz aggregation operators A and B the composed aggregation operator F(A, B) 
is 1-Lipschitz if and only if F is a kernel aggregation operator. 

P r o o f . The sufficiency was proved in [12]. 
Necessity: Assume F is not a kernel aggregation operator. We show that then there 
exist 1-Lipschitz aggregation operators A, i?, such that F(A,B) is not 1-Lipschitz. 

The kernel property of an aggregation operator is equivalent to its sub-shift in-
variantness [4]. Since F is not kernel, it is not sub-shift invariant, i.e., there exist 
such u, v, a e [0,1] that also u + a, v + a G [0,1] and 

F(u + a,v + a) > a + F(u, v). 

Suppose that u < v and put 

A(x,y) = min (l,max(:z + y — (v — u),0)), 

B(x,y) = SL(x,y) = min(l,x + y ) . 

It can be easily shown that the operators A and B are 1-Lipschitz. If we choose the 
points x = y = | and x' = y' = | + f, then 

( V V\ (V V \ 

2 ' 2 / z = m i n ( 1 ' n ) = u' B\r2J = m i n ( 1 ' ? ; ) =v> 
. (v a v a\ . f. , _.. 

V2 + 2 ' 2 + 2) = m m ( 1 ' m a x ( a + w ' ° ) ) = a + u> 
„ (v a v a\ . _ .. 

V> + 2 ' 2 + 2) = m i n ( 1 ^ + a ) = ^ + a> 
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and therefore 

F(A,B)(x',„')-F(A,B)(x,!,) - F(A(H + 2,H + ! ) > B ( » + » ,» + «)) 

= F(u + a,v + a) - F(u, v) 

> a=\x' -x\ + \y' -y\, 

which means that F(A, B) is not a 1-Lipschitz aggregation operator. Note that 
aggregation operators of the type A were introduced in [16]. • 

As a consequence of the previous theorem we obtain that if the outer operator 
F is kernel, then composition of two quasi-copulas is a quasi-copula. Observe that 
F(0,0) = 0 ensures that zero is an annihilator of the composed operator whenever 
both inner operators have zero as their annihilator. 
In the next part we show that for quasi-copulas, as a special type of 1-Lipschitz 
aggregation operators, the kernel property of F can be relaxed. 

Lemma 2. Denote K = {(Qi(x,y),Q2(x,y))\ (x,y) G [0,l]2 ,Qi, Q2 G Q}. Then 

K = I (u, v); u G [0,1], v G max(2u - 1 , 0 ) , —r— \ . 

P roof . The set K is built from all pairs (Qi (x, y),Q2(x, y)) of values of all quasi-
copulas on [0,1]. It holds K = |J KQUQ2, where KQUQ2 is an analogous set 

QuQieQ 
for a fixed pair of quasi-copulas Q\, Q2. 
Recall that for each quasi-copula it holds 

TL(x,y)<Q(x,y)<TM(x,y), (x,y) e [0,1]2- (13) 

Let Qi be any quasi-copula. 
• Assume first Qi(x,y) = 0. Then from the lower inequality in (13) we obtain 
x + y - 1 < 0, which means that the point (x,y) G {(x,y) G [0, l ]2 ; y < 1 - x}. 
Because of the upper inequality in (13), for any quasi-copula Q2 G Q at the points 
with y < 1 — x we have 

max min(x,y) = - . 
y<l—x 2 

So, if Qi (x, y) = 0, the values of each quasi-copula Q2 will certainly be in the interval 

[o,|]. 
• Further, assume Qi(x,y) = 1. From (13) we obtain min(x,y) = 1, i.e., x = y = 1, 
which implies Q2(x,y) = 1. 
If we denote Q\ (x,y) = u and Q2(x,y) = v, the previous results say that: 

u = 0 =-> v G [0, - ] and u = 1 => v = 1. 
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Finally, assume that Qi(x,y) = u G]0,1[. From (13) we have 

max(x + y — 1,0) < u < min(x, y), 

i.e., y < 1 — x + u and simultaneously, x > u and y > u. This means that in the 
considered case, the points (x,y) G Su, where 

Su = {(x,y) G [0,1]2 ; y < 1 - x + u, x > u, y > u). 

Again, due to the upper inequality in (13), for each quasi-copula Q2 at the points 
(x, y) G Su it holds 

Q2(x,y) < max min(x,y) = ——. 
(x,y)eSu z 

Monotonicity of quasi-copulas and the inequality max(.r + y — 1,0) < Q2(x,y) in 
(13) imply 

Q2(x,y) > Q2(u,u) > max(2u - 1,0), 

which is valid for all quasi-copulas Q2 G Q and all points (x,y) G Su. 
We conclude that if Q\(x,y) = uG]0,1[, then 

u + 1 
m a x ( 2 u - 1,0) < Q2(x,y) < - y - , Q2 G Q. (14) 

Note that the results for u = 0 and u = 1 can also be obtained from (14). • 

We have shown that for any two quasi-copulas Q\ and Q2 the set of all points 
(u,v) = (Qi(x,y),Q2(x,y)) is the subset K of the unit square of the form 

u + 1 
max(2îi — 1,0), —-— K = Uu,v); u G [0,1], v G 

Theorem 3. Let F be an aggregation operator. For any quasi-copulas Q\, Q2, 
a composed aggregation operator F(Q\,Q2) is a quasi-copula if and only if the 
operator F has the kernel property on the set K defined in Lemma 2. 

P r o o f . Sufficiency: Let F be an aggregation operator with the kernel property 
on the set K, and let Q\, Q2 be any two quasi-copulas. The function A = F(Qi,Q2) 
is an aggregation operator and therefore, A is a quasi-copula iff A is 1-Lipschitz and 
-4(1,0) = A(0,1) = 0. The last property is evident, 

A(1,0) = F(Q1(1,0),Q2(1,0)) = F(0,0) = 0, 

and the same holds for A(0,1). 
To prove the 1-Lipschitz property of A, choose any (.Ci,yi), (£2,2/2) £ [0, l ] 2 and 
put u = Qi(x1,y1), v = Q2(xi,yi), u' = Qi(x2,y2), v' = (52(^2,2/2)- Then 

\A(x!,y!) - A(x2,y2)\ = \F(Q1(xi,y1),Q2(xi,y1)) - F(Qi(x2,y2),Q2(x2,y2))\ 

= \F(u,v)-F(u',v')\ <max(\u-u'\,\v-v'\), 

(15) 
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because (u,v), (u',v') G K and by the assumption the operator F is kernel on the 
set K. Further, after several trivial steps, using the 1-Lipschitz property of quasi-
copulas Qi, Q2l (15) results in 

\A(xi,yx) - A(x2,y2)\ < \xx - x2\ + \yx - y2\, 

which means that A is a 1-Lipschitz aggregation operator. 

Necessity: We need to prove that if a composed aggregation operator F(Q\,Q2) G 
Q for all Qi, Q2 G Q, then F is a kernel aggregation operator on the set K, or 
equivalently, if F is not a kernel aggregation operator on K, then there exist quasi-
copulas Qi, Q2 such that F(Qi,Q2) <£ Q. 

Assume that F is not a kernel operator on K. Then F is not sub-shift invariant 
on K, i.e., there exist (u,v) G K, a G [0,1], such that (u + a,v + a) G K, and 

F(u + a,v + a) > a + F(u,v). (16) 

Suppose that u < v. Put Qi = TL and Q2 = (< 0,u - v + 1 >,TL), i.e., Q2 is an 
ordinal sum [11]. If u = v, the operator Q2 is also the Lukasiewicz t-norm, in other 
cases it is a non-trivial ordinal sum. 
Lctx = v+%,y = u + l-v-%. Then 

Qi(x,y) = max(u,0) = i i , Q2(x,y) = max(t>,0) = v, 

Qi(x+ ~,y + x) = max(iz + a,0) = -a + a, Q2OE+~,y+~) = max(v + a,0) = v + a 
2 2 2 2 

and therefore 

F(QuQ2)(x + | , y + | ) - F(QuQ2)(x,y) = F(u + a,v + a) - F(u,v) > a, 

which means that F(Qi,Q2) is not a 1-Lipschitz aggregation operator, thus not a 
quasi-copula. ---

For composition of copulas the previous claim is not true. Despite the outer 
operator is kernel, the composition of two copulas need not to be a copula, as we 
can see in the following example. 

Example 2. Let F = medfc, k G [0,1], i.e., F(x,y) = med(x,y,k). Set Ci = TL 

and C2 = Tp, where Tp is the product t-norm. Then the composed operator is 
Ak=medk(TL,TP). 
The operators C\ and C2 are copulas and each operator F = med* is a kernel 
aggregation operator on [0, l ] 2 . According to Theorem 4, the composed operator Ak 

is always 1-Lipschitz. For example, for k = 0.5 we obtain the operator 

f TL(x,y) if TL(x,y)> 0.5 
Ao.s(x,y) = { TP(x,y) if TP(x,y) < 0.5 

I 0.5 if TL < 0.5 <TP(x,y). 
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The operator An.5 is not a copula because it is not 2-monotone. To show this, 
consider the points x = ^ y = j , xf = ^ and y' = | . Then we have 

3 3 \ . / 2 2 \ , (2 3 \ . / 3 2 
4,4 ) + ^ 0 . 5 I 3 , 3 ) - - 4 0 . 5 ( 3 , 4 1 --4o.5 C 4 , 3 

0.5 + 1 - 0 . 5 - 0 . 5 = - ^ <0, 

which contradicts the 2-monotonicity of A0.5. 
Note that by the previous theorem, all operators Ak, k G [0,1], are quasi-copulas. 
The claim follows from the facts that TL, and Tp are quasi-copulas (each copula is 
also a quasi-copula) and the outer operator med(x, ?/, k) is kernel on [0, l ] 2 and thus 
also on the set K.^. 

Remark 3. Theorem 3 deals with the kernel property of an aggregation operator 
F on the set K from Lemma 2. However, for any aggregation operator F' such 
that F\K = F'\K, we have F(Qi,Q2) = F'(Qi,Q2) for all pairs of quasi-copulas 
Qi, Q2 £ Q- Moreover, if for any aggregation operator F which is kernel on the set 
K, we define a mapping F' : [0, l ]2 -» [0,1] by 

r F(x,y) X(x,y)eK 
F'(x,y) = { F{*±±,y) if y < 2x - 1 

[ F(2y-l,y) if y > s±k, 

then F' is a kernel aggregation operator (on the unit square) and F'\K = F\K. 
Summarizing all above facts, for composition of quasi-copulas it is sufficient to deal 
with kernel aggregation operators as outer operators only, since no new composed 
operators can be obtained when kernel property on K is only required. 

5. CONCLUSION 

We have studied binary 1-Lipschitz aggregation operators. The main attention was 
paid to quasi-copulas, which were characterized as solutions to a certain functional 
equation. We have shown that quasi-copulas and dual quasi-copulas are also im
portant for describing the structure of 1-Lipschitz aggregation operators with any 
neutral element or annihilator in the unit interval. We have also studied under which 
conditions the composition of 1-Lipschitz aggregation operators, and specially quasi-
copulas, preserves these properties. We expect fruitful application of obtained results 
in preference modeling [5, 6] and statistics [18]. 
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