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This paper deals with the problem of controlling contact forces in robotic manipulators 
with general kinematics. The main focus is on control of grasping contact forces exerted 
on the manipulated object. A visco-elastic model for contacts is adopted. The robustness 
of the decoupling controller with respect to the uncertainties affecting system parameters 
is investigated. Sufficient conditions for the invariance of decoupling action under pertur
bations on the contact stiffness and damping parameters are provided. These conditions 
are meaningful for several classes of manipulation systems with general kinematics. 
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1. INTRODUCTION 

This paper deals with the problem of controlling contact forces in robotic manipula
tors with general kinematics. Manipulation systems with general kinematics, are a 
class of mechanisms including non-conventional manipulators such as, for example, 
multiple fingers in a robot hand, multiple arms in cooperating tasks, robots interact
ing with the object by using their inner links and so on [11, 12]. Contact elasticity 
cannot be neglected in advanced robotics. This occurs in industrial applications 
whenever it is necessary to assemble and manipulate non-rigid (rubber or plastic) 
parts. In medical applications, like micro manipulation of tissues in surgery or in 
laparoscopy, it could be necessary to squeeze the tissue part of the patient's organ 
in order to exert a cutting action (see Figure 1). 

Moreover, modelling contact elasticity is mandatory not only for deformable ma
nipulated parts but also for soft fingertips as those in [1]. For these reasons a 
visco-elastic model for contacts is considered in this paper. The main focus is on 
the control of grasping (or squeezing) contact forces exerted on the object. 

Actually, a simultaneous control of contact forces and object motions is needed 
during manipulation. Furthermore, in many advanced manipulation tasks, the de
coupling control of contact forces with respect to the object motion is a basic re
quirement of the control design. As an example, consider the manipulation system 
of Figure 1 and model the compliant contacts through visco-elastic lumped param-
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eters as depicted in Figure 2 a). One can image to have to grasp or to squeeze the 
tissue without moving it in order to have precise incision. 

Fig. 1. Micro manipulation of internal tissues in surgery or laparoscopy. 

Interests in control by using geometric approach are recently increased in theoret
ical aspects and applications as well, see for instance [3], [7], [10], [13]. In particular 
on problems like non-interaction and noise localization. A non-decoupling control 
policy, for instance a force step on the prismatic joint, squeezes the manipulated 
object but gives rise to an undesired and dangerous transient motion of the ob
ject. In [13] geometric control properties and structures are derived for mechanical 
systems in order to find noise localizing laws. In [6] the decoupling control law is 
derived through a geometric approach to the problem. The decoupling noninteract-
ing controller is based on the knowledge of the manipulation system dynamics and 
the visco-elastic contact behaviour whose identification is a difficult task. Thus, a 
certain degree of uncertainty is always present in the parameters of the visco-elastic 
contact model. In this paper, robustness of the decoupling controller with respect 
to the uncertainties affecting system parameters is investigated. In particular, suffi
cient conditions are provided under which the decoupling control action is invariant 
with respect to the perturbations on the contact stiffness and damping parameters. 
These conditions are meaningful for several classes of manipulation systems with 
general kinematics. 

2. NOTATION AND DYNAMIC MODEL 

This section summarizes notation and some results on the analysis of dynamics for 
manipulation with general kinematics. The model of the general manipulation sys
tem we consider is comprised of a mechanism with an arbitrary number of actuated 
links and of an object which is in contact, at one or more points, with some of the 
links. 

Let q G Mq be the vector of generalized coordinate, completely describing the 
configuration of the manipulation system, let r G Mq be the vector of actuated 
(rotoidal) joint torques and (prismatic) joint forces. Moreover, let u G Md be the 
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vector of the generalized coordinates for the object (d = 3 for 2D cases while d = 6 
for 3D cases) and let w £ Md be the vector of external disturbances acting on the 
object. To clarify the vector notation see Figure 3. 

Fig. 2. Deformable contacts: squeezing action of the prismatic joint. 

The lumped parameter visco-elastic model at the ith contact is simply described 
by introducing contact vectors c m and c?. The d-dimensional contact vector c m 

(c?) represents the coordinates of a fixed frame at the contact point thought on 
the link of the manipulator (on the object). The contact force f; and the moment 
uii exchanged at the contact are represented by the vector t̂  = [fT ,mT] which, 
according to the visco-elastic model, can be written as 

U = K-iH^cJ" - c?) + BiHi(c? - c°). 

The parameters indicated with K; and B^ are the stiffness and damping matrices, 
respectively and H^ is a constant selection matrix describing several types of contact 
models. To be more precise, in the three dimension space in presence of hard-contact, 
matrix K* and B; are matrix 3 x 3 . If the contact is a soft one these matrices have 
dimension 4 x 3 , see [8]. About matrix H;, in presence of hard-contact the dimension 
is 3 x 6 and if the contact is soft one the dimension is 4 x 6. Notice that the presence 
of moment m; in t̂  depends upon the contact interaction type. 

Now let t = [fi, • • •, fn, m i , • • •, mn] be the overall contact force vector built 
by grouping all the vectors t; for the n contacts. Accordingly, vector t is given by 
t = K H ( c m - c°) +JBH(cm - c°). The Jacobian J and grasp matrix G are defined 
as usual as J = H ^ - and G T = H ~ ^ . Thus the local approximation of the contact 
force vector t can be written as 

át = K (J<5q - GT5u) + B (J<5q - GTóú) (1) 
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Fig. 3. Vector notation for general manipulation system analysis. 

The dynamic model considered in the following is the linearization of the nonlinear 
dynamics of manipulation systems derived in [11, 12]. Consider a reference equilib
rium configuration (q, u, q, u, r, t) = ( q 0 , u 0 , 0,0, r0, t 0 ) , such that r 0 = J T t 0 and 
w 0 = — G t 0 . In the neighborhood of such an equilibrium, linearized dynamics of 
the manipulation system can be written as 

x = Ax + Bтr' + Bww', (2) 

where state, input and disturbance vectors are defined as the departures from the 
reference equilibrium configuration: 

x = [.(q - q 0 ) T (u - u 0 ) T q T i iT] , 

r - J T t 0 , w ' = w + G t 0 r = 

and 
" 0 " ' 0 

0 
U 

I 

u m 

; B r = 
0 

м^1 j *^w — 
0 
0 

0 M " 1 

where M^ and M 0 are the inertia matrices of the manipulator and the object, 
respectively. To simplify notation we will henceforth omit the prime in r ' and w'. 

By neglecting terms due to gravity variations, rolling phenomena at the contacts 
and local variations of the Jacobian and grasp matrices and under the hypothesis 
that stiffness and damping matrices are proportional B oc K [9], simple expressions 
are obtained for L& and U 

Ъk = -M-^Pfc; L ь = - M - ^ P * 
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where 

M = diag(M / l,M 0); 

P * = S T K S ; 

P 6 = S T BS; 

S = [J - G T ] . 
The remainder of this section provides some results obtained in [11] on the control 

of internal forces, a problem of paramount importance in robotic manipulation. 
Let us define t ' as the first order approximation of departures of contact force 

vector t from the reference equilibrium t0. According to equation (1), t ' (henceforth 
t) can be regarded as an output of the linearized model (2), t = CfX where 

C t = [KJ - K G T B J - B G T ] . 

When manipulation systems with general kinematics are taken into account [4] 
not all the internal forces are controllable. In [6] the reachable internal forces sub-
space 7Zu,T for dynamic system (2) is analyzed and the internal force output e^ is 
defined as the projection of the force vector t onto the subspace lZti,T 

eti = E«x where 

E« = [Q(K) 0 Q(K) 0] and (3) 

Q(K) = (I - K G T ( G K G T ) 1 G ) K J . 

3. INTERNAL FORCES DECOUPLING 

As pointed out in the introduction, in many advanced robotics tasks the visco-
elasticity at the contacts cannot be neglected and the decoupling control of the 
internal forces from the object motions is needed. Rigid-body kinematics [5, 12] is 
motions of the object and manipulator which do not involve visco-elastic deforma
tions. For this reason they are regarded as the low-energy motions of the whole 
system. Rigid-body kinematics represent the easiest way to move the manipulated 
object and therefore are of particular interest in controlling manipulation. In [5] 
coordinated rigid-body motions of the mechanisms are defined as motions of the 
manipulator 5q and of the object Su such that 

őą 
Su Є im 

1 qc 

where J r g c = G T r u c . 
Thus rigid-body object motions are those in the column space of Tuc and the 

output euc is defined as the projection of object displacements u onto the column 
space of Tuc 

euc = E u c x where 

E w c = r £ [ 0 I 0 0] and (4) 

TP -r (vT T >>-1rT 

*• uc ~~ x ucv-- u c x ucJ X UC 
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In this paper we adopt the notion of internal force decoupling control that is 
formalized in the following definition. 

Definition 1. Consider the couple (A, B r ) in (2). The control law r = Fx + Urref 
is an internal force control decoupled from object motion if the state feedback and 
the input selection matrices are such that 

a) min 1 (A + B T F, B r U ) C ker E n c ; 

b) imE f i = E t i m i n I ( A + B T F , B r U ) 

where min I (A, B) is the minimal subspace ^-invariant containing the column space 
ofB . 

Observe that the decoupling control of internal forces does not affect the rigid-
body object motion (claim a) and preserves the reachability of internal forces (claim 
b). 

In [6] it has been proven that for general manipulation systems with ker(GT) ^ 
{0}, the problem of finding a decoupling internal force control has always a solution 
and a decoupling feedback control law is proposed. The choice of matrices F and U 
is based on the geometric concept of controlled invariant [2]. 

4. ROBUST DECOUPLING CONTROL OF CONTACT FORCES 

The control law in [6] is model based and an accurate identification procedure of the 
model's parameters is needed. While techniques estimating the dynamics parameters 
of the object and of the manipulator are well established, the identification of the 
visco-elastic contact matrices K and B still remains a hard task and consequently 
a certain degree of uncertainty is present in the system model. This section is 
devoted to the analysis and design of a robust decoupling controller for manipulation 
systems with structured (visco-elastic) uncertainties. We assume that a structured 
uncertainty is present in the visco elastic contact behaviour. In particular we assume 
that the estimated stiffness and damping matrices have the following structures K s = 
ksZ and B 5 = bsZ respectively where matrix Z represents the a priori knowledge on 
the visco-elastic behaviour while ks and bs (real positive values) are the estimated 
stiffness and damping parameters. We assume that the measured value ks and bs 

are corrupted by errors Ak and Ab described in a set membership context, Ak G 
[Afc,Afc] and Ab G [Ab. Ab], thus it holds 

K = (ks + Ak)Z; 

B = (bs + Ab)Z. 

The uncertainties on stiffness and damping matrices reflect on the linearized 
dynamics (2) and on the output matrix (3) which becomes uncertain, 

x = A(Afc,Ab)x + B rT; 

eti = Eti(Ak,Ab)x; (6) 

&uc — ---'itC'-* 
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where 
A(Дfe, Д&) = A s + ДfcAfce + ДЬAьei 

E«(Дfc. Дò) = E , + ДfcEfee + ДЬEЬe 

(7) 

being A s and E s the state and the force output matrices of Section 2 are calculated 
with nominal values K = fcsZ and B = 6SZ, while 

Afce = 
0 0 

s'zs 0 
E f c e = [Q(Z) 0 0 0]; 

0 o 
o STZS 

E 6 e = [0 0 Q(Z) 0], 

specify the structure of the system uncertainty. 
After having characterized the structured uncertainties affecting the manipulation 

dynamics, let us formalize the concept of robust internal force decoupling controller 
[3] by extending the requirements on decoupling and reachability of Definition 1. 

Definition 2. Consider the class of linear systems 

A(ДA:,Д&),Br, 
Et.(Дfc,Д&) 
E u c 

V(Дfc,ДЬ). 

The control law r = F x + Ur r ef is a decoupling control of internal forces robust 
with respect to the visco-elastic uncertainties if 

a) ((A(Afc,A6) + B r F ) , B r U ) C k e r E u c ; 

b) im Efi(AA., A6) = E«(Afc, A6) min X ((A(Afc, A6) + B r F ) , B r U ) . 

5. ROBUST CONTROLLER DESIGN 

The design of the robust decoupling controller is based on the concepts of "gener
alized controlled invariant subspace" and "parameter invariant control" introduced 
in [3]. 

Definition 3. Consider the set of dynamic systems (A(Afc, A6), B r ) for all (Afc, A6), 
a subspace V is a generalized controlled invariant iff there exists a constant matrix 
F such that 

(A(Afc, A6) + B r F ) V C V V(Afc, A6). 

By means of the above mentioned definition, it is an easy matter to extend 
the generalization of controlled invariants to the self-bounded controlled invariants. 
Then it is possible to define 

VҶA(Дfc,ДЬ),Bт,ker(Eu c)), (8) 



440 P. MERCORELLI AND D. PRATTICHIZZO 

the maximal generalized (A(Afc, Ab),Br)-controlled invariant contained in the null 
space of the (object motion) output matrix E u c . 

The following algorithm [3] allows one to evaluate the subspace V* whose com
putation is the first step of the synthesis of the robust decoupling controller. 

Algor i thm for t he computa t ion of V* 

V0 = ker(Euc); 

Vfc+i = V/b n A 7 H ' m B r i Vjb) n Aj^Vik n A ^ ; 

if Vn = Vn_i,then Vn = V*(A(.),B r,ker(Ewc)). 

R e m a r k 1. It can be shown that the state feedback matrix F, which makes the 
subspace V* invariant with respect to ( A s + B r F ) , fulfills the condition of Definition 3 
as well. Recall that A5 is equal to A(Afc, Aft) for (Afc, A6) = (0,0) therefore the 
subspace V* is controlled invariant with respect to the pair (A 5 ,B r ) . 

Let us define the input selection matrix U as 

im(B rU) = V*n imB r . (9) 

Then the following proposition, whose proof comes easily from Remark 1, shows 
which are the state feedback matrices F and the input selectors U decoupling internal 
forces from object motions, notwithstanding the visco-elastic uncertainties. 

P ropos i t ion 1. The decoupling condition a) of Definition 2 is satisfied iff the 
maximal controlled invariant V* is not empty and the input selection matrix U is 
not null. 

The p r o o f of this proposition is straightforward. • 

It must be stressed that this proposition provides a necessary condition for the 
existence of a robust decoupling controller. Recall that in order to obtain a robust 
decoupling controller both conditions a) and b) must be fulfilled. Necessary and 
sufficient conditions for the second requirement of Definition 2 and for the existence 
of the robust decoupling controller are provided in Propositions 2,3 and 4. 

P ropos i t ion 2. A necessary condition for claim b) in Definition 2 to hold is 

EtiV* = imE«. 

P r o o f . The proposition is simply proven by observing that for any choice of F 
and U, the minimal invariant min X ((A(Afc,Ab) + B r F ) , B r U ) is a subspace of 
V* for all (A&, Ab). Notice that the existence of non-empty V* is necessary for the 
fulfillment of the decoupling condition a). D 



A Geometric Procedure for Robust Decoupling Control of Contact Forces ... 4 4 1 

Proposi t ion 3. Choose matrices F and U according to Remark 1 and Proposi
tion 1. Conditions 

dim(V*) = rank(B rU); 

E t iV* = imE^ 

are sufficient for claim b) in Definition 2 to hold. 

P r o o f . Simply observe that under these conditions min Z((A(Afc, Ab) + B r F ) , 
B r U is equal to V* which does not depend on corrupting errors (Ak, Ab). • 

Proposi t ion 4. Choose matrices F and U according to Remark 1 and Proposi
tion 1. Condition 

rank(Q(Z)) = rank(EHB rU) 

is sufficient for claim b) in Definition 2 to hold. 

P r o o f . Being K oc Z, from the definition of matrix Q(-) in (3), it ensures that 
the column spaces of Eti, E s , E^e, E&e coincide with the column space of Q(Z). 
Thus rank(Q(Z)) = rank(E^B rU) implies that im(E^) = im(E^B rU) and the 
proof ends. • 

Before presenting the basic procedure one wants to do some considerations. If 
the subspace V* is also a robust conditioned invariant subspace with respect to the 
couple (A(Afc, Ab), ker(Ewc)), then it is possible to extend these results to the out
put feedback. Both in application cases and in theoretical ones the decoupling from 
the outputs are an interesting problem. In [7] and [10] constructive conditions for 
disturbance decoupling with algebraic output feedback are presented but without 
considering their robustness. One has to remark that E u c is the measured out
put while E^ is the controlled output1. One remarks that the robust conditioned 
invariant subspace V* is also a robust conditioned invariant subspace iff 

A(Afc, Ab)(V* H ker(Euc)) C V* V(AJfc, Ab), 

see [2]. 
If the subspace V*, as calculated above, is also robust conditioned invariant sub-

space then it is possible to find a constant matrix K such that 

(A(Afc, Ab) + B rKEu c)V* C V*. 

This allows us to extend Remark 1, Proposition 3 and 4 to matrix K so that one 
can obtain the robust output feedback decoupling. About the calculation of matrix 
K one can observe that all our systems must be no left invertible because of (9) and 
because of the Proposition 1 which yields 

V* fl imB r ^ 0. 

1 Recall that our task is to squeeze the object or to stretch it with a desired force without 
moving it. 
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In fact, one recalls that a system is called left invertible if and only if 

V*flimB r = 0 , 

where V* is defined as in (8). In case of no left invertibility and stable internal 
unassignable eigenvalues of V*2, then the calculation of the matrix K becomes im
mediate from the calculation of the matrix F. In particular, choosing F such that: 

kerEuc C kerF, 

then 

K = FEÎ, \LC> 

where the matrix Ej^ is the pseudo inverse matrix of E u c , Ej/C = E^C(EUCE^C) l. 
For further detail on the calculation of the matrix K and F see [7] and [13]. 

A procedure for designing the robust decoupling controller of internal forces for 
a given manipulation system is reported in the sequel. The procedure is based on 
propositions and remarks of this section. 

Procedure-

Step 1. Compute V*. 

Step 2. If V* ^ {0}, choose F and U according to Remark 1 and Proposition 1. If 
U 7-= 0, Proposition 1 holds and claims a) of Definition 2 is satisfied, otherwise 
the robust decoupling controller does not exist and the procedure ends. 

Step 3. Check the sufficient conditions of Proposition 2. If they are satisfied stop. 

Step 4. Check the sufficient conditions of Proposition 3. If these are satisfied stop. 

Step 5. If Step 3 and 4 fail, check the necessary condition of Proposition 4. 

Step 6. If the necessary condition of Proposition 1 is satisfied, check condition b) of 
Definition 2. 

Remark 2. Steps 1 and 2 refer to the decoupling property (claim a) of the robust 
controller. Steps 3 to 6 check that F and U fulfill the reachability condition (claim b). 

Notice that if the procedure does not end at Step 3 or 4, a different choice of the 
state-feedback matrix F and of the input selection matrix may be needed in order 
to prove the robustness of the proposed control law. 

2This condition is mostly guaranteed in industrial manipulators (no anthropomorphic m-nip-
lators). 
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6. AN APPLICATION EXAMPLE 

In this section numerical results are reported for the gripper described in Figure 2 a). 
This system is a planar device with 2 degrees of freedom, a prismatic and a rotoidal 
joint. Joint variables are positive when links move left. In the reference frame, the 
contacts are cx = (0,1), c2 = (1,1) and the object center of mass is c& = (0.5,1). As 
already explained J = H-j— and G T = H-^--, in the presented case the matrix H is 
an identity matrix. The inertia matrices of the object and manipulator are assumed 
to be normalized to the identity matrix. The contact behavior is assumed isotropic 
at the contact points. Given q = [qi,q2]T like the vector of generalized coordinate, 
being in general c™ = (cos^i, 1 — sinqi), c™ = (1 — q2,1), the jacobian matrix and 
its linearization around the point tfi -= f assume the following values 

J = 

- sin qi 0 
cos qi 0 
0 - 1 
0 0 

J . = 

-1 0 
0 0 
0 - ] 

0 0 

About the grasp matrix, once assumed u = [x,y,6]T to be the vector of the 
generalized coordinates for the object then the contact points could be represented 
as follows cj = (;r+ cos0,1+ y + 0.5sen#), c£ = (1 + x - 0.5cos#, 1 + ?/ -0 .5sen6) . 
The grasp matrix and its linearization around 0 = 0 have the following form: 

G = 
1 0 1 0 
0 1 0 1 

0.5sinØ -0.5cosØ 0.5sin<9 -0.5cos0 
G , = 

1 0 1 0 
0 1 0 1 
0 -0 .5 0 0.5 

It ensues [9] that matrix Z, the a priori knowledge on the visco-elastic behavior, is 
equal to the identity Z = I. Assume that the measured stiffness and damping are 
ks = 1 bs = 2 and that the corrupting errors belong to the sets AA; G [—0.1,0.1] 
and Ab G [—0.2,0.2]. The nominal and the uncertain matrices of the internal force 
output in (7) assume the values 

E5 = [0.71, -0.41, 0, 0, 0, 1.42, -1.42, 0, 0, 0]; 

Efce = [9.71, -5.71, 0, 0, 0, 0, 0, 0, 0, 0]; 

Efee = [0, 0, 0, 0, 0, 0.81, -0.71, 0, 0, 0]; 

while the object motion output matrix Ewc is 

Ewc = [0, 0, -0.58, 1, 0, 8, 0, 4, 0, 0]. 

The algorithm for the computation of V* stops for n = 4 and V* ^ {0}. Matrix 
P is chosen according to Remark 1 

F = -14 -13 -16 0 0 -2.5 -1.5 - 7 0 0 
-13 -14 -16 0 0 -1.5 -2.5 - 3 0 3 
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and from (9) the input selection matrix is obtained as 

U -0.7071 
0.7071 

It ensues that, notwithstanding the parameter uncertainties, the control law u = 
Fx -F Urref is such that the trajectories of the systems lie on the null space of 
the object motion output matrix. As regards the complete reachability of internal 
forces (claim b), being 6 the dimension of V* and 1 the rank of B r U (Step 3), 
Proposition 3 does not hold. At Step 4 the computation of E ^ B r U is needed. In 
this case we obtain that E ^ B r U = - 2 - Ab whose rank is unitary for all corrupting 
errors Ab G [-0.2,0.2]. The procedure ends by observing that the rank of Q(Z) = 
[0.71, —0.71] is unitary as well. Hence, the chosen state feedback matrix F and 
the input selection matrix U synthesize a force control law which is robust with 
respect to the uncertainties affecting system visco-elastic parameters, preserves the 
complete controllability of internal contact forces and does not interact with the 
manipulated object motion. An interesting feature of the robustness property of the 
system is that the same control law can be used to grasp and manipulate different 
objects, provided that all of them are characterized by the same visco-elastic matrix 
Z, the a priori knowledge on visco-elastic behaviour. 

7. CONCLUSIONS 

The control of internal forces was the focus of this paper. Special attention was paid 
to the noninteraction between the contact forces and the object motion control, a 
fundamental requirement in advanced robotics. 

Since in advanced manipulation tasks the visco-elastic behaviour at the mechan
ical contacts cannot be neglected, a lumped parameter model of the visco-elastic 
behavior was taken into account. 

The robustness of the decoupling control with respect to the uncertainties in the 
contact model was investigated. Sufficient conditions for the invariance of the decou
pling action under perturbations on the contact stiffness and damping parameters 
were provided. 

These conditions are meaningful for several classes of manipulation systems with 
general kinematics. 

An example was reported to show applications of the obtained results. 

(Received August 2, 2002.) 
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