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REVERSIBLE JUMP MCMC FOR TWO-STATE 
MULTIVARIATE POISSON MIXTURES1 

JANI LAHTINEN AND JOUKO LAMPINEN 

The problem of identifying the source from observations from a Poisson process can be 
encountered in fault diagnostics systems based on event counters. The identification of the 
inner state of the system must be made based on observations of counters which entail 
only information on the total sum of some events from a dual process which has made a 
transition from an intact to a broken state at some unknown time. Here we demonstrate 
the general identifiability of this problem in presence of multiple counters. 
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1. INTRODUCTION 

Our framework is a set of counters each of which is Poisson distributed and we 
observe the final value of the counters at the end of some period of time. During 
this time the process has changed from the initial state to the final state at unknown 
time. For both the initial and final periods there are unknown number of possible 
substates (i.e. event occurrence rates). 

This type of situation arises, e.g. in fault diagnosis, when occurrences of some 
event during the operation of the device are monitored, and only the total number 
of the events is stored. From these counter values the goal is to decide, for example, 
whether the device is operating in normal states (intact device), or whether some 
fault has occurred during the operation and the device is malfunctioning. The esti­
mation task is complicated due to the fact, that we have no prior knowledge on the 
event rate for either intact of faulty devices, hence we need to estimate the event 
rates for the states and the state transitions simultaneously. Collecting the data 
during actual operation from a large number of devices causes additional complica­
tion in the model as the devices may not be exactly similar. In a paper machine, 
for example, both the sensors and production line hardware are continuously up­
dated. Similarly, in mass production devices, like a portable computers, the same 
model may contain various different hardware configurations and operating system 

1 Presented at the Workshop "Perspectives in Modern Statistical Inference II" held in Brno on 
August 14-17, 2002. 
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versions, possibly affecting the rates of the monitored events. To account for this 
variation we model all states as mixtures of Poisson processes, with unknown num­
ber of substates. We assume that the substates are constant during the operation, 
so that each device has zero or one unknown sta/te transitions to be estimated. 

In this paper we show that the two states of the process can be recognized by 
the final values of the counters when the dimension (the number of counters) is 
large. The one dimensional case is not invertible as the observed phenomena can be 
explained by varying the distribution of the transition point of which we have no 
direct information. 

We apply the Metropolis-Hastings-Green method [3, 6] to estimate the Bayesian 
posterior of the parameters. This is then used to classify test cases based on multiple 
counters generated by the Poisson process. Previously similar approach for mixture 
distributions has been studied by Viallefont et al in [7] for Poisson mixtures and by 
Marrs in [4] for Gaussian mixtures. Our work has the feature of two state history, 
which to the authors' knowledge has had little attention so far. 

An important application, for which the presented method was designed, is in 
fault diagnostic systems where the fault type of a device can be assessed based 
on the number of some counted events recorded during the age of the device. A 
non-faulty device would then have been in the same state through the whole time, 
whereas a broken would have shifted from the initial intact state to a broken state 
of some sort. The class of intact devices can also constitute of many inner states 
issuing from differences in the devices or the usage environment of the particular 
devices. 

2. THE COUNTER GENERATION MODEL 

We assume that the process can be sampled in two ways, so that some of the obser­
vations have only gone through a single state (an intact device), and some had two 
states (an initially intact device which then broke down). Also there may be several 
inner states in which the device may be broken or intact. 

We will mark the values of n counters by a; G Z n . The latent, unobservable, 
variables determining the states of the process are denoted by z\ G { 1 , . . . ,k\} for 
the initial state and z<i G \k\ + 1 , . . . , k} for the broken state, with k\ and &2 the 
number of initial and broken states, respectively. The (unobserved) value of the 
counter i during the initial state of length r is denoted by yi, and the final observed 
value during time t is denoted by Xi. 

The matrix of Poisson rates for k = k\ + &2 states is A G Rkxn. The probabilities 
of the k\ initial states are denoted by a; G Rkl and the matrix of the transition 
probabilities from the initial to broken states by T G Rkl xk2. 

Let us assume that there are n counters, the device is initially in one of k\ intact 
states, zi, with probability uZl. At time r the counter i will have the value yi drawn 
from Poisson distribution with mean AZlyi, see the example in Section 5. Then at 
time r it makes a transition to a broken state z2> of which there are ki possibilities, 
with a probability TZliZ2. In this state the counter i is again generated at a different 
rate AZ2ii- The total values of the counter i is then Xi. 



Reversible Jump MCMC for Two-state Multivariate Poisson Mixtures 309 

3. BAYESIAN ESTIMATION 

We use the Bayes formula 

mv,M)__m^m 
to obtain the posterior distribution of the parameters A and r, given the model M, 
which then can be used by a maximum probability classifier. 

The prior distributions of the variables were 

fci ~ Uniform{l,... , fcmax} k2 ~ Uniform{l,... , &max} 

u ~ Dirichlet(l,.. . , 1) Ti>: ~ Dirichlet(l,... , 1) 

(2) 
k\ times k2 times 

Aij ~ Gamma(a, /3) r ~ Uniform[0, t] 

z\ ~ Bernoulli(cj) z2 ~ Bernoulli(T2l):) 

yi ~ Poisson(rAZl)i) 

where TZlj. marks the zith row of the transition probability matrix T. The Bernoulli 
distribution here is a discrete distribution where each of the k values have the cor­
responding probabilities in the parameter vector. 

The likelihood of n observed counter values x when the latent variables and 
parameters are given is then: 

n 

p(x\t, r, A, z) = Y[ Poisson(xi|AZl)ir + AZ2ii(t - r)) . (3) 
2 = 1 

The Poisson rates of the initial states are estimated first using the common Pois­
son mixture Gibbs sampling [2] with Reversible Jump [3]. These are then kept fixed 
for the estimation of the second state rates. The number of latent states was chosen 
in both cases according to the most likely values based on the MCMC sampling. 
Note that in full Bayesian analysis no fixed values for any intermediate variables 
are estimated, but instead the posterior distribution of the variables is propagated 
throughout the analysis. The sequential estimation of the parameters was done for 
practical reasons, to simplify the analysis and to make the sampling faster. 

The parameters are sampled by a Metropolis-Hastings-Green sampling with 
Split-Merge type reversible jump moves with the following procedure (here we use 
the upper index to enumerate through the data samples): 

1. Draw each A^., kx < i < k,bomr(a+^l:{zi2=i}{x\-y[),P 

2. Draw each Ti>: from Dirichlet(A), where A G M*2, Aj = 1 + ]T, I{z{ =iAzl
2 = 

j } , where /{•} is the characteristic function of the set {•}. 

3. Draw each z[ from Bernoulli(B), where B G » f c l , Bj = Uj Ui Poisson(y/I^A^). 

4. Draw each z\ from Bernoulli(C), where C eRk2, Cj = uz[Tziitj Hi Poisson(xj-
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5. Draw each TX and yl from their posterior by Metropolis-Hastings procedure. 

6. In the Reversible Jump step either decide to try a split or merge a random 
kernel (the Poisson rate parameters of some latent state) with probability 1/2. 

7. Use the split (merge) map (see below) to a kernel K chosen at random. 

8. Reallocate the latent states z2 — K, (or while merging z2 — K V z2 — K + 1) by 
drawing from Bernoulli(.D), where D £ Rk2, 

Dj = uziTzi^ n , Poisson(xj - yj^A^). 

9. Accept the split proposal with probability 

min r pjvnjiL} (4) 
l ' pW)Ea l>ocJ ' ^ 

where Paiioc is the reallocation probability of the latent z and \J\ is the Jacobian 
determinant of the split map (see below). In case of merge the acceptance 
probability is 

. f p(V\e') Palloc ) ,-v 
mmV'mo)lJTi' (5) 

in here Paiioc is the reallocation probability of the the latent z if splitting from 
the new state back to the original with the map whose Jacobian is \J\. 

4. THE REVERSIBLE JUMP STEP 

We use a Split-Merge procedure to simulate the jump between dimensions. This is 
done by randomly choosing either split or merge with equal probability. In splitting 
a kernel the center of mass of the two new kernels is preserved: 

^ A i +CO2A2 =uX. (6) 

The other parameter values are copied from the original. In order the merge-step 
(inverse map of split) to be reversible the other parameters are copied from one 
of the two components chosen at random. The new values for cOr, cO2, X\ and A2 
are then mapped such that all possible positive values of As satisfying equation (6) 
are equally probable. This is the following map, (Xi,tJi,u,v) .->• (AJ, AJ+1 ,a^,c^+1), 
in which the latent state i is split, where u,v G [0,1] are drawn from the uniform 
distribution: 

UU. 

^+1 

The Jacobian determinant is then 

wí+i = ( І - U ) W І 

Л̂  = V\І (7) 

^Г + 1 

J = Щ. (8) 
u — 1 
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5. EXAMPLES 

5.1. A 2—dimensional model 

Take for an example the following: the initial (intact) states are labeled as {1,2} 
and the final (broken) states are {3,4,5,6}, where we divide the broken states to 
two groups, this would present that the device has two different categories of mal­
functions, with the {3,4,5} as one category (class 1) and the state {6} alone (class 
2), see Figure 1. The initial states were equally probable with Poisson parameters 
(event rates): 

л = 

/ l 2 \ 
2 4 
2 8 
7 7 
9 3 

\ 1 5 15 > 

- ( 

0 1/2 1/4 1/4 

1/2 1/4 1/4 0 (9) 

INTACT 

BROKEN1 BROKEN 2 

Fig. 1. The state diagram of the example system. 

The simulated data had 25 samples from the initial model, representing intact 
devices and 100 samples from the two state model, representing broken devices (see 
Figure 2). The transition time was uniformly distributed. 

The parameters of the intact devices were simulated for 1000 rounds and the 
parameters of broken devices were simulated for 3000 rounds, with priors a = 2 
and /? = 1/8 in equation (2). The simulation of the functions in Matlab with 
Compaq AlphaStation XP1000 processor lasted for 10 min. The convergence of the 
simulation was tested using the Kolmogorov-Smirnov test [6] after we selected a 
proper subset of the datasamples based on the autocorrelation time to avoid the 
dependence of consecutive samples [5]. The estimated probabilities, taken as the 
mean of the simulated samples, with the most likely number of kernels of the initial 



312 J. LAHTINEN AND J. LAMPINEN 

O £ W , 
2 o ö ^ *-

20 

Fig. 2. Samples of Example 1, intact devices marked with circles, 
broken class 1 with crosses and broken class 2 with boxes. 

latent states were: 

/ 1 . 2 
2.0 

Л = 2.0 8.6 
7.3 7.2 
9.1 3.1 

V 15.6 15.4 / 

The transition probabilities to the first broken class were: 

2.0 
4.1 

\ 

(10) 

• ( 

0.25 
0.29 

0.47 
0.49 

0.28 
0.22 (11) 

The estimated distribution of the initial states was: 

u 
_ ( 0.55 \ 
~ V 0.45 ) 

(12) 

The estimated parameters were tested in a simulated classification task and the 
confusion matrix C (for 100 samples from initial process, representing intact device, 
and 500 samples from the two-state process, representing broken devices) compared 
to the 3-Nearest Neighbor classifier is: 

c = 
0.080 
0.72 
0.14 

cз-к 
0.57 0.43 0 
0.13 0.85 0.011 
0.085 0.64 0.27 (13) 

Prom these we can see that neither method mistakes an intact device with broke 
in class 2 (the first row), but that the Bayesian classifier confuses much less an intact 
with the broken class 1. 
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The estimation of the r parameters as the median of the samples for each data 
sample is plotted in Figure 3. The lines are the 90 % Highest Probability Density 
intervals (90% HPD intervals) [1]. The uncertainty of the estimates comes from the 
facts, that the data does not contain direct information of the transition point, and 
there is only one observation related to estimation of each transition point, and thus 
the estimates tend to come from the uniform prior. In classification estimation we 
marginalized out the r dependence by summing over the estimated r values of the 
dataset. 

Fig. 3. The true relative values of r for the 2-D example compared 
against the median estimates with the 90 % HPD intervals. 

Fig. 4. The true relative values of r for the 2-D example compared 
against the median estimates with the 90 % HPD intervals. 

The classification based on maximal probability borders compared with the 3-
Nearest Neighbor classifier can be seen in Figure 5. 
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Fig. 5. On the left is the maximal probability classification borders for the 
2-dimensional example, the value counters in unit time, and on the right the 

3-Nearest Neighbor classifier for the same data. The black is the area of 
intact devices (class 0) and the gray broken class 1 and white broken class 2. 

5.2. A 5—dimensional model 

This is otherwise similar to the model above but with 5 counters, with 2 classes: 
intact and broken. The estimation with a similar dataset, 25 intact devices, 100 
broken, with simulation length of 3000 results to: 

Л 

/ 1 2 2 1 5 \ 
1 3 1 4 1 
2 8 7 5 1 
7 7 1 2 1 
9 1 2 1 6 

\ 5 5 4 8 8 

/ 0.92 2.0 2.2 0.91 4.5 \ 
1.2 3.2 1.1 3.7 0.91 
2.2 7.6 6.7 4.9 0.82 
7.1 6.6 1.0 2.0 1.1 
9.2 0.68 1.9 1.0 6.1 

î  5.8 5.4 3.5 8.9 8.5 

(14) 

The confusion matrix C in this case compared to the 3-NN classifier is: 

C 
0.070 
0.86 

0.063 

0.010 
0.016 
0.92 

^ З - N N — 

0.23 0.020 
0.91 0.016 
0.36 0.59 (15) 

6. CONCLUSIONS 

We have demonstrated that it is possible to estimate the parameters and states of 
Poisson mixture processes containing transition between states at unknown time, 
using Reversible Jump MCMC method. The estimation becomes always more diffi­
cult when the transition time r is accumulated more towards the end of total time, 
in which case the counters only exhibit behavior of the initial states. In this esti­
mation the availability of data for purely intact devices, and presence of more than 
one counter to record events, is critical. 



Reversible Jump MCMC for Two-state Multivariate Poisson Mixtures 315 

ACKNOWLEDGEMENTS 

This work has been done in collaboration with the Nokia corporation. The authors would 
like to thank Dr. Aki Vehtari for his advice on the convergence diagnostics and the Re­
versible Jump algorithm. 

(Received November 29, 2002.) 

REFERENCES 

[1] Ming-Hui Chen, Qi-Man Shao, and J. Q. Ibrahim: Monte Carlo Methods in Bayesian 
Computation. Springer, New York 2000. 

[2] S. Geman and D. Geman: Stochastic relaxation, Gibbs distributions and the Bayesian 
restoration of images. IEEE Trans, on Pattern Analysis and Machine Intelligence 64 
(1984), 2, 721-741. 

[3] P. Green: Reversible jump Markov chain Monte Carlo computation and Bayesian 
model determination. Biometrika 82 (1995), 711-732, 
http://www.stats.bris.ac.uk/pub/reports/MCMC/revjump.ps. 

[4] A. D. Marrs: An application of Reversible-Jump MCMC to multivariate spherical 
Gaussian mixtures. In: Advances in Neural Information Processing Systems 10 (M. I. 
Jordan, M.J. Kearns, and S. A. Solla, eds.), MIT Press, Cambridge, MA 1998. 

[5] R. M. Neal: Probabilistic Inference Using Markov Chain Monte Carlo Methods. Tech­
nical Report No. CRG-TR-93-1, Dept. of Computer Science, University of Toronto, 
1993, ftp://ftp.cs.toronto.edu/pub/radford/review.ps.Z-

[6] C. P. Robert and G. Casella: Monte Carlo Statistical Methods. Springer-Verlag, New 
York 1999. 

[7] V. Viallefont, S. Richardson, and P. Green: Bayesian analysis of Poisson mixtures. J. 
Nonparametric Statistics 14 (2002), 1-2, 181-202. 

Jani Lahtinen, M.Sc. and Dr. Jouko Lampinen, Laboratory of Computational Engineer­
ing, Helsinki University of Technology, P. O.Box 9400, FIN-02015 HUT. Finland, 
e-mails: jani.lahtinen@hut.fi, jouko.lampinen@hut.fi 


