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T-EQUIVALENCES GENERATED BY SHAPE FUNCTION
ON THE REAL LINE
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This paper is devoted to give a new method of generating T-equivalence using shape
function and finding the exact calculation formulas of T-equivalence induced by shape
function on the real line. Some illustrative examples are given.
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1. INTRODUCTION

For the fuzzy set-theoretical modelling of verbal quantities and computing with these
quantities, it appears useful to part the class of real numbers into fuzzy equivalence
classes. Jacas and Recasens [8] considered the idea of generating fuzzy numbers as
equivalence classes of a T-indistinguishability operator based on a scale function.
The theoretical approach suggested in [10] and further developed in [11] indicates
that partitions based on the concept of a shape function can be especially significant.
De Baets et al [2] and Markové [12] characterized that the shapes by means of which
T-equivalences can be generated, are based on the knowledge of idempotents of the
T-addition of fuzzy numbers.

In this paper, we give a new method of generating T-equivalence using shape
function and finding the exact calculation formulas of T-equivalence induced by
shape function on the real line. Some illustrative examples are given.

2. PRELIMINARIES

Definition 1. (Jacas and Recasens [8]) A fuzzy number is a mapping A : R —
[0,1] such that there exists a € R with A(a) = 1 and A is increasing on (—o0, a] and
A is decreasing on [a, 00).

Definition 2. (DeBaets and Mesiar [3]) Consider a t-norm T'. A binary fuzzy
relation E on an universe X is called a T-equivalence on X if and only if it is
reflexive, symmetric and T-transitive, i.e. if and only if for any (z,y,2) in X3:

(i) E(z,z) =1;
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(ii) E(z,y) = E(y,7);
(iii) T(E(z,y), E(y,2)) < E(z, 2).

Definition 3. (Jacas and Recasens [8]) A scale is a continuous non-decreasing
surjective monotonic mapping S : R — R.

Definition 4. A shape is a non-increasing mapping ¢ : Rt — [0, 1] such that

$(0) = 1.
Definition 5. A mapping d : X? — [0, 00] is called a pseudo-metric on X if and
only if for any (z,y,z) in X3

(i) d(z,z) =0;

(i) d(z,y) = d(y, z);

(iii) d(z,z) < d(z,y) + d(y, 2)-
It is called a metric if it moreover satisfies, for any (z,y) € X?

(iv) d(z,y) =0z =y.
Consider a scale s, then the mapping ds : R? - R defined by

ds(z,y) = |s(z) — s(y)]

is a pseudo-metric on R. Now consider a shape ¢, then we construct the binary
fuzzy relation E; 4 as follows:

Es ¢(2,y) = ¢(Is(z) — s(v)])-
Definition 6. A generator (or source of vagueness) g is a scale such that g(0) = 0.

A function T : [0,1] x [0,1] — [0,1] is said to be a triangular norm [9,14] (¢-
norm for short) iff T' is symmetric, associative, non-decreasing in each argument, and
T(z,1) = zforallz € [0, 1], and, in general, T'(z1,- - -, z,) = T(T(... T(T (21, z2), z3),
vesyTp—1),Tn). Some well-known continuous ¢-norms are the minimum operator
T, the algebraic product Tp and the Lukasiewicz t-norm Ty, defined by T(z,y) =
max(z +y — 1,0). The minimum operator T is the strongest (greatest) ¢t-norm.
The weakest (smallest) t-norm Tw is defined by

min(z,y) if max(z,y) =1,

Tw(l’,y) = {

0, elsewhere.

We will call t-norm T is Archimedean if and only if T is continuous and T'(z, z) <
z for all z € (0,1). Every Archimedean ¢t-norm T is representable by a continuous
and decreasing function f : [0,1] = [0, 0] with f(1) = 0 and

T(zh"'axn) = f[_l}(f(l‘l) + +f(~Tn))



T-Equivalences Generated by Shape Function on the Real Line 283

for all z; € [0,1], 1 < < n, where f[-1 is the pseudo-inverse of f, defined by

s < {17 EuEs)

. 0 if y € [£(0), 0]
The function f is the additive generator of T. If T' = Tp, then f(z) = logz~! and
if T =Ty, then f(z) =1-z.

For arbitrary fuzzy numbers A;, i = 1,---, n, n € N, on the real line, their
T-sum is defined by means of the extension principle as follows:

AL ®r---OT An(z) = sup T(Al(wl)a ce. ,An(xn)); z € R.

Z1++Tn=z

Definition 7. Let J be a finite or countable set. Let {T;|i € J} be a collection of
t-norms and {(a;, b;)|i € J} a collection of disjoint intervals in [0, 1]. We call ordinal
sum of t-norms {7;|¢ € J} to the following ¢-norm :

T—a; y-—a

a; + (bi — a;)T; (b- mpath vem a-) whenever (z,y) € (a;, b;)?
T(z,y) = = (ai, bi) x (as, b;),
min(z,y) otherwise,

which is denoted by T = ({(a;, b;, T;)|i € J), and only if all T; are generated, then
equivalently it can be used T' = ((a;, b;, fi)|i € J) where f; is the additive generator
of Ti.

The following theorem gives a general classification of continuous t-norms [9].

Theorem 1. (Ling [9]) Let T be a continuous t-norm. Then T' is Archimedean
or T-min or T is an ordinal sum of Archimedean ¢-norms.

3. T-EQUIVALENCE GENERATED BY SHAPES

Consider a generator g and a shape ¢, and the fuzzy relation E, 4, which is always
reflexive and symmetric. Let T be a t-norm and ¢, = ¢ &7 --- &1 ¢ (n-fold T-
sum of ¢). Then ¢n(z) < ¢ny1(z) for any z € R and for n € N, the natural
numbers. Hence the limit always exists. Let lim, 00 ¢n = ¢*. We also note that if
we define |¢| : R — [0, 1] such that |@|(z) = ¢(|z|) and |¢|n = || BT - -- BT |4|, then
limp—yo0 |¢|n = 4" = [¢*].

Theorem 2. For a continuous t-norm 7', a generator g and a shape ¢, the fuzzy
relation Ey 4+ is a T-equivalence on R.

Proof. We only need to show that for any a,b,y € R

T(Ey,¢" (a’ y)) Eg,¢' (y’ b)) < Ey,¢" (a’ b)a



284 D.H. HONG

or equivalently

T(161"(9(y) — 9(a)), 181" (9(b) — 9(¥))) < 18]"(g(b) — g(a)). (1)

By the continuity of the t-norm T', we have

T(l¢l*(9(y) — g(a)), |9]* (9(b) — g(¥)))
= lim T(|¢ln(9(v) — 9(a)), (8l (9(b) — 9(v))

and

T(1$ln(9(y) — 9(a)), 1$ln(9(®) — 9(v))
=T ( sup )T(|¢|(zl)vv|¢|(zﬂ))’

z14+-+zn=g(y)—9g(a

Tnp14-+T2n=9(b)—g(y)

= sup T(T(1¢l(x1), -+, 1¢l(zn)), T(1¢l(Znt1), - -5 6] (z2n)))

z1+--+zn=g(y)—g(a)
Zp41+tzon=g(b)—g(v)

< sup T(|¢|(ml)71|¢|(x2n))
z1+-+z2,=g(b)—g(a)

= [Bl2n(g(b) — g(a))

where the second equality comes from the continuity of T and the inequality comes

sup T(1¢l(znt1)s -+, |¢|($2n))>

from non-decreasing property of T', hence equation (1) is proved since lim,,_; oo |@|2n (9(b)

9(a)) = 9" (g(b) — g(a))- =

The following theorem is due to B. De Baets et al [2]. Here, we give a new proof
using the idea of Theorem 2.

Theorem 3. (DeBaets et al [2]) Consider a t-norm T, a generator g and a shape
¢. Let H = {|g(u) — g(v)||(u,v) € R?}. If for any = € H, ¢ &1 ¢(x) = ¢(z), then
the fuzzy relation E, 4 is a T-equivalence on R.

Proof. Define ¢¢ as follows :

_ [ e(@) if ¢ € H,
Polo) = inf{p(w)w < z, w € H} ifz¢H.

Then ¢y is a shape with E, 4(z,y) = Ey,4,(z,y) for (z,y) € R2. We can also show
that for any = € R, ¢o ®r ¢o(z) = ¢o(z). It is because ¢o &1 do(z) > o(z) is
always true and for z ¢ H, w € H and w < z,

$o OT do(z) < do ® do(w)
B(w)
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and hence

N

¢o & do(z) < inf{p(w)|lw <z, w € H}
= ¢o(x).

We now note that ¢ = ¢§ and can prove that Eg, 4, is a T-equivalence on R according
to the exactly same method as Theorem 1 without the assumption of continuity of
T using ¢o @1 do = ¢o. This completes the proof. a

Recently, many authors [5,6, 7,13] studied facts about T-sums of shape function
and their limits.

Theorem 4. (Hong and Hwang [6], Hong and Ro [7], Mesiar [11]) Consider a
continuous Archimedean ¢t-norm 7" with additive generator f and a shape ¢. If fo¢
is convex, then

tu() = £ (nf o9 (2)).

Theorem 5. (Hong and Hwang [5]) Consider a continuous Archimedean ¢-norm
T with additive generator f and a shape ¢. If f o ¢ is convex, then ¢*(0) = 1 and
for z > 0,

Jim ¢n(2) = ¢"(2) = (2L ()9, (0):

Definition 8. Consider (a,b) € R, a # b, then ¢, is the linear transformation

defined by
T—a

b—a

Note that the inverse mapping ¢(—al’b) of P(a,s) is given by d)(_al)b) (z) =a+(b—a)z.

¢(a,b) (SB) =

Definition 9. Consider a fuzzy quantity A and (a,b) € [0,1]%, a < b.

(i) The fuzzy quantity Al** is defined as Al*? = tro ¢, ) 0 4, i.e. Al@¥(z) =
tr((A(z) — a)/(b — a)), where tr : R — [0,1] is defined by

0, if z <0,
tr(z) =< =, if0<z <1,
1, ifz>1.

(i) The fuzzy quantity Afes) is defined by

$ian (A(2)),  if Az) >0,

elsewhere.

A[a,b] (:L') = {

)

We need the following result to generalize Theorem 5 to arbitrary continuous ¢-norm.
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Theorem 6. (DeBaets and Markova [1]) Consider an ordinal sum of continuous
t-norm T = ((a;, bi, f)|¢ € I) written in such a way that (J,¢/[ai, 0] = [0,1] and a
shape ¢. If f; o ¢l2:bil is convex for all ¢ € I, then

¢n(l‘) = sup {((ﬁgi,[ai,bi])[a;,b;](z)}

i€l
where d)z;.-,[a.',b.‘](x) — fi[—ll (nfi ° ¢[(Li,bi] (%))

Theorem 5 can be easily generalized to arbitrary ordinal sums of continuous ¢-
norm 7.

Theorem 7. Consider an ordinal sums of continuous ¢t-norm T' = ({a;, b;, fi)|z € I)
written in such a way that (J,c,[ai, b;] = [0,1] and a shape ¢. If f; 0 ¢l*:¥] is convex
for all 7 € I, then

¢"(z)

Il

iy $n (%)

= sup {(¢™ M) (@)},

i€l

where ¢7[0:5](2) = limp, 00 g 1% (2) = fI7(@(£)2 (1) (#1201 (0)).

4. EXAMPLES

Example 1. Consider the product t-norm Tp with additive generator f(z) =
logz™!, and a generator g and a shape function ¢ defined by ¢(z) = max{1 — z,0}.
Then, by Theorem 5 (or see [5]), ¢*(z) = e~®, and hence E, 4« (z,y) = e~19(=)=9(v)|
is a T-equivalence on R.

Example 2. Consider the Lukasiewicz t-norm Ty, with additive generator f(z) =
1 — z, and generator g and a shape function ¢ defined by ¢(z) = max{1 — z,0}.
Then, by Theorem 5 (or see [5]), ¢*(z) = ¢(z), and hence E, 4+ (z,y) = max{l —
lg(z) — g(y)|,0} is a T-equivalence on R.

Example 3. Consider the ordinal sums T' = ({0, %,logz™'), (3,1,1—1)), a gener-

ator g and a shape function ¢ defined by ¢(z) = max{1 — z,0}. Then, by Theorem
7, ¢*(z) = max {1 — =z, 1}, and hence Eg 4+ (z,y) = max {1 —|g(z) — g(y)|,1} is a
T-equivalence on R.

Example 4. Consider the ordinal sums T = ((0, %, 1—2z), (%, 1,logz~1)), a gen-
erator g and a shape function ¢ defined by ¢(z) = max{1 — z,0}. Then, by The-
orem 7, ¢*(z) = L + 237 since fTel5:1(z) = e=%° and fT1%3](z) = 1. Hence

Ey 4+ (z,y) = 3 + 2e~219()~90)l j5 3 T-equivalence on R.
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Example 5. Consider the ordinal sums T' = ((0, 3,logz™!),(},1,1 — 1)), a gen-
crator g and a shape function ¢ defined by

1 ifz=0,
p(z)=4qi1-2) if0<z<1,
0 otherwise.

Then, by Theorem 7,
1 ifz=0,
¢*(z) =

1e™®  otherwise,

since i
fTL,[%,l](m) _ 1 ifz = 07
0 otherwise,
and fTPy[O,%](:L') = e~ %. Hence

Eg,¢‘ (IB, y) = {

%e“'g(z)“g(y)l otherwise,
is a T-equivalence on R.
Example 6. Consider the ordinal sums T = ({0, 3,1 — z), (3,1,logz ™)), a gen-
erator g and a shape function ¢ defined by
1 ifz =0,
¢p(z) =4 3(1-=2) if0<z<1,

0 otherwise.
Then, by Theorem 7,
1 ifz=0,
¢*(z) =< 2(1—-=) iflz[ <1,
0 otherwise,
since _
fTP’[%’I](:c): {1 ifz =0,
0 otherwise,
and fTe[0.5](z) = 1 — 2. Hence
1 if g(z) = 9(v),
o6+ (2,9) = ¢ 31— lg(z) —9®)]) iflg(x) -9y <1,
0 otherwise,

is a T-equivalence on R.



288

D.H. HONG

ACKNOWLEDGEMENTS

This work was supported by grant R01-2000-000-00011-0 from the Korea Science & Engi-
neering Foundation.

(Received September 3, 2002.)

REFERENCES

(1]
(2]
3]
(4]
(5]
(6]
(7]
(8]
9
(10]

(11]

(12]
(13]

(14]

B. De Baets and A. Markové: Analytical for the addition of fuzzy intervals. Fuzzy Sets
and Systems 91 (1997), 203-213.

B. DeBaets, M. Mares, and R. Mesiar: T-partition of the real line generated by
impotent shapes. Fuzzy Sets and Systems 91 (1997), 177-184.

B. DeBaets and R. Mesiar: Pseudo-metrics and T-equivalence. J. Fuzzy Math. §
(1997), 471-481.

M. A. Harrison: Introduction to Switching and Automata Theory. McGraw-Hill, New
York 1965.

D.H. Hong and S.Y. Hwang: On the convergence of T-sum of L-R fuzzy numbers.
Fuzzy Sets and Systems 63 (1994), 175-180.

D.H. Hong and C. Hwang: A T-sum bound of L-R fuzzy numbers. Fuzzy Sets and
Systems 91 (1997), 239-252.

D.H. Hong and P. Ro: The law of large numbers for fuzzy numbers with bounded
supports. Fuzzy Sets and Systems 116 (2000), 269-274.

J. Jacas and J. Recasens: Fuzzy numbers and equality relations. In: Proc. 2nd IEEE
International Conference on Fuzzy Systems, San Francisco 1993, pp. 1298-1301.

C. Ling: Representation of associative function. Publ. Math. Debrecen 12 (1965),
189-212.

M. Mares and R. Mesiar: Composition of shape generators. Acta Mathematica et
Informatica Universitatis Ostravienses 4 (1996), 37-46.

M. Mare§ and R. Mesiar: Fuzzy quantities and their aggregation, in aggregation op-
erations. In: New Trends and Applications. Physica-Verlag, Heidelberg 2002, pp.
291-352.

A. Markova-Stupiianovd: Idempotents of T-addition of fuzzy numbers. Tatra Mt.
Math. Publ. 12 (1997), 67-72.

R. Mesiar: A note to T-sum of L-R fuzzy numbers. Fuzzy Sets and Systems 87 (1996),
259-261.

B. Schweizer and A. Sklar: Probabilistic Metric Spaces. North-Holland, New York
1983.

Dr. Dug Hun Hong, School of Mechanical and Automotive Engineering, Catholic Uni-
versity of Daegu, Kyungbuk 712-702. South Korea.
e-mail: dhhong@cuth.cataegu.ac.kr



