
K Y B E R N E T I K A — VOLUME 39 ( 2003 ) , NUMBER 1, P A G E S 1 - 1 2 

NYILD B O O T S T R A P IN R C A ( l ) MODEL 1 

ZUZANA PRÁŠKOVÁ 

ID the paper, a heteroskedastic autoregressive process of the first order is considered 
,re the autoregressive parameter is random and errors are allowed to be non-identically 

touted. Wild bootstrap procedure to,approximate the distribution of the least-squares 
,-mator of the mean of the random parameter is proposed as an alternative to the approx­

imation based on asymptotic normality, and consistency of this procedure is established. 
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1. I N T R O D U C T I O N 

random coefficient autoregressive process of order p (RCA(p)) is defined by 

Xt = Ý/bitXt-i + Yt, t = 0,±l,. 
І=l 

where Yt are independent random variables with zero mean and a constant vari­

ance CT2, ht = ( & n , . . . ,bpt)
T are independent random vectors with Ebt = /3 = 

- • • ./3p)T, Varht = Cpxp, independent of Yt. Alternatively, one can write 

v 
Xt = J^ißi + Bit)Xt-i + Yt, t = 0, ±1,. 

І=l 

T5t = (Bu, • • • j Bpt)
T are independent zero mean random vectors, B j = ht — (3. 

Stability and stationarity conditions were studied by Andel [1]; est imators of 

parameters and their asymptotic properties for these type of processes as well as 

or multivariate versions of them have been systematically studied and presented in 

Nicholls and Quinn [8]. 

There exist various generalizations of the basic model, releasing assumptions b o t h 

on t h e r a n d o m parameters and the error process, studying new types of est imators 

1 Partially supported by the Grant Agency of the Czech Republic under Grant No. 201/00/0769 
and by the Ministry of Education, Youth and Sports of the Czech Republic under Grant MSM 
113200008. 
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and tests of randomness of parameters, that all are based on the assumption of 
stationarity and ergodicity of RCA processes. 

In this paper we consider the heteroskedastic RCA(l) process 

Xt = (P + Bt)Xt-i +Yt, t = 0,l,..., (1) 

where Ar
0 is a random variable with zero mean and variance 0 < a% < oo, Yt,t = 

1,2,... are independent random variables with zero mean and finite variances of, 
that are independent of Xo, and Bt,t = 1,2,... are independent random variables 
with zero mean and finite variance a2

B, independent both of Xo and of all Yt. 
The process (1) is not stationary in general. This type of the RCA process 

was studied by Jiirgens [5], who obtained asymptotic normality of the least-squares 
estimator (LSE) of parameter j3 under quite strong moment conditions. Recently, 
Janeckova [3, 4], established asymptotic normality of the LSE of /? under minimum 
moment conditions and also in cases where either errors or random parameters are 
martingale differences. She obtained conditions for asymptotic normality of weighted 
LSE of (3 both with known and unknown values of nuisance parameters and in [4] 
studied properties of maximum likelihood estimator of /3. 

Let us recall some known results. 
Model (1) can be written in the form 

Xt=pxt-i+ut,t = 0,l,..., (2) 

where 
ut = BtXt-i+Yt,t = 0,1,.... (3) 

It can be easily seen that {ut} is a martingale difference sequence with respect to 
the filtration T = {To,Ti,...}, where To = cr(Xo) is the cr-field generated by An 
and similarly Tt = a(X0,Yi,Bi,... ,Yt,Bt), t = 1,2,. . . , and 

Eut\Tt-i=0, Eu\\Tt-i=X2
t_1a\+a\. 

Model (2) can be viewed as an AR(1) model with a constant coefficient /5 and errors 
ut. Obviously, the LSE of parameter /3 in model (2) and thus in (1) is 

d=z^Xt-2
lXt. (4) 

Now, let us introduce the following assumptions. 

Al: E \X0\*+S\ < oo, E \Yt|
4+<5 < K < oo for some 6 > 0 and a constant K > 0. 

sup, E\bt\
4+S < 1 for some 6 > 0, where bt := (3 + Bt. 

EB\ is constant for all t. 

^ YS=i o\ -^ a2 >0 as n -> oo. 

£ £ ? = ! °lEXLi -> ^ 2 > 0 as n -r oo. 

oo. 

A2 

AЗ 

A4 

A5 

A6 ££r=i£n4->7>0 asn 
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Theorem 1. Under Assumptions A1-A6, as n -> oo 

(3 -> p a.s. (5) 

and 

where 

Mß -/?)-> N (o, ( 1 ŕ
аi

 g | ? ) V (б) 

2 _ , 6(/3 2 +a|)a 2 4-7 , - 2 m 

Z\ - e r B +CF (7) 

1 - 7 6 

and 7b --- £?b^. 
P r o o f . See Janeckova [4] Theorems 3.1 and 3.4. • 

Remark 1. Strong consistency result (5) can be proved under a set of weaker 
assumptions. In fact, it suffices to consider Al and A2 with moments of order 2 + 5, 
and A4, only (see Janeckova [3], Theorem 3.1.) 

Remark 2. From Assumption A2 the inequality /32 + crB < 1 easily follows, which 
is the usual condition for stability and stationarity of homoskedastic RCA(l) model 
(see Nicholls and Quinn [8]). 

It is clear that the asymptotic variance of f3 implied by (6) and (7) is rather 
complicated and inference about /3 based on asymptotic normality could be difficult. 

In this paper we deal with an alternative approach how to approximate the dis­
tribution of /?, namely with the wild bootstrap, which reflects the heteroskedasticity 
of the error process. The reason for considering this procedure is that the residual 
based bootstrap, that is other bootstrap procedure commonly used in autoregressive 
models, is not consistent under heteroskedasticity even in cases when autoregressive 
parameters are constant (Praskova [9]). 

In the next sections we shall define the wild bootstrap procedure and establish 
its consistency. We shall introduce some preliminary results before it. 

2. PRELIMINARY RESULTS 

Lemma 1. Under Assumptions Al and A2 there exists a positive constant c such 
that 

E \Xt\
4+6 < c < oo for all t and given 6. 

P r o o f . We can see from (1) that Xt can be written, if we denote Y0 := Xn, as 

t 
Xt = } ^Ctj-iYt-j 

j=o 
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where 
J 

CtfJ = l[(P + Bt-i)t Cit-i:=l. 
i=0 

Then the result follows by using Minkowski inequality and independence assumptions 
on {Yt} and {Bt}. • 

L e m m a 2. Under Assumptions Al, A2, for any bounded deterministic function g 
of t, the following relations hold as n —> oo : 

1 n 

-Y,g(t)Xt->0 a.s. (8) 
71 t=i 

and 

±jrg(t){X*-EX*)->0 a.s. (9) 
nT=\ 

P r o o f . It follows from the fact that both {g(t)Xt}, {g(t)(Xf — EXf)} are mixin-
gales with respect to T (see Janeckova [4], Lemmas 3.4 and 3.5) and Davidson [2], 
Theorem 20.16.) • 

L e m m a 3. Under Assumptions A1-A6, as n —r oo 

; E * ? - I - T Z £ - - "• ("» 

\_\X2_XY2->ã2 a.s. (11) 

ì±xfl^Щ±ńl±2 a,. (12) 

P r o o f . Consider (1) in the form Xt = btXt-X + Yt with bt = 0 + Bt,Eb2 = 
01 + crB. Prom here we get after simple algebra 

(l-/J2-ai)if>t
2_i (13) 

n t = i 

= lJZx2_M-Eb2) + 2lJ2xt.lbtYt + l±Y2 + hx2-X2

n). 
n *_** n f—' n ~z n 

The first two terms on the right-hand side of (13) converge to 0 almost surely 
according to the strong law of large numbers for martingale differences {X^_x(b\ — 
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E6t)}, {Xt-\btYt}, respectively (see e.g. Davidson [2], Chapter 20). The strong law 
of large numbers for {Yt

2} and A4 yields 

-YY?^G2 a.s. (14) 

The last term on the right-hand side of (13) converges to 0 almost surely according 
to Borel-Cantelli lemma which completes the proof of (10). 

Proof of (12) can be obtained in a similar way. Simultaneously, we will prove 
relation (11). Again, from Xt = btXt-\ + Yt we get 

1 " 1 JL 1 ~ 
(i-^E^-^^E^-i^-^J+^E^8-^!. 

n t = i n « = i n * - i 

+ 4 x > - i ^ -Eb2t)+w2+4)^ E^-i^2 
n <=i n t= i 

+ 4 - E xt_i6t(rt
3 - E Yt

3) + 4 - V Xt-ibtE Y? <15) 
nti n ^ 

+ £ £ - ? + £(**-*:.)• 

The strong law of large numbers for {Yt
4} and A6 gives 

i£Y-t
4-*7a.S. (16) 

n ^ = i 

Further we have 

n *=i n t= i n t= i n t » i 

The first term on the right-hand side of the last equation tends to 0 according to the 
strong law of large numbers for martingale differences; the second term tends to 0 
according to (9) and the last one to a2 according to A5. As a result we have proved 

(in-
Next, 

l-J2xt^btEY^ =l-±Xt^BtEY^pl-±Xt^EY^. 
t=l t=l t=l 

From the strong law of large numbers for martingale differences {Xt-\BtEYt} and 
n 

from mixingale property (8) with g(t) = EYt+x we can conclude that £ J2 Xt-\btEYt 
t=i 

converges to 0 almost surely. 
Finally, we can apply the strong law of large numbers for martingale differences 

to all the remaining terms on the right-hand side of (15) but the last one, that will 
vanish according to Borel-Cantelli lemma. ---
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Corollary 1. Under Assumptions A1-A6, as n —> oo 

-Txiy^A2^. (17) 
n 

where A2 is given by (7). 

P r o o f . It can be easily shown that 

nh 
= l£xUBt-*l)+*l±±Xll+2l±Xl1BtYt + l±XllYt 

The result follows from (11), (12) and the strong law of large numbers for martingale 
differences {X^B2 - <r|)} and {Xf^BtYt}. D 

3. WILD BOOTSTRAP PROCEDURE 

Considering RCA(l) model given by (2) we can define wild bootstrap procedure 
similarly as in constant coefficient AR(1) process (see e.g. Kreiss [6] or Praskova [9]): 

Estimate residuals 

ut = Xt- $Xt-i (18) 

with P given by (4). Construct bootstrap residuals 

uw =utKt,t = l,...,n (19) 

where Kt are iid with zero means, unit variances and finite moments of order 2 + 6, 
5 > 0, independent of {Bt, Yt,l <t<n} and of X0. Compute bootstrap observations 

X? = pXt-1+uw
)t = l,...,n (20) 

and then the LSE 0W of (3 in regression of Xf on Xt-i, i. e. 

t=1Xt-iXt 
ßb 

Ľľ=l^2-1 ' 

The bootstrap approximation of the distribution of ft is given by the following 
theorem. 
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Theorem 2 . Under assumptions A1-A6, as n -»• oo, 

sup\P(V^0-0)<x)-Pw(^{J3w-(3)<x)\^O a.s. (21) 
X 

where Pw means the conditional probability given X 0 , . . . , Xn. 

P r o o f . We shall prove that the limiting conditional distribution of y/n(/3w — (3) 
given X o , . . . , Xn is the same as that of \/n(/3 — f3) obtained in Theorem 1. 

Notice that given X0 , X\,..., X n , 

+ EP-.-Xt-iut" + E?-. Xt-iutKt 
V ' K P P) — lx^n V* ~ 1 \^n V2 

n 2st=l At-\ n 2-,t=l -A-t-1 

(22) 

is a linear combination of independent random variables uf, respectively oiutKt, for 
which Ewuf = E(utKt\X0,...,Xn) = utEKt = 0, Varw(uw) = u\ VarKt = u\ 
and Ew\uw\2+6 = c\ut\

2+6 where c = .E|tfi|2+*. Due to (10) it suffices to prove 
asymptotic normality of Ylt=i Xt-\u

w/y/n. 
Denote 

*=t̂ -(-̂ Hg*-.* 
Prom (18) we have 

.. n 1 n 1 n 

^ = ̂ E^-i^--(i9-^£^i«. + (i9-^£^-i 
í = i t = i Í = I 

and combining (17), strong consistency of/3, (12) and the strong law for martingale 
differences {Xf_\Ut} we get that S2 -> Z\2 a.s. 

Now, we verify the Feller-Lindeberg condition. 

°n t=l *&H Xt-mì 
л/n 

>єS, í 
s JÍ-W • ̂ rtv\^tr°=^• - ^ t w - A r . («) 

further, 

W è l^-iStlw < 4-X è l^-i^lW + 4|Д- ̂ |2+í4т £ l̂ -1!44"25 
+ - , ^ - i + * - ^ „ i + * ( 2 4 ) П 1 + 2 

í = l 
П 1 + 2 

í = l 
П 1 + 2 

í = l 

and 

1 т £ IX.-i^Г0 < 4 - ^ Ţ è l^-i|4+2ð|^|2+í + 4^-Г è lҖ-ił.1 2 ^ 
П 1 + 2 

t=l n 1 + i ł*=l 
П 1 + 2 

í = l (25) 
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From Assumptions Al , A2 and from Lemma 1 in Liu [7] it follows that 

* £ | r t |
4 +^0 a.s. 

t=i 

which implies that maxi<£<n \Yt\ = 0(77,4). The same considerations yield 
maxi<£<T1 \Bt\ -= 0(77,4) and thus maxi< i :<n |X^| = 0(77,4). Now we have 

1 n i v \2S n / £ \ i n 

-J—ST\Y I4+2.S ^ m a x l < K n lx-1 V^ , v ,4 ° ( " 2 ) 1 V^ v4 
— T _ > _ j A t _ i | < -Ti _>_IA*--I = — I - '~Z_Xt-i 

" 2 _-i n 2 I=i n2 n£-t 
which together with (12) implies that 

ţтèl-W+ M->° a.в. 
n1"1"^ 

(26) 
_ = 1 

Next, we can write 

-±r£,\Xt-iYt\™ (27) 
/fr t = l 

= - irr E l*.-il2+'(l*l2+' - E \vtr
s) I ^ T E l^-il2+5I5 |rt|

2+5. 
П A ^ 2 

_ = 1 

The first term on the right-hand side of (27) converges to 0 a.s. according to the 
strong law of large numbers for martingale differences. For the second term we have, 
due to E \Yt\

2+6 < C where C is a constant, 

* £|X._.|-+«E|I.|-+« < C m a X l ^ | X t | I^PX-U (28) 
n + 5 t=l " 2 n ^ _ t 

and from here together with (10) we can easily conclude that 

-iT£|X__1Y„|-+'-.0 a.s. (29) 
1 --"1 9 ' •* TJ ' 2 

™ t=l 

It remains to prove that 

i т è | _ _ . _ 1 Г + м | _ ? l |
2 + * - Ю a . 8 . (30) 

2 t = l П ^ 2 

We have 

1 n IV |2. 1 n 

4гEiX t-ii4 + 2 íiß ti
2 + 5 < m a x i ^ n l ŕl -E-ү.-.iд.ľt+' 

n í = i n 2 n _=i 
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and 

iE^-ii^d2+5=^i:^1(i^i2+5-E;i^r)+^x:x/_1£;iBti^. 
nU. n£i nti 

Then we can proceed in the same way as before, utilizing the strong law of large 
numbers for martingale differences, boundedness of E\Bt\

2+s and (12). 
As a consequence of all these considerations we see that the left-hand side of (23) 

converges to 0 a.s. We have proved that the conditional distribution of -g- Ylt=i ' " / ^ 
is asymptotically JV(0,1). The rest of the proof follows from the fact that S2 -r A2 

a.s. and from (10). • 

4. SIMULATIONS 

We generated nonstationary process Xt = btXt-\ +Yt with independent errors Yt ~ 
M(0,a2) for a2 = 1 + (0.5)(—1)* and with iid random parameters bt having either 
normal distribution J\f(P,a2

B) or uniform distribution on the interval [0,1](7£[0,1]). 
The parameters (3 and aB were chosen in such a way to satisfy Assumptions Al - A6. 

Further we generated wild bootstrap observations according to (20) with iid Kt ~ 
JV(0,1). Some results are presented in Tables 1-4 and Figures 1,2. In Tables 1 -
4, 95% confidence intervals for /? are introduced, computed either on the basis 
of the asymptotic normality result (6) either on the basis of the wild bootstrap 
approximation for which 5000 simulations of y/n((3w — /3) were used. In Tables 1-3 
the results are shown for bt ~ J\f(P, aB) with various values of ft and aB (case aB = 0 
corresponds to the nonrandom autoregression AR(1)) and for various sample sizes n. 
In Table 4, similar results are presented for bt ~ 7£[0,1], i. e. with /3 = 0.5, aB = 1/12. 
It can be seen that the wild bootstrap works well and for milder sample sizes gives 
better results than the normal approximation. 

In Figure 1, the distribution of 5000 wild bootstrap values of y/n(Pw — (3) (dark 
bars) are compared with the true distribution of y/n(/3—P) computed by Monte Carlo 
using 5000 sampling values (white bars) and with the corresponding asymptotic 
distribution (normal curve). The number of observation was chosen to be n = 200 
and for bt we chose Af(0;0.25),Af(0.1;0.25),JV(0.5;0.25), 11(0,1). 

In Figure 2 we compared the true, wild bootstrap and asymptotic distribution of 
y/n(j3 - (3) with the same value of p2 + aB for n = 200 (the top panels) and n = 400 
(the bottom panels), in the left panels for /3 = 0,aB = 0.5, in the right panels for 
P = \/().5 and aB = 0 (nonrandom autoregression). 

Results demonstrate the appropriateness of the application of the wild bootstrap 
that does not require the knowledge of asymptotic variance of P, as well as the 
influence of the variance of the random parameter upon the asymptotic distribution 
of/3. . 

(Received November 11, 2002.) 
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Table 1. 95% confidence intervals for /3; bt ~ N(f5,a2
B)\ n = 100. 

ß 0.5 y/212 0 

o% 0 0 0.5 
norm 
boot 

(0.3223, 0.6353) 
(0.3433, 0.6181) 

(0.5390, 0.8042) 
(0.5513, 0.7951) 

(-0.3093, 0.5745) 
(-0.1047, 0.3678) 

ß 0 0.1 0.5 

°% 0.25 0.25 0.25 
noгm 

boot 

(-0.4046, 0.0882) 

(-0.3802, 0.0636) 
(-0.1143, 0.3786) 

(-0.0681, 0.3399) 

(0.1852, 0.7396) 

(0.2633, 0.6516) 

Table 2. 95 % confidence intervals for f}\ bt ~ JV(/3, oB)\ n = 200. 

ß 0.5 л/2/2 0 

crì 0 0 0.5 
norm 
boot 

(0.4671, 0.6885) 
(0.4732, 0.6814) 

(0.6731, 0.8639) 
(0.6878, 0.8558) 

(-0.4080, 0.2169) 
(-0.2795, 0.0788) 

ß 0 0.1 0.5 

aì 0.25 0.25 0.25 
norm 
boot 

(0.0084, 0.3570) 
(0.0144, 0.3437) 

(-0.0084, 0.3380) 
(-0.0102, 0.3472) 

(0.2628, 0.6548) 
(0.2445, 0.6786) 

Table 3. 95 % confidence intervals for (3\ bt ~ Af(P,(TB)\ n = 400. 

ß 0.5 л/2/2 0 

oì 0 0 0.5 
norm 
boot 

(0.4386, 0.5951) 
(0.4371, 0.5949) 

(0.6132, 0.7459) 
(0.6094, 0.7512) 

(-0.1153, 0.3266) 
(-0.0414, 0.2512) 

ß 0 0.1 0.5 

CГÌ 0.25 0.25 0.25 
norm 
boot 

(-0.1790, 0.0674) 
(-0.1627, 0.0506) 

(0.0177, 0.2630) 
(0.0076, 0.2748) 

(0.3366, 0.6138) 
(0.3122, 0.6423) 

Table 4. 95 % confidence intervals for /3; bt ~ K[0,1]. 

n 100 200 • 400 

norm 
boot 

(0.3919, 0.6498) 
(0.3975, 0.6203) 

(0.4496, 0.6641) 
(0.4542, 0.6639) 

(0.4319, 0.5836) 
(0.4141, 0.6051) 
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ß=0, o2.=0.25, normal distribution, n=200 ß=0.1, o|=0.25, normal distribution, n=200 

Fig . 1. True, asymptotic and wild bootstrap distribution of y/n(/3 — /?). 

ß=0, CT?=0.5, normal distribution, n=200 ß2=0.5,0^=0, normal distribution, n=200 

ß=0, CT|=0.5, normal distribution, n=400 

0.35 г 

0.3 

0.25 

0.2 

0.15 

0.1 

0.05 

ot lÕllillli ІІŁ> 
Fig. 2. True, asymptotic and wild bootstrap distribution of y/n(P — /?); ft2 + o~% = \ 
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