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ON THE STABILIZABILITY OF SOME CLASSES 
OF BILINEAR SYSTEMS IN M3 

HAMADI JERBI 

In this paper, we consider some classes of bilinear systems. We give sufficient condition 
for the asymptotic stabilization by using a positive and a negative feedbacks. 

1. INTRODUCTION 

Stabilizability of bilinear systems of the form 

x = Ax + uBx (1) 

(where x G Mn, u G M and A, B are constant real matrices (n x n)) has widely 
studied in the past years by many authors (see e.g. [1-13]). In [4], the authors 
give a necessary and sufficient condition, algebraically computable, for the global 
stabilization of the planar bilinear systems 

{ z = Az + vBz 
- - (2) 

zeM2, veM and A, BeM(2,M). 
It turns out that the stabilizability by homogeneous feedback is equivalent to the 
asymptotic controllability to the origin which is equivalent to the stabilizability. 
Moreover, they show that there exists a large class of planar bilinear systems that 
are not C1 stabilizable but stabilizable by means of homogeneous feedback of the 
form v(z) = Q\1 , where Q\ is a quadratic form and Qi is a positive-definite 
quadratic form. 

For the three dimensional case, in [3] the authors deal with a particular class 
of bilinear systems of form (1) with A diagonal and B skew symmetric. For these 
systems a necessary and sufficient condition for global asymptotic stabilization by 
constant feedback and a sufficient condition for stabilization by a family of linear 
feedbacks are given. . Another interesting problem is considered in the literature. 
The question is: does the local asymptotic stabilizability of (1) imply the global 
asymptotic stabilizability? More precisely let us assume that there exists a feedback 
law (locally defined) u : x i-> U(X) such that the closed system x = Ax + u(x) Bx (S) 
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is locally asymptotically stable about the origin. Does there exist a feedback law 
(globally defined) u(x) which makes the origin of (1) globally asymptotically stable? 

To the closed-loop system (2) a positive-definite function V (locally defined) is 
associated, such that V(x) (the derivative of V along the trajectories of system (£)) 
is negative definite. 

Hammouri and Marques [8], proved that local asymptotic stabilizability implies 
global asymptotic stabilizability under some assumption on the level surfaces of the 
Lyapunov function related to system (S). Andriano [1] assert, that the answer to the 
above question is yes without any assumption on the level surfaces of the Lyapunov 
function. In [5] the authors clarify the result of Andriano given in [1]. 

This work is a contribution to the study of stabilization of bilinear systems by 
homogeneous feedback. The results concern single-input bilinear systems of the 
form 

x = Ax + uBx (3) 

where x £ -ZR3, u E M and TA, TB two matrices supposed have a same eigenvector 
(TA denotes the transpose of matrix A). In a suitable basis matrices A and B can 
be written as 

в = 

We define matrices A and B as 

= ( a< 2- 2) a< 2- 3) ) = ( a bA and 
V °(2.3) a ( 3.3) ) \ c d ) 

Ь(i.i) 0 0 
Ò(2.1) Ь(2.2) Ь(2.3) 
ò(з.i) Ь(3.2) Ь(з.з) 

в=( Ь(2.2) Ь(2.3) 

\ , Ь (2.3) Ь(з.з) 

We suppose more that system (2) is not stabilizable by a constant feedback and B 
is not diagonalizable. 

In this paper we show how to compute the homogeneous feedback of the system 
(3) when the planar bilinear system (2) is stabilizable by a positive and negative 
feedback. 

The paper is organized as follows. In Section 2, for the convenience of the reader 
we recall two results of constant use in the sequel. 

Section 3: In the case where the eigenvalues of B associate to the common eigen­
vector of TA and TB is zero we give a necessary and sufficient condition for the 
stabilizability of system (3), the feedback is given explicitly. Next we prove that 
if the planar bilinear system is globally asymptotically stable (GAS) by a feedback 
v(z) such that bi.i^(z) < 0 then system (2) is GAS. 

In Section 4, we suppose that the system (2) is not stabilizable by a constant 
feedback and B is not diagonalizable. As an application of the last result of the 
Section 2, we give a necessary and sufficient condition, algebraically computable, 
for the global stabilization of the planar bilinear systems by a positive and negative 
feedback. 
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2. TWO RESULTS ON STABILIZATION 

We recall the following theorem, because we need these results to prove that we can 
stabilize some bilinear system by a positive and negative feedback (see Theorems 
5,6,7 and 8). 

Theorem 1. Consider the two-dimensional system, 

T[zl,z2] =T[/ l(^l ,z2),/2(z l ,z2)] 

where ^ / I , ^ ] is Lipschitz continuous and is homogeneous of degree p. Then the 
system is asymptotically stable if and only if one of the following is satisfied: 

(i) The system does not have any one-dimensional invariant subspaces and 

r2w cos 0/i (cos 0, sin 0) -F sin 0/2 (cos 0, sin 0) - I 0 cos Ø/2(cos 0, sin 0) - sin Ø/i (cos 0, sin 0) 

[+°° / i ( M ) 
L^ f2{l,8)-8Ml,8) 

d 

d s < 0 

or 

(ii) The restriction of the system to each of its one-dimensional invariant subspaces 
is asymptotically stable. 

For a proof see [2,7]. 

In the sequel we use constantly a result of asymptotic stability using positive-semi-
definite function. The theorem can be found in [9] or [10], we use the formulation of 
[10]. Consider the differential equation 

f x = X(x) 

' \ X(0) = 0 

where X is a smooth vector field on Mn. For a differentiable function V, we denote 
the action of X, considered as a differential operator, on V by XV, which is defined 
by 

xv(x) = iy(xt(x))(=o 

Xt(x0) is the solution of (T) starting at x0, i. e. ^Xt(x0) = X(Xt(x0)) and X0(x0) = 
x0. 
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Theorem 2. We suppose that there exists a function V G C1(lRn,lR) such that 

(1) V(x) > 0 for all x G Mn and V(0) = 0 

(2) V(x) = XV(x) < 0. 

We denote by C the largest positively invariant set of X contained in M = {x G 
Mn : V(x) = 0} 

If the origin is asymptotically stable with respect to the system (T) restricted to 
C, then the origin is asymptotically stable. 

3. MAIN RESULT -

Consider a single input bilinear system (3), we suppose that the TB and TA have a 
same eigenvector 
we recall that, in a suitable basis of IB?, the matrices A, B take the following forms 

/ a(i.i) 0 0 \ / b(i.i) 0 0 \ 
A = I a(2.i) a(2.2) a(2.3) J , B = I 6(2.l) b(2.2) &(2.3) I 

\ a (3 .1 ) 0(3.2) a(3.3) / \ 6(3.1) 6(3.2) 6(3.3) / 

and A, B as follows 

A = f a ( 2 .2) a ( 2 .3) \ f a 6 \ ^ fi = / 6(2.2) 6(2.3) \ 
\ 0(2.3) a(3.3) J \ C d J \ 6(2.3) 6(3.3) / 

For the sake of clarity, we set x = (xi,X2,x3) = (x\,z) where z = (x2,x%). We 
denotes fl(i.i) = OL and /3 = 6(1.1) 

Theorem 3. In the case when (3 = 0 we can assume that: 
The bilinear system (3) is GAS if and only if a < 0 and the planar bilinear system 

z = Az + vBz, (2) is GAS. 

If system (2) is GAS by the feedback law v(z) = Q ?1 (where Q\ is a quadratic 

form and Q2 is a positive-definite quadratic form), then the feedback u(x) = Q^jl^a 

stabilizes the system (3). 

P r o o f . The system (3) takes the form 

f x,\ = ax\ 

(**) = x 1 ( a ^ ) + u x 1 ( ^ ) + A ( X > ) + u B ( X > ) . ^ 
V ^3 ; V a(3A) J V &(3A) J V X3 J \X3 J 

It is clear that it is necessary for the stabilizability of (4) that a < 0 and the system 
z = Az + vBz is stabilizable. 

We suppose now that these two conditions are satisfied. Let v(z) = Q\Z
21 be a 

stabilizing homogeneous feedback for z = Az + vBz, where Q\ is a quadratic form 
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and Q2 is a positive-definite quadratic form. We define u(xux2,xs) = Q^*ffix2 on 

iR3. This feedback is homogeneous and C°° in IB? \ {0}. We denote by X(x) = 
A(x) + u(x) B(x) the vectors field of the closed-loop system. We shall prove, by using 
Theorem 2, that this system is asymptotically stable. It is clear that the vectors 
field X and Y where Y(x) = (Q2(z) + ||zi||2) X(x) have the same orbits. We choose 
V(x) = x2, V is clearly positive-semi-definite on IB?. Since a < 0, then 

YV(x) = V(x) = a(Q2(z) + | |*i| |2)| |*i| |2 < 0. 

Let M be the set M = {x G B? : V(x) =0}. It is clear that M is {0} x R2 in R?. 
Then the vectors field Y is reduced on M to i = Q2(z)(Az + u(0,z)Bz. 

Since Q2(z) is positive-definite and z — Az + v(z)Bz is asymptotically stable, 
then Y and hence X, is asymptotically stable. 

In the case when /3 ^ 0 and without loss of generality we can suppose that 
a(i.i) = a < 0. n 

Theorem 4. If the planar bilinear system z — Az + vBz (2) is globally asymptot­

ically stabilizable by a feedback law of the form v(z) — Q\ZJ such that (3v(z) < 0 

Vz e R2 - {(0,0)} then the feedback u(x) = Q%l)+X* stabilizes the system (3). 

P r o o f. It is straightforward that the the closed-loop system (3) with the feedback 

±i = ax\ + u/3xi 

x2 
bfo.U \ . 7 í Xo -\ . ^ ( X2 \ (5) Чs:)+-(fe:;)+i("')+»é(") 

is GAS. • 

The proof is organized as the proof of the preceding theorem. Since this system 
is in triangular forms (see [10]), and z — Az + u(0, z)Bz is GAS, then the equation 
(5) is GAS. 

4. STABILIZABILITY OF PLANAR BILINEAR SYSTEM 
BY A POSITIVE AND NEGATIVE FEEDBACK 

In this section we consider the planar bilinear system z — Az + vBz (2) which 
it not be stabilizable by a constant feedback. We suppose that matrix B is not 
diagonalizable. 

As an application of Theorem 4, in this section we construct a positive and 
negative feedbacks who's stabilize the planar bilinear systems (2). 
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4.1. B have no real eigenvalues 

In a suitable basis of M2, the matrix B takes the following form 

B=( V » 

For the sake of clarity, we set z = (zi,z2), zi = e\Z\+ e2z2 and z2 •=• —e2z\ + e\z2, 
where e\ = (a — d) — y/(b + c)2 + (a — d)2 and e2 = (b + c). 

According to the assumption that system (2) is not stabilizable by a constant 
feedback, it is the classification of planar bilinear systems we are speaking of [4], we 
have 

(i) Tr(A) > 0, Tr(B) = 0 and (b + c)2 - Aad > 0. 

Theorem 5. If the condition (i) is satisfied then for t\ > 0 and t2 > 0 large enough 

and dJ | - + a > 0 the positive feedback law 

^1(21,22) = — -r~2 -jx + —— and the negative feedback law 

v2(z\,z2) = <„2 „2 + ----- where 

t\z\ + (d - a)z\z2 + t2z
2 c - . 

fi(z\ + z2) 2/x 

t\z\ + (a - d)z\z2 + t2z2 c-b 
[i(z\ + z2) 2/i 

a = (ae\ + (c + b)e\e2 + de2)/(e\ + e2) and 

d = (ae2
2 - (c + b)e\e2 + de\)/(e\ + e\) 

stabilize the system (2). 

P r o o f . We consider the closed-loop system (2) by the feedback v\(z\,z2) 

{%)<it^)^+^{A{i)+^^{i)\ 
Since the function (z\ + z2) is positive-definite then there is equivalence between 
asymptotic stability of the vector field Z = (Z\,Z2) and the closed-loop bilinear 
system (2), defining the function F as follows 

F(z\,z2) = z\Z2(z\,z2) - z2Z\(z\,z2) 

a simple computation gives 

F(zuz2) = -(t\z\ + t2z\)(z\ + z\). 

From Theorem 1 one can deduce that the vector field Z is GAS if and only if 

-I +°°Z^is<0. 
F(l ,») 
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It is easy to verify that 

~ 7 ^ T IT dt + a [t\ 
ad < 0 I = - — where t = \ / —. 

t2 t(t + 1) ]/ t2 

Since ti and t2 have been chosen large enough such that V\ (z\, z2) > 0 and dt+a > 0, 
then / < 0. 

From the fact that the vector field Z is GAS, we can assume that the differential 
equation 

I) <6> 
a -b\ ( tiţì + iã-ãЌЉ+tiĘ* b - c \ ( 0 -џ 
~c d ) V Měi+@) 2/i \ /i 0 

6 
6 

fi = ei£i — 62^2 and 2̂ = ^£1 + ci^2 is GAS. Under a linear change in the state 
space of the form zi = £1 and z2 = —£2 the differential equation (6) becomes 
z = Az + v2 (zi ,z2)Bz which it GAS. • 

4.2. Case where the eigenvalues of B are real without B being 
diagonalizable 

In a suitable basis of IB?, matrices A and B take the following forms 

H'"*) 6<oiy 
According to the assumption that the system (2) is not stabilizable by a constant 

feedback, it is the classification of planar bilinear systems we are speaking of [4], we 
have 

(i) Tr ( i ) > 0, Tr(B) = 0 and Tr(AB) = c ^ 0; 

(ii) Tr ( i ) = Tr(B) = 0 and Tr(AB) = c ^ 0. 

Without loss of generality, we can suppose that Tr(AB) = c > 0. 

4.2.1. Case when Tr(A) > 0 

We will treated separately the two subcases: 4bc+(a-d) 2 < 0 and 4bc+(a--d)2 > 0. 

The sub case when 4bc + (a - d)2 > 0. 
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T h e o r e m 6. If the condition (i) is satisfied then the negative feedback 

vh)~ b {a-d)2 (d + Q ) 2 p (*) V[Z)~ " Ac AcQ(z) 

where 

Q(z) = (czi - (d + 2a)z2)2 + f (d + a)2z2 and 

P(z) = 26c2z!2 + (88ac+ U0cd)Zlz2 + (^f-d2 + 709ac/+ ^f-a2) z2 

stabilizes the system (2). 

P r o o f . Suppose that, the condition (i) is satisfied. We consider the Lyapunov 
function, 

Tr/ N ( 2 2 dc + 5ac ,17 2 39 _ ^ J2N 9 \ 
F(z) = ( c2z2 z!z2 - (—a2 + y da + 10_i2)z2 J 

133 (d2-a2
 2 rj . \ 2 

+ — I z2 + c(d + a)ziz2 1 

for the system (2), and the feedback law 

w ^__ 6 ___________ ____±̂ !_!_£) 
{ ' ~ ° Ac AcQ(z) • 

One can verify that, V is positive-definite and the feedback law is homogeneous of 
degree zero. A simple computation gives 

fr(,)--<" + ff?M*M<o v,#o 

Q(z) 

where R(z) = (czx + ^ z 2 ) 2 + ™(a + d)2z2, and 

_D(z) = ( c2z\ - (cd + 3ac)ziz2 - ( —a2 + —ad + — d2 ) z2) 

/ J 2 2 \ -̂  

+33 ( — Y ^ - 4 + c(d + a)_i~_ J . 

This prove that the feedback v(z) stabilizes the system (2). 

Since P(z) - Q(z) = 25 (cz_ + ( 7 1 d
2

+
5

4 6 a ^ 2 ) 2 + ^ ( a + d ) 2 ^ , is positive-definite 

then 

Tacking into account the fact that 46c + (a - d)2 > 0 and g i 4 > 1 then 

.„, <_4L+__ _t_fez__<a 
4c 4c 
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Proposi t ion 1. The system (2) is not stabilizable by a positive feedback. 

P r o o f . Consider the linear change of coordinates whose transformation matrix 
is given by 

-(i П 
The matrix B keep its initial form and the matrix A becomes 

b + ^ а+d 

Ã=i 2 

\ c -** 

In the new basis it is easy to verify that the set H = {(z\, z2) G IB? such that z\ > 0 
z2 = 2} is invariant by the open loop system z = Az + vBz where v lie in M+. • 

The sub case where 4bc + (a — d)2 < 0. Under a change in input state of the 
form v = ( , 2c )v and if w 

v
v / - 4 6 c - ( a - d ) 2 y 

transformation matrix is given by 

form v = ( , 2c )v and if we consider the linear change of coordinates whose 
V

v / - 4 6 c - ( a - d ) 2 y & 

P-[o V-^V'Q' j • 
The matrix B keep its initial form and the matrix A becomes 

a+d 

A= I ? ^ —c 
C S±å 

w h e r e e = V ± ^ . 

In the new basis, we prove the following result. 

Theorem 7. If the condition (i) is satisfied, then for — t > 0 large enough the 
negative feedback 

' ^i+(-^d+P)^2 + (t + 7)z2\ -, ^-(a + d\ -zí + (-^+P)z^ + (t + 7) 
v(z)~\ 2 A ^-A-^2 + ((^^))zi 

(a + d) (a + d)2 + c2 

a+d 

where 

p=-15 
c(a + d)2 

stabilizes the system (2). 

P r o o f . Suppose that, the condition (i) is satisfied. We consider the closed-loop 
system (2) by the feedback v(z) 

h \ = ( Zl(Zl,*2) \ 
h ) \ Z2(zuz2) ) 

• (^-^+(^)^Ht)+"l^Ě{i) 
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Since the function (~p^zi - 5ziz2 + (7a
2J

d)z2) is positive-definite then there is 
equivalence between asymptotic stability of the vector field Z = (Z\,Z2) and the 
closed-loop bilinear system (2), defining the function F as follows 

F(zi,z2) = zxZ2(zx,z2) -z2Zi(zi,z2) 

a simple computation gives 

«*•*> = (£«) *-**«+(* + «+ £ j ) 44-^4-^4-
It is clear that for — t > 0 large enough F is a positive-definite function. Prom 
Theorem 1 one can deduce that the vector field Z is GAS if and only if I = 

/-~ §fe/? dy< °" Xt * easy t0 verify that 

/ : 

+ ° ° z 1 ( l , y ) - 4 Ц ( l , y ) 
— dy 

F(hy) 
a + d f+~-(^d)-(8 + 2(^)y + (Щm+p)yi ч: E(i,y) 

dy. 

Since p = - 1 5 ^ - 8 ^ g ^ , then we can verify that -(-^L) - (8 + 2 ( ^ ) 2 ) < / + 

^28a+28d +p)y2 < 0 V?/ G JR. Consequently, the proof of theorem follows from 

Theorem 1. • 

Theorem 8. If the condition (i) is satisfied, then for t > 0 large enough the positive 
feedback 

_ (2c(a + d) + c3(a + d)/2 + 8a)s? - 8(a + cQziz2 - (16(a + d)/c + 8a)zf 

^ ) _ (c2(a + d)/2)zf + 8tz% 

stabilizes the system (2). 

P r o o f . Suppose that, the condition (i) is satisfied. We consider the closed-loop 
system (2) by the feedback v(z) 

(%)<lt:t)<^^[A{l)^-Hl)\ 
Since the function (s(a+d)2Zi + ^ 2 ) *s positive-definite, then there is equivalence 

between asymptotic stability of the vector field Z = (Z\,Z2) and the closed-loop 

bilinear system (2), defining the function F as follows 

F(zi,z2) = ziZ2(zi,z2) - z2Zx(zi,z2) 

a simple computation gives 

' - a + d -ч...*) = (*¥) (£-đ*+-) (ãč+..-.- -2 z -
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It is easy to see that, if (1 ,0 verify F(l,£) = f .Xi(l ,0 - X2(l,£) = 0 then there 
exists v E M such that (X i ( l , 0 , -X 2 ( l , 0 ) = Kl>0-

In our case we have £ = ^ ^ and v — c +v a + lv2 — _(a + d)/2 < 0. Consequently, 
the proof of theorem follows from Theorem 1. • 

4.2.2. Case where Tr(A) = Tr(J3) = 0 

Under the assumptions that Tr(A) = Tr(B) = 0 and Tr(AB) = c > 0, and in 

suitable basis of JR2, the matrices A and B can be written as A = f 
\ c -a 

B — ( ) where c > 0 consider the linear change of coordinates whose trans­

formation matrix is given by 

i ---
C 

0 1 

The matrix B keep its initial form and the matrix A becomes 

A=(° b+T 
\ c 0 

In the new basis and in the case where b + a2/c < 0 there is equivalence between the 
stabilizability of system i = (A + vB)z by a positive feedback and the stabilizability 
of the system i = (B + vA)z (7) where v £ JR+. Moreover we can assume that 
there is equivalence between the stabilizability of system i = (A+vB)z by a negative 
feedback and the stabilizability of the system i = (—B + vA)z (8) where v G M+. 
The stabilizability problem of systems (7) and (8) was treated in the subsection 4.1. 

In the case when b + a2/c > 0 we consider the change of feedback 

-/ \ / x a2 + bc 
v(z) = v(z) H h c 

c 
the system (2) becomes 

z = (A + vB)z where A = ( C J . 

The characteristic polynomial of matrix A is equal to X2 + c2, so matrix A admits 
a first integral, namely the positive-definite function 

V{zuz2) = \{zl + zl). 

Moreover, the rank of the family {Bz, ad_4L?z,...} is equal to two on M2 \ {0}, hence 
for any positive constant S the feedback law 

v{z) = -
L д l ф ) _ ziz2 

SV{Zl,z2) S{zf + zl) 
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stabilizes the system (2) (the proof is a modification of the result of [6] with the 
feedback rendered homogeneous; the proof is exactly the same). It follows for 6 > 0 
large enough the negative feedback 

, v ziz2 a2 + be 
V{Z) = —77-9 «r C. 

6(zf + z\) C 

P r o p o s i t i o n 2. The system (2) is not stabilizable by a positive feedback. 

P r o o f . In the new basis it is easy to verify tha t the set H = {(21,z2) G 
M2 such tha t z\ > 2 z<i > 2} is invariant by the open loop system i = Az + vBz 
where v lie in JR+ . • 

(Received January 30, 2001.) 
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