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ESTIMATION OF VARIANCES 
IN A HETEROSCEDASTIC RCA(l) MODEL 

HANA JANEČKOVÁ 

The paper concerns with a heteroscedastic random coefficient autoregressive model 
(RCA) of the form Xt = btXt-i + Yt. Two different procedures for estimating a2 = 
EY2, a2 = Eb2 or a% = E(bt — Ebt)2, respectively, are described under the special seasonal 
behaviour of cr .̂ For both types of estimators strong consistency and asymptotic normality 
are proved. 

1. INTRODUCTION 

A random coefficient autoregressive model (RCA) is defined as Xt = btXt-\ + Yt, 
where {bt} are random coefficients with Ebt = (3 and {Yt} is an error process. 
The primary aim of many authors is to estimate an unknown parameter /3 under 
various sets of assumptions and derive asymptotic properties of such estimators (see 
for example [1, 3, 5, 7, 9] and [10]). Next to /?, remaining parameters (such as 
E(bt — P)2 = aB or EY2 = a2) are also unknown very frequently and hence should 
be estimated too. It is for example useful for estimating asymptotic variance of 
OLS or WLS estimators of /3 since their asymptotic distribution depends on these 
unknown parameters (see [5]). Moreover, WLS and CWLS estimators (for definition 
of CWLS see [3] or [4]) depend on these parameters directly. Hence, in case they 
are unknown, they must be firstly estimated and then replaced by their estimates. 
These all are reasons why to estimate these nuisance parameters. 

A standard least squares procedure for estimation of aB and a2 is well described 
in [10] under the assumption that processes {Yt} and {bt} are mutually independent 
and consist of independent and identically distributed random variables. This tech
nique was generalized for example in [3] for a RCA model where processes {Yt} and 
{bt} are correlated. In [9] the author deals with a heteroscedastic RCA(l) model but 
this procedure is then applied only to the case of constant variances a2 = a2 for all 
t. In general both processes {Yt}, {bt} are allowed to be non-stationary. Maximum 
likelihood procedure is another approach of estimation aB and a2. This technique 
in a homoscedastic case is described for example in [10]. 

In this paper we will generalize the standard least squares procedure for a het
eroscedastic RCA(l) model with a special seasonal pattern of a2. Moreover, we will 
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describe an alternative approach of estimation of aB and a\. Under both approaches 
we will prove strong consistency and asymptotic normality of given estimators. At 
the end of the paper we numerically compare estimates from both procedures. The 
main theoretical results of this paper are substantially based on the fact that OLS 
estimator of ft in a heteroscedastic RCA(l) model is strongly consistent and asymp
totically normal that is shortly proved in [5]. Full versions of the proofs and all 
auxiliary lemmas can be found in [4] or [8]. Generalization of these results for 
RCA(l) processes containing martingale differences is given in [7]. 

2. MODEL DEFINITION 

Let us suppose that the behaviour of the process {Xt} is described by the RCA(l) 
model 

Xt = btXt-i+Yt, i = l , - . . , n (1) 

where Xo is a random variable with EXo = 0,0 < EX$ = a% < oo , Yt, t = 1,... , n 
are random variables with EYt = 0 V£,0 < EY2 = a2 < oo that are independent of 
X0 and bt,t = 1 , . . . , n are random variables with Ebt = /3Vt,0 < Eb\ = a2 < oo 
Vt that are independent of Xo and of {Yt}. 

Model (1) can be rewritten into the form of a fixed coefficient AR(1) model: 

Xt = pXt-i + BtXt-i +Yt = fiXt-i + uu (2) 

where ut = BtXt-\ +Yt and Bt = bt — (3. To keep a unified notation let us denote 
aB := EB2, so the equation aB = a2 — ft2 holds. Further, let us define the system of 
cr-fields T = {Tt} in the following way: To = o~(X0), Tt = cr(X0, Yi,P>i,... , Yt,Bt) 
for t = 1,2.. . 

In [5] we concerned with estimation of the unknown parameter ft in model (2) 
under assumption of known variances a\ and aB. But in practice these parameters 
are mainly unknown and have to be estimated. In a fully general form of EY2 = a2 

this problem is unsolvable since there is more parameters than observations in the 
model. In the sequel we will focus on a special structure of a2 behaving according 
to the following model: 

EY2 = a2 =a^ for t G U := {i, k + i , . . . ,n - k + i} , i = 1 , . . . ,fc, (3) 

where k is a given fixed number such that 1 < k < N < n. Without loss of generality 
we can suppose that n = mk where m G N. A constant N plays a role of a reasonable 
upper bound such that m is a sufficiently large number of observations for regression 
estimation. Due to the time shift, in the following it will be useful to define the set 
I0 := {0,fc,2k,--. , n - k}. 

This model describes seasonal behaviour of variances a2 with a period k. In our 
opinion this pattern is reasonable and useful generalization of a homoscedastic as
sumption that can be used in a real time series analysis. Moreover, it satisfies a 

condition i Y!t=i °t !L=^° ^ > ° f o r ^ = I E*=i *yW- T h i s condition was intro
duced in [5] and is crucial for proving strong consistency and asymptotic normality 
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of the OLS and WLS estimator of /3. On the other hand it is not as restrictive as a 
condition an

 n-^ a2 > 0 that is assumed in [9]. 
Further, this model significantly reduces number of all unknown parameters in 

model (1) to A; A- 2 and hence they can be already estimated. 

Agreement : For simplicity we will use the following abbreviations: SLLN-MD for 
strong law of large numbers for martingale differences (see Theorem 20.11 in [2]), 
SLLN-MX for strong law of large numbers for mixingales (see Theorem 20.16 in [2]) 
and CLT-MD for central limit theorem for martingale differences (see Theorem 
VI.4.12 in [11]). 

3. STANDARD APPROACH 

3.1. Estimation procedure 

Let us suppose that the starting value XQ and observations _Ki,... , Xn are available. 
The standard approach of estimating a2 and aB is based on estimated OLS residuals 
ut := Xt — /3Xt-i, where J3 is the OLS estimator of (3 defined as 

l - - ^ 1 * ' * - 1 - (4) 
Z_t=l A . - l 

Since 

E{u2
t\Ft-i) = a2t+v2

BX2_l a.s. (5) 

holds for unobservable Ut, it looks reasonable to get estimators of interest by mini
mizing ]Cr=i(^t ~~ °t ~~ aB^-t-i)2' F° r a seasonal heteroscedasticity given by (3) it 
is equivalent to an OLS procedure in the following regression model: 

U2 = Da2
Y + X2a2

B + C, 

where U = {u2,--. ,un)',X
2 = {XQ,X2,... ,-XTn-i)' a r e v e c tors of input values, 

C = (Ci»- • • > Cn) is a vector of errors, cry = (oy J , . . . ,r/y J) ; and aB are*unknown 
coefficients and D = imxi ® Ikxk,i = (1 ,1 , . -. , 1)' are fixed matrices. By solving 
normal equations we can easily derive that OLS estimators of unknown coefficients 
are given by 

a2
B = {X2' MDX2)-lX2' MDU2, (6) 

&2
Y = {D'D)-1D'{LT2-X2d*B), (7) 

where MD = I — D{DfD)~1D' = I — ^{H1 ® I)- After some algebra, expression 
(6) can be rewritten into the form: 

°B = 1 7 f i_m2 ' (8) 
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where X2 = ^- Yltei xt- Due t o a special structure of a matrix D the vector 
estimator &^ can be decomposed into k scalar estimators 

o2M=V[*-Xl[i-l]ol, 1 = 1-.. .-*, (9) 

where u2% = j j j£te/< f l t -
The estimator of the second moment o\ can be then obtained as o2 = oB + p2. 

3.2. Strong consistency 

In order to prove strong consistency of given estimators we have to impose stronger 
conditions than in case of strong consistency of J3 (see [5]). Let us assume: 

A0: {Yt} is a process of independent random variables, {bt} is a process of inde
pendent and identically distributed random variables, 

Al: E\X0\
4+S < oo and ut := E\Yt\

4+5 < K < ooVt and for some 5 > 0, 

A2: ub := E\bt\
4+S < 1 for some S > 0, 

A3: '-YTt^EY4 - / i Y i 4 . 

Remark 3.1. The assumption of identically distributed {bt} is not necessary but 
it technically simplifies all proofs. Analogous techniques can be applied under more 
general moment conditions. 

As mentioned in the introduction, the main results of this paper are substantially 
based on the asymptotic properties of the OLS estimator J3 given by (4). Hence, 
for better readability of the text, these properties are summarized in the next two 
theorems together with their shortened proofs. Detailed proofs can be found in [4] 
or [8], for a generalized case of RCA(l) model with martingale differences they are 
given also in [7]. 

Theorem 3.1. Under Assumptions A 0 - A2, /3 ̂ -> f3 holds. 

P r o o f . Combining (2) and (4) we get 

ß-ß-^-p^Щxt) - 1 

In the first step it is shown that ^ Ylt=i Xt-iv>t r r ^ 0. This arises from the fact 
that {Xt-iut} is an J^-martingale difference sequence (see Lemma 3.3 in [8]) and 
from SLLN-MD. Further, it can be proved that the sequence {X2 — EX2,Tt} is 
an Z/i+e-mixingale of an arbitrary size for some e > 0 (see Lemma 3.4. in [8]). 
This fact together with SLLN-MX yields that £ £?=i Xf_x ^ yf^r > 0, where 

o2 = j J2i=i °Y > which concludes the proof. • 



Estimation of Variances in a Heteroscedastic RCA(l) Model 4 0 9 

Theorem 3.2. Under Assumptions A0-A3, the asymptotic distribution of y/n(J3— 

0) is N (o, A ( - ^ ) 2 ) , where A = o% 6 < T ^ 7 ' 4 +<f2, a2 = l im . . -^ 1 E ^ i o\EXU 

and fit,4 = Eb\. 

P r o o f . The proof is based on analyzing asymptotic behaviour of the expression 

^-"Hit^i^it^y. 
where sn := ]CJLi E (^t2-iwt)* Firstly, it can be derived that ^sn ^+ A holds. 
Thus, in the rest of the proof it is sufficient to show that 7-- V ^ i Xt-\ut has the 
asymptotic distribution iV(0,1). CLT-MD and SLLN-MX are useful in this case 
(see the proof of Theorem 3.3 in [8]). • 

Remark 3.2. In cited papers, Theorem 3.1 is proved under weaker version of 
Assumptions Al and A2 for moments of order 2 + 5 instead of 4 + 5. Since later on 
in this paper it will be used only in cases where moments of order 4 + 5 are required, 
it is formulated in this form. 

Auxiliary lemmas 

Lemma 3.1. Assumptions A0-A2 imply that E\Xt\*+5 < C < 00 Vt. 

P r o o f . Firstly, the process {Xt} can be expressed in the form 
Xt = £*.=0 ctj-iYt-jj where Y0 := X0,ctj := flLo bt-i and ct-i := 1. 
Further, applying Minkowski's inequality for p = 4 + 5 on this expression we get: 

(2W+ ' )** = EYZctj-iYt-A < £ {Elctj-M-ď*') 
j=0 

/j-i \ \ 4+7 

1 
4-R t \A+6\ . 1 

i 4+7 

І=0 

= £(E(ni*-H<*-*) *K^£(«r*)3< —^17<c, 
i=o \ \i=0 / / j=0 V ' 1 - uj*1 

where C and C" denote general positive constants. D 

Lemma 3.2. Let {Zt} be a martingale difference sequence with respect to Zt = 
a ( Z i , . . . , Zt) (Zt-m.d.s.), then {Tf'} where T/1' := Z^+i are martingale differences 
with respect to 7J := -£**+{ for i = 1 , . . . , k. 

P r o o f . Tt -measurability and L\ integrability of {Tt} are obvious. Further, 
for i = 1 , . . . ,fc we get 

-S(rt
W|7?i) = E(Ztk+i\Z{t_l)k+i) = E^Ztjk+il^+i-Ol^+i-ib] = 0 a.s. n 
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In the sequel let us use the following notation: II j := limn_^oo ^ _Zt=i EX{, Tj :=' 

Lemma 3.3. Under Assumptions A0-A2, limits Uj and T]IJ for j = 1,2 exist for 

all i. If moreover A3 holds, then II4 and T4 exist. Furthermore, T- = 11̂  holds 
a.s. for j = 1,2,4 and i = 1 , . . . , k. 

P r o o f . One possibility is explicit derivation of each expression separately for 
i = 1 , . . . , k. Alternatively, the limits of interest can be obtained as limits of the 
solutions of a system of k linear equations. In case of Uj the system arises when 
summing the equation EX{ = E(btXt-i + Yty over t G Ji,... , h and dividing by 
m. In case of TJ1 J the same is done for the equality X{ = (btXt-\ +Yty. Convergence 
of all redundant terms to zero is ensured by SLLN-MD. 

This procedure for j = 1,2 is demonstrated in the next example. Both systems 
of equations are constructed, all limits of the solution are derived and convergence 
of all redundant terms is explained. For j = 4, the procedure is analogous. C 

Remark 3.3. Alternatively, the proof of Lemma 3.3 for j = 1,2 can be based on 
mixingales theory. In [8] it is shown that the sequences {SJ , E^ } and {St —ESt , 
E^ }, where St := Xtk+i and E$ := Ttk+i are all Li+e-mixingales (see Lemma 3.13 
in [8]). Hence, equalities Ty = IIyJ a.s for j = 1,2 directly yield also from SLLN-MX 
(see Lemma 3.14 in [8]). 

Corollary. Under assumptions of Lemma 3.3, limits Uj, Tj for j = 1,2,4 exist and 

they are given as 11, = \ £<=i n j ] a n d Tj = \ _2i=i Tjl]-

Example. It trivially holds that T^ = U^ = 0 a.s for all i. In case of j = 2 we 
get the two following systems: 

t = a%t-i +a\ + Bm + Cm p = (7?p_! +cr\ + Am 

where t = (*M,... , # ] ) ' , <_i = (tM,tW . . . ; t -*-U) ' , tW = i £ t € / i Xt
2, 

p = £ t , p _ ! = Et-U Bm = ( .Bm
] , . . . , £ $ ) ' , 

Sm1 = £ E*eI,- [(&? - *1)XU + 2X,_ib,r, + (y,2 - 4 W ) ] , c m = (cmio,..., o)', 
Cm = a2

b±(X2 - X2
n) and A m = ECm. Since i m

m - ^ 0 , C m ^ ° 0 due to Borel-

Cantelli lemma and since I?m ^ 3 ° 0 due to SLLN-MD, it can be derived that for 
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the common limits n 2 , T2 of the solutions p-*-,£-*- the following relations hold: 

k-i 

l~аЬ i=Q 

i f = -tfП?1 + E ^ 4 I M far / = 1, ...,*-1 
i=0 

Moreover, since n2 = YZ~T\ ~2i=i G Y ( s e e [5]), o n e c a n e a s - - v check that II2 = 

\ E t i n 2 ] ^ally holds. 

Remark 3.4. It can be easily derived that the limit <r2 occurred in Theorem 3.2 
is of the form 

a2 := Urn ~Y cr2EX2 , = \ V a 2 ® ^ . 
n-»oo n Z —' Jfc Z— v Y Z 

t=l i=l 

, / r ^ _ i ] \ 2 

In the following let us define An := £ ~2i=i ~2teU i^t-i - X2 J , 

pt := u2 - a2 - e2
BX2_x, *2

B* := A"11 £* = i _ i e / « «2 ( ^ - i - ^~1]) and 

So that the estimators (8) and hence (9) be well-defined, we have to moreover assume 
one technical assumption: 

A4: Yt cannot take only two values for each t. 

Lemma 3.4. Assumption A4 ensures that An is strictly positive almost surely for 
large n. 

P r o o f . Since X2 ^ 3 ° III,* , we can concentrate on the expression 

n Yli=i lL,teii [-^i-i ~ ^2 ) • Suppose in contradiction that X2 — II2
 = 0 a.s. 

for all t £ I % and for all i. Then Xt can reach only two values Vx = y II2 and 

V2
[il = -\JT$. In this case we get either Yt = V^] - btXt^ or Yt = V^ - btXt^ 

for t G U. Since Yt is independent of bt and Xf_i, it implies that Yt can take also 
only two values that is the contradiction. • 

It is easy to derive that An = I £ * = 1
 xt-i~\ £ t i (x2^'^ • Since III?1 = n f ] , 

we can define A := limn_>0o An, where 

A = n4-iE(<)2- ' (ID 
i= i 
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Remark 3.5. Limit II4 is given by II4 = 1 _ 1 (6ofo~ + /iyA) (see [5]). 

Opposed to the stationary case, in this general non-stationary model Lemma 3.4 
does not imply that A > 0. Hence, we have to require this property as an additional 
assumption: 

A5: A > 0 holds. 

Lemma 3.5. Under A0-A5, a2
B - a2

B* ^ 0 and &*® - c-y[t> H ? 0 for i = 
1,. . . , k hold. 

P r o o f . Firstly, since u2 = (Xt-flXt-{)2 = u2-2(0-(3)Xt.lUt + 0-f3)2X2_1, 
we get 

^ - ^ = А « ^ Е Е й - " ? ) ( ^ - 1 - ^ ~ 1 ] ) (1-) 
г=1 Ье1г 

=(/з-/з)2-л-^Е(/5-^)[2^Е^-1^-2^"1]^Е^Ч-
г=1 (ел *еЛ 

{•--Г and where I £ * = i Y,ten Xt-i (xt-i ~ ^ *') = *n was used. Because {Xf_lUt} 
{Xt-iut} are Li+$-uniformly bounded Ft-m.d.s., Lemma 3.2 together with SLLN-
MD and Lemma 3.3 imply that the expression in brackets converges almost surely 
to 0. The fact that J3 ^ ? /? (see Theorem 3.1) concludes the proof of the first part. 
Further, for i = 1 , . . . , k we have 

°Y -°Y = — _>_>' ~ «t) ~ (aB ~ °B ) X 2 (13) 
771 

teu 
ф _ ^ [_2I £ xt_lUt + (Д _ ß)X*[i-l]] - (ô_ - oJГ).*-1' 

teIt 

The same arguments as before together with the first statement of this lemma imply 
that (13) converges a.s. to 0 that finishes the proof. • 

Theorems 

Theorem 3.3. Under A0-A5, a2

B H ? 0% holds. 

P r o o f . Because of Lemma 3.5, it is sufficient to show that 

< # - « _ _ ^ 0 . (14) 

Using the previous notation we can write 

°2B = ^ J E E ( * + - i x u + 4 W ) {XU - ^ [ i _ 1 ] ) • 
i=i teii 



Estimation of Variances in a Heteroscedastic RCA(l) Model 413 

Since E l i 4 W .£«./. {Xt-i ~ X^'*) = °> we 6et 

<# - 4 = A ^ £ E (*«-- - -*511"11)"- (15) 
i=l tGIi 

Further, let us define 

"B • := A « ^ E E ( * ? - - " n-'-11)^ + "-»• (16) 
2=1 tGI. 

In the following let us show that GQ - o^** n_^ 0. Combining (15) an (16) we get 

<# -ar=^^(nr1 - ^ " ^ E l ^ (i7) 
i=l *GI. 

Since E(pt\Tt-i) = E(u2 - a2 - a%Xf_1\Tt-i) = 0, {pt} is an ^-m.d.s . that is 
moreover Li+$-uniformly bounded. Hence, Lemma 3.2 and SLLN-MD imply that 
m SteIt Pl ^ " ^ ®' Lemma 3.3 then gives that a2£ — a2

B* n^+ 0. 
Finally, since < [Xf_1 — Ilg )pt \ for t G It and Vz remain to be Li+^-bounded 

martingale differences, convergence oia'B*—aB ^ ^ 0 in (16) is again a consequence 
of SLLN-MD and hence the proof is finished. • 

Theorem 3.4. Under A0-A5, a2^ n^? a2^ holds for i = 1 , . . . , k. 

P r o o f . Due to Lemma 3.5, it remains to show that oy * — oy ^-7? 0 holds for 
each i. 
We can write 

2[i]* 2[i] 1 V ^ / 2 2*v2 \ 2[i] 1 V ^ / 2 2[i] ' 2 xr2 \ 

oyl J -o~J' = - 2 ^ K - ^B * t - l ) -*¥-— __,(Ut ~°Y ~ °BXt-l) 
teu teu 

- ( 4 * - aB)V[i-1] = -^ £ P. - <<# " ^ ) ^ t i _ 1 ] - (18) 

Hence, the desired result directly follows from (14), Lemma 3.3 and SLLN-MD. • 

3.3. Asymptotic normality 

In case of asymptotic normality requirements for higher moments are needed. In 
contrast to the previous paragraph let us strengthen Assumptions Al and A2 into 
the form: 

Al': E\X0\*+6 < oo and rt := E\Yt\
s+5 < K < ooVt and for some S > 0, 

A2': rb := E\bt\
8+5 < 1 for some 5 > 0. 
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Similarly as in case of EY2 and EY*, some restrictions for higher moments of the 
process {Yt} must be considered. One possibility under which all following proofs 
can be done analogously is to assume that EYt

 < J =^ {lyj for j = 3 , . . . , 8. But this 
structure reduces the idea of seasonal behaviour of the error term. To sustain a 
seasonal variation of higher moments of {Yt} analogously as in (3) we will assume 
the following restrictions: 

AЗ': EYІ = iђà for t = ІІ, j = 3,... , í 

Remark 3.6. Assumption A3' is trivially fulfilled for example if Yt are identically 
distributed within each I{. 

Auxiliary lemmas 

Lemma 3.6. Assumptions AO, Al ' and A2' imply that E\Xt\
s+5 < C < co V*. 

P r o o f . Analogously as for Lemma 3.1. D 

Lemma 3.7. Under Assumptions AO, Al' , A2' and A3', limits Ilf.Tf for j = 

3 , . . . ,8 exist for all i = 1 , . . . , k. Moreover, Tj = Hy holds a.s. 

P r o o f . We can use the analogous procedure as in Lemma 3.3 applied to EXt = 

E(btXt-i +Yty in case of Ivy and to XJ
t = (btXt-i +Yt)

j in case of ry, respectively. 
D 

Remark 3.7. Existence of IlyJ for j = 2,4,6,8 only is essential for crucial Theo
rems 3.5 and 3.6 hold. For Theorems 4.3 and 4.4 limits 11̂  moreover for j = 3,5 
have to exist. However, in both cases the restriction A3' for j = 7 is redundant and 
hence can be omitted. 

Lemma 3.8. Under Assumptions AO, Al ' , A2', A3', A4 and A5, y/n(a2
B -G2

B) " - ^ 

0 in probab. and y/nl<5y — a^ ) ~~^ 0 1n probab. for i = 1 , . . . , k hold. 

P r o o f . The first statement directly yields from (12) multiplied by y/n, since 
y/n(/3 — (3) converges in distribution (see Theorem 3.2) while 0 — f3) and the expres
sion in brackets converges almost surely to 0. 
The second property is analogously seen when multiplying (13) by y/n. Lemma 3.3 
and the first part of this lemma have to be moreover used in this case. D 
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Theorems 

Theorem 3.5. Under Assumptions AO, Al' , A2', A3', A4 and A5, the asymptotic 
distribution of y/n(a2

B — aB) is iV(0, A~2E#), where A is defined by (11) and 

i=i teh 

P r o o f . Due to Lemma 3.8, it remains to examine the expression \/n(a2
B —aB) = 

^{°2
B*-°B**) + W°2B**-<>B)-

Firstly, let us show that ^/n(a2
B — a_**) -^ 0 in probab. 

Since y/K(o% ~ *!") = K1^ _-=1 ( n r i ] - X^[i~1]) jj- _teIt Pt holds due to 
(17) and since X2 % ^ ^ 11^, it is sufficient to show that - i - __teI pt is Op(l). It 
follows directly from the Chebyshev's inequality, for all e > 0 there exists Ke > 0 
such that 

v teu £ teh £ 

since E(__teI. pt) = Ylteu EPt a n d EPt < C < oo for all t. 

Secondly, for t G U and i = 1 , . . . , k let us define z\i] := (x2_x - U[i~1])pt. 

Then using (16) we get V^(a2
B** - a2

B) = A " 1 ^ ^ E t € / i
 zt]- Further, put 

4 := E t i Eteii E(Zt])2- T h e n fcl - ^ S B . Derivation of tB is quite tech
nical and time consuming and it is presented in Appendix A.l, its explicit form is 
given by (25). 

Consequently, it remains to show that y- __i=1 Y^teh zt has the asymptotic dis
tribution IV(0,1). Since Zt are martingale differences, CLT-MD can be applied. 
Hence, it remains to verify assumptions of this theorem which are of the form: 

i) £ El i Eteu E[{Zt]) h-i] '•=* 1 in P r o b a b -

ii) iE-=1Ete^[(4 i ])2W>|>£J =-T0foraMe>0. 
The first condition can be checked by explicit expansion of all terms that is done 
in Appendix A.l. Since {MJ^} defined in appendix by (24) is an J^-m.d.s. that 

satisfies SLLN-MD, £ _~2i=i T,teii Mi\ ^ 0 in probab. Taking conditional and 
unconditional expectations of remaining terms in (23), we can show, using Lem
mas 3.3,3.7 and SLLN-MD, desired convergence of all remaining terms. 

\i\ 2 + < 5 ' The second condition directly yields from the fact that E Zt < C < oo V£ for 

5' = | and from convergence ^s„ -^T S#. ---
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Theorem 3.6. Under Assumptions AO, Al ' , A2', A3', A4 and A5, the asymptotic 

distribution of y/n(aY — "y ) for i = 1 , . . . , k is N (0, £ y J, where 

t[$ := kt^ - 2n[i"1]A-1£[i] + (n [ i-1])2A-2£-, 

t®:= lim -YEpl 
teu 

tGIt 

P r o o f . The asymptotic distribution of y~i(^y — <~y ) 1s? due to Lemma 3.8, 

the same as that of y/nia^ ~ay ) = y ™ ~Zteii Pl" \/~-(~B ~~~B)-^2 > which 
is seen from (18). 

Further, since V^(- |* -a |**)X2 [ i~1 ] n - i ^ o in probab. and >/n(cr|* - - | ) (x*[i~1] -

^j[t- j \ -woo Q j n probab., we can concentrate on the expression 

^ £ * - ,/sw - 4>nr" - ̂ E * - [Vjgt E -PR11-
*eI, tGIt v j=iteij 

Since (A - 1 —A -1)-4- ~~J=1 Z)tGI -̂ t ~"~* 0 in probab., we can equivalently examine 
the asymptotic distribution of 

^E^-lA-^EE^nr'^EE^1 . 
teii v"í=íáí J ^H& 

where ft[M := [fc*i|t - A " 1 ^ 2 ^ - n ? " 1 ] ) n j " 1 ] ] ^ and 6iyt = 1 for t € h and 0 

elsewhere. 
It is easy to check that f̂  are martingale differences for each i and hence the 
standard application of CLT-MD as in the previous case can be used. Let us therefore 

define s2[i] := £* = 1 £ t e / . E(U[^)\ Then, 

4[i] = £ £ E^A* - 2mri'A-1 (x^ - nf-11)^,. 
.7=1 teij 

+ (nril)2A-2(^_1-nrii)2p?] 
i \ 2 

= e £ sP
2 - 2 ^ - % - £ E(ZuPt) + (n?-11) A-2 £ £ E(ZM) 

teu teu 7=i teij 



Estimation of Variances in a Heteroscedastic RCA(l) Model 417 

and hence -sn —~ Ey • The appropriate limits are derived in Appendix A.2 and 
their final forms are given by (28) and (31). 

Finally, we have to prove that -pr ___*=i _2tei ^t has the asymptotic distribution 

_V(0,1) for all i. The corresponding conditions of CLT-MD are of the following 
form: 

0 $t __;=! £ t e , , _ - [ ( n [ , J 1 ) a | ^ _ i ] "---* 1 in probab., 

") ^E}_iEte/i-3[(llS^)%n;'._,_M{?]] =-T0foraU_>0. 

Their verification can be done using expressions (26), (27), (29) and (30) from Ap
pendix A.2 analogously as in the previous proof. • 

Remark 3.8. It is worth mentioning that while £_? depends on k only through 
an average of some terms, Ey includes linear term fcS^ that increases asymptotic 
variance of each estimator <5y J with increasing number of seasonal periods (and 
hence unknown seasonal coefficients). Further, the relation between Sy and __._? is 
seen. 

4. ALTERNATIVE APPROACH 

4.1. Estimation procedure 

In contrast to the procedure described in Section 3, this approach primarily gives 
estimators of o\ and o\ instead of o2

B and of. In its first stage it does not require 
the OLS estimator /3. The idea is however very similar to the previous one. 

Since the standard procedure is based on relation (5) for unknown residuals ut, 
we have decided to use similar relation for the observed process itself. One can see 
that 

E(X2\Tt-1) = o2 + o2Xli a.s. 

and hence analogously as in the previous case the estimators of unknown parameters 
can be obtained by minimizing Y,t=i(X2 - o\ - o\Xl_^)2 or equivalently as OLS 
estimators in the regression model X2 = o2 + o\X2_x + r]t, where rjt are J^-m.d.s. 

Using the same arguments we can derive that they are given by the following 
formulas: 

__ ,_« , *?(*£-,-a*-") 
CTfc = 1 7 r._iK2 ' ( l y ) 

E l i _:._.< (*<2-i-*2[ ]) 
-2[.]=5#]_^-i]-2) i = 1 > _ j i f e > ( 2 0 ) 

Consequently we can define the estimator of o2
B as o2

B = o2 — p1. 
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4.2. Asymptotic properties 

These estimators are also strongly consistent and asymptotically normal. The proofs 
of these properties are even easier than those of Theorems 3.5 and 3.6 since Lem
mas 3.5 and 3.8 are not needed. The main steps of the proofs are however the same 
and hence we can directly formulate the following theorems. 

Theorem 4 .1 . Under A0-A5, a\ ^H? cr2 holds. 

P r o o f. In this case we can directly analyze the difference a\—a\. Expression (19) 
can be reformulated in the way 

o\ = °l+Kl k T,i=i E f e /,. {Xi-rfXLi) (Xf-i ~X^[i~1]). Extending the previous 

expression by the term ~2i=i aY ~^teh [Xt-i ~ X2 ) = 0, we can further write 

*- - °l = A^ l £ £ (*?-! " ̂ yf (21) 
i=l teh 

Analogously as in (16) let us define 

<*" ^ ^ j E E K i - t ' 1 ) ^ ^ (22) 
i=i teh 

Since {r)t} is also an J^-m.d.s., we can proceed in the same way as in the proof of 
Theorem 3.3. • 

Remark 4 .1 . Strong consistency of J3 directly implies that a2
B ^H? a2

B holds. 

Theorem 4.2. Under A0-A5, J * 1 H + ^ holds for i = 1 , . . . , k. 

P r o o f . Firstly, let us define 4 [ i ] # := X2^-X2^ a\. T h e n 4 [ i l - c 7 ? i ] # H + 0, 
due to Theorem 4.1 and Lemma 3.3. 
Further, a^U - a2^ = ± ~2teI. rjt ~^ 0 holds, since {r)t} satisfy SLLN-MD and 
hence the proof is finished. • 

Theorem 4 .3. Under Assumptions A0, Al ' , A2', A3', A4 and A5, the asymptotic 
distribution of \fn(a\ — a\) is iV(0, A-2!!*,), where 

i=l teh 

P r o o f . Combining (21), (22) and Lemma 3.3 we get y/n(a\ - cr2**) - ^ 0 in 
probab., since it can be shown that -7= ~2teU ^ *s ^P(•'•)• ^ ° ^n<^ ^ e a symPtotic 
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distribution of \/n(a^ -a2) we can proceed analogously as in the proof of The
orem 3.5 where pt is interchanged with 77*. All conditions can be verified similarly. 
Derivation of £5 is presented in Appendix A.3, its explicit form is given by (32). • 

Theorem 4.4. Under Assumptions AO, Al ' , A2', A3', A4 and A5, the asymptotic 
distribution of y/n{a^ - oy[i]) for i = 1 , . . . . & is 1V(0, S^1), where 

£W := kt® - 2U[t1]A~1t^ + (nS*-1])2A-2E6, 

t®:= lim -yEr,l 
m->oo m *—** 

teii 

-î,=-j!5î.èE^-.--ï-"K]-m 
teu 

P r o o f . As in the previous case, basic steps of the proof will be similar to those 
in the proof of Theorem 3.6. Using analogous arguments one can verify that the 

asymptotic distribution of Vn(6y - Oy• ) = J ^ Ylteii ^ " Vn(°b ~~ ab)X2 1s 

the same as that of J^- YLteU Wt ~~ V™(ab** ~ ab)^2 anc^ consequently as that 

of -k z u Ete/, ^ , i]>where ̂ j] ••= [**.« -A_1 (̂ -1 - nti]yri]}%. 
Derivation of the asymptotic variance Sy and checking of conditions of CLT-MD 
are then made analogously as in the proof of the mentioned theorem. Again, the 
exact form of ty) is derived in Appendix A.4, formulas for t^ and t% are given 
by (33) and (34). • 

5. COMPARISON OF BOTH APPROACHES 

5.1. Theoretical comments 

Basic difference between two presented metho.ds is the fact that in the former one the 
parameter (3 has to be firstly estimated to obtain residuals ut- Then the remaining 
parameters aB and a2 are estimated. On the other hand, in the latter method 
estimates of a\ and a2 are directly computed. 

In the alternative method described in Section 4 one avoids estimation of residuals 
in the first stage that may incorporate inaccuracy before remaining parameters are 
estimated. On the other hand, the fact that both parameters /3 and aB are estimated 
together in the alternative method may be also its disadvantage, since impact of 
each parameter can not be well separated. It can consequently lead to inaccurate 
estimates of the whole a2. 

Theoretical comparison of both approaches is however hardly to be done, even in 
case of estimates of a2. It arises from the fact that asymptotic variances of <5y and 
&Y depend on asymptotic variances S^ and S&, respectively, that are incomparable. 
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5.2. Numerical comparison 

We made several simulations to find out in which cases the standard method is 
preferable to the alternative one and vice versa. Selected results of our simulation 
study are presented in the sequel. 

We simulated 21 types of RCA(l) processes satisfying model (1), where bt and 
Yt were supposed to be normally distributed. In each case different parameters of 
distribution of bt were considered. Their values are summarized in the table. In spite 
of the fact that this paper concerns with generally heteroscedastic RCA(l) models, 
the homoscedastic processes Yt with a2 = G\ = 1 were used for this presentation. 
The reason is that comparison of both approaches can be well demonstrated in 
homoscedastic case. We.additionally made analogous simulations for a\ = 5 and 
for seasonal heteroscedasticity with k = 2 and k = 4. The conclusions are however 
very similar to those presented here. 

All estimates were based on 100 independent realizations with 1000 observations 
in each case. Since estimates aB and aB differ from a2 and a2 only of /32, it is 
sufficient to compare only one of these pairs. We chose to present here estimates of 
a2 and cry that are summarized in the table. 

Table . Estimates of o\ and aY in a homoscedastic RCA(l) model. 

Parameters of Estimates 
distribution of bt 

ß °\ °l à2ь °l à2
Y ãү 

A 0 0.1 0.1 0.0911 0.0922 1.0088 1.0086 
0.2 0.06 0.1 0.0902 0.0914 1.0103 1.0097 

B 0 0.2 0.2 0.1903 0.1927 1.0122 1.0109 
0.3 0.11 0.2 0.2701 0.2608 0.9126 0.9256 

C 0 0.26 0.26 0.2458 0.2499 1.0199 1.0166 
0.4 0.1 0.26 0.2483 0.2467 1.0093 1.0123 

D 0.1 0.35 0.36 0.3144 0.3157 1.0587 1.0593 
0.5 0.11 0.36 0.3500 0.3554 1.0141 1.0061 
0 0.5 0.5 0.3947 0.4034 1.1936 1.1822 

0.2 0.46 0.5 0.4071 0.4031 1.1395 1.1557 
E 0.3 0.41 0.5 0.4301 0.4150 1.1202 1.1563 

0.4 0.34 0.5 0.4551 0.4294 1.0946 1.1548 
0.5 0.25 0.5 0.4661 0.4429 1.0620 1.1062 
0 0.64 0.64 0.4442 0.4656 1.4430 1.4023 

F 0.1 0.63 0.64 0.4469 0.4591 1.4628 1.4463 
0.2 0.6 0.64 0.4614 0.4588 1.4305 1.4481 
0.6 0.28 0.64 0.5919 0.5314 1.1199 1.2876 
0 0.74 0.74 0.4833 0.5075 1.7607 1.6942 

G 0.2 0.7 0.74 0.4946 0.5084 1.8308 1.7993 
0.3 0.65 0.74 0.5201 0.4883 1.6550 1.7692 
0.7 0.25 0.74 0.6806 0.5765 1.1144 1.4931 

In order to make comparison of both methods, all processes were separated into 
7 groups so as to have the same second moment a2 within each group. Boldfaced 
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values in the table are those where the alternative approach gives estimates with 
smaller estimated bias than the standard method. One can see that priority of one 
of the method does not depend on the value of the second moment o\ but one the 
value P alone. Our simulations show that the alternative method is preferable for 
processes where the true parameter /? is close to 0 regardless of the value o\ ranking 
within (0,1). It holds both for estimates of o\ and o\. 

These empirical results may correspond with the fact that under the null hypoth
esis Ho : (3 = 0, the RCA(l) process is second order equivalent to the special case 
of the ARCH(l) process in the sense that both processes have the same conditional 
expectation and variance. In a homoscedastic case it was proved in [12], generaliza
tion for heteroscedastic processes is given in [6]. In the latter paper there is shown 
that estimation procedure for ARCH processes is the same as the alternative method 
presented here for RCA processes. 

Finally, from the table one can deduce some common features of both methods. 
It is seen that both methods overestimate parameters o\ and underestimate o\. 
The higher the value of o\, the greater the over- and underestimation. Comparing 
estimated variance of presented estimates (that are not given here), one can see 
that there is no significant and systematic superiority of one of the method. When 
parameter o\ is greater than 0.8 and it is tending to 1, processes start to be very 
unstable and both methods give inaccurate estimates with extremely high estimated 
variances. 

APPENDIX 

A . l Derivation of S# 

The 

where ut — 

expression (if)* = (x^-nf^)2 p? = (xl.-nf1^ {ui
t-oi-o%X?_1)

2, 
re ut = BtXt-i + Yt, can be expanded, for t £ /;, to the following form: 

(Z^)2 = XU{Bl-olf + 2X*_X [2S2rt
2 - nf^Bl-ol? 

x/-i [yt
4 + (4[i])2 - 21? 4M + (nf1])\Bt-oif - fsrif^BW] 

2X2_1nj!
i-11 [2 i?4w - rt

4 - (4 [ i ])2 + 2n|r11i?t
2yt

2] (23) 

(nri])2[rt
4 + (4w)2-2rt

24W]+M{;I, 

Ml;' = AXU{Bl-ol)BtYt + 2XU{Bl-ol) [Yt
2 - erf] 

+ 4 X , B _ 1 B . Y t [ l ? - a ^ ^ 

+ ̂ ..B^nSr11 [24[i] - 2Ft
2 + nlr11^2-*!)] (24) 

+^uiBi-oD ( n r ) 2 [rt
2 - 4[i]]+4*--*-'. K 1 ] ) 2 [y? - 4W] • 

+ 

+ 

+ 
where 
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One can easily check that EM[ljt = 0, hence after some algebra in (23) we get for 

tB := l im^oo i X^zLi _Cte/. E[zt ) t h e following equality: 

tB = nri]var(S2) + I £ ( 2 n r i ] [2oi4W ~ ^"^^(S2)] 
t=l I 

+ nf-1] [var(r2W) + (nri])2var(£2) - suf" 1]a|4[i]] (25) 

+ (nr i ])2[4nr i ]44W-var(F2W)]|, 

where var(y2W) = / _ $ / _ ( 4 * 1 ) 2 . 

A .2 Derivation of £K
] 

Firstly, let us derive E^ := limm_>.00 i .Cte/< -^l^t- ** *s e a s y t o s h ° w that for £ 6 / . 

P2 = xU(B\-aBf + 4x2_1_?2rt
2 + rt

4 - 2y t
24 i ] + (off + M®, 

(26) 

where 

Mg = 4Xt
3_1(_?2-a|)£?trt + 2X2_1(_?2-a2

3)[rt
2-4i]] 

(27) 

+ 4X4_1_?ty-t[yt
2-4[i]]. 

Again, -BM2 t = 0 holds and hence 

EW = U[t1] var(£?2) + ^~%%a^ + var ( r 2 ^ ) . (28) 

Further, let us expand Ztpt for t G If. 

zfpt = XU{B\-OB? + xt
4_, [4_?2Ft

2 - nr i ] (s 2 -4) 2 ] 

+ _*?_. [rt
4 - 2r t

24 i ] + (of)2 - 4nri]^2rt
2] (29) 

+ nri][2rt
24w-^4-(4w)2]+Mt;], 

where 

Mg = 4Xt
5_1(£t

2-a2
3)_W + 1XU(B\-aB) [rt

2 - 4«] 

+ 4xt
3_1_w [rt

2 - of - nri](i?2-a_)l 
(30) 

- 2X2_1(£?2-a|)nri] [Yt
2 - 4W] " *Xt„lBtYtIlt

1] [l? - of] 
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and EM^t = 0. Derivation of Si,1' = lim™-^ ^- ^2teI. E(Z\1*pA is now straightfor

ward: 

ES? = nri]var(jB
2)+nri] [ ^ ^ - n . " ^ ^ ) ] -4(4'" ̂ '-'v1*1-

(31) 

A.3 Derivation of £/, 

One can observe that the only difference between £ # and £& is in using pt or 7ft, 
respectively. Let us compare both terms: 

pt = <x2 - a |X2__ - a2 = (B2 - 4 ) X 2 _ _ + 2_Y___BtY_ + Y2 - a2, 

r,t = X 2 - <-2_Y2__ - o\ = (62 - <-2)_Y2__ + 2Xt_16tYt + Y2 - a2 . 

Since the difference is only in using bt and o\ instead of Bt and o\, we can formally 
interchange these terms in (23) and (24) and get the limit Eft analogously as in (25). 
The only one difference is that two terms \X\_xbtYt and —8X^11.2 ^t^t from 
(24) do not already have zero expectation and have to be taken under consideration. 
Hence, the final form of S& is 

E6 = njr1]var(&2) + I J ^ n J - 1 ! [ - ^ - 4^var(62)] + ^ ' ^ ^ 

+ I ^ w ^ M ) - ! - ^ ^ 

+ ( n r ' ) 2 [ ^ V 4 W - var(Y2W)] | . (32) 

A.4 Derivation of Ey 

Analogously as in Appendix A.3 we get the desired limits by interchanging bt and 
o\ with Bt and o\ in (26), (27), (29) and (30). After this operation, the only term 
with non-zero expectation is A.X\_^btYt from (30). By evaluating the appropriate 
limits we get 

Z® = n!f1]var(&2) + 4nJT1]_r6
24W + var(Y2W), (33) 

_ f = n t 1 ] v a r ( 6 2 ) + U^ [ ^ 4 " - n[T1 ] var(62)] 

+ 4nr i ]^3-4(nr i ])2a6
2a^ ] . (34) 

(Received September 21, 2001.) 
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