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BOOTSTRAP IN NONSTATIONARY AUTOREGRESSION1 

ZUZANA PRÁŠKOVÁ 

The first-order autoregression model with heteroskedastic innovations is considered and 
it is shown that the classical bootstrap procedure based on estimated residuals fails for the 
least-squares estimator of the autoregression coefficient. A different procedure called wild 
bootstrap, respectively its modification is considered and its consistency in the strong sense 
is established under very mild moment conditions. 

1. INTRODUCTION 

Let X\,..., Xn be observations of a time series satisfying the model 

Xt=0Xt-i+Yu t = 1,2,... (1) 

where \/3\ < 1 is an unknown parameter, Yt,l < t < n, are independent random 
variables with EYt = 0, VarY* = of > 0 and XQ is a random variable independent 
of Y i , . . . , Yn such that EX0 = 0, VarX0 = vl > 0. 

In this paper, we deal with a bootstrap approximation of the distribution of 
the least-squares estimator of the parameter /?. Recently, the problem was solved 
under the assumption that the innovations Yt are identically distributed (see e.g. 
Bose [3], Kreiss and Pranke [12], Praskova [16] for |/3| < 1, Basawa et al [1] for 
|/3| > 1, Datta [6], and Heimann and Kreiss [11] for general /3. Ferretti and Romo [9] 
proposed bootstrap tests for ft = 1 both for independent and autoregressive errors. 
All the above quoted authors considered a bootstrap procedure based on estimated 
residuals. Kreiss [13] treated asymptotic properties of this procedure in general 
stationary autoregression. 

However, in case of nonidentically distributed innovations the method need not 
be consistent (even in a simple linear regression model, see e.g. Liu [14]). We shall 
show that the bootstrap based on estimated residuals in model (1) generally fails 
for the least-squares estimator of (3. Then we shall consider procedure called wild 
or external bootstrap and its modification which reflects the heteroskedasticity of 
data and prove that these procedures consistently estimate the distribution of the 
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least-squares estimator of the parameter (3. We shall demonstrate theoretical results 
in a short simulation study. 

2. ASYMPTOTIC RESULTS FOR (3 

First, we give some asymptotic results for the least-squares estimator of (3 in case of 
nonidentically distributed innovations. Let us introduce the following assumptions: 

Al: For some 6>0 and a positive constant K, E\Yt\
2+s <K for all t, E\X0\

2+S <K. 

A2: £ __t=i °t -» °2 > Q as n -r oo. 

A3: s2
n = I E t l i ^ t 2 ^ ^ t - i -> ^ 2 > 0 as n - • oo. 

Theorem 1. Suppose that assumptions A1-A3 hold. Let ft be the least-squares 
estimator of 0 based on X0, XL, . . . , X n , i. e. 

g - - ^ 1 ^ - 1 . (2) 
Z_t-1 A t - 1 

Then 

(i) /3 is strongly consistent, i.e. /? —r ft a.s. as n —r oo; 

(ii) the asymptotic distribution of \fn(fi — f3) is JV(0, A2), where 

* = _ £ _ . (3) 

P r o o f . With y0 :-= X0 we can write Xt = _Zj=0P^Yt-j and utilizing the 
Minkowski inequality we get 

(E\Xt\
2+s)^ < _] (\/3\(2+s)jE\Yt-j\

2+s)*b <_^\p\iK& 
j=0 j=0 

which means that E\Xt\
2+s < M for a positive constant M and t > 0. Notice that 

•S-l-^y. (4) 
2_t=i A t - i 

Further, £ (X t _iy* | J i_ i ) = 0, where ^ = (7{ro,-*i,. .- ,lt} for * > 0 is the 
a-algebra generated by Y0, Y\,..., Yt. Thus, {X t_il*} is a martingale differences se
quence. Next, Var (Xt-\Yt) = EX2_{Y2 < C, where C is a constant, and according 
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to the strong law of large numbers for martingale difference sequences (see Davidson 
[7], Theorem 20.11) 

1 n 

— ̂  Xt-iYt - . 0 as n -> co a. s. (5) 
nti 

In the following, we prove that 
1 n 2 

— y ^ X 2 _ i -» --- a s n - > o o a . s . (6) 
71 t=~i 1 " z3 

Prom (1) we get Xt
2 = Yt

2 + 2pXt-iYt + P2Xf_x and 

( i -z^E*?^ (7) 
n _=1 n n . = 1 n t=l 

Prom Al and the strong law of large numbers we have 

Combining this with (5), Al and A2, we get (6) and assertion (i). Since 

i n 9 

and thus in probability, we prove (ii) when we show that __t=i Xt-iYt/(sny/n) has 
asymptotically JV(0,1) distribution. It suffices to check that the following conditions 
for martingale central limit theorem are satisfied (see Brown [5]): 

S£gl.B((x«-iyt)
a|.yt-i) En-i*t

2-i<rt
2
 t i _ . . . . . . . 

v-n cv v — T T T o — ~ = 2 • 1 as n -> oo in probability, 
E t = i E{Xt-iYt)

2 ns2
n ^ 

1 n 

— £ E ( ( . Y t - i Y t ) 2 ^ ! ^ . ! ^ ! > eVEsn}) -> 0 as n -> oo (10) 
n s n t = l 

for all e > 0. 
We prove that 

^ è ^ t
2 - i - ^ _ : ^ t

2 - i - > o a.8. (п) 
n *—i n *—i t=l t=l 

Then, because of A3, condition (9) will be satisfied. 
Denote & = (T2(X2-i ~ EXt-i)- We shall show that for 1 < p < 2, {&} is the 

Lp-mixingale of size —1, where Lp denotes the usual norm space of random variables 
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with finite moments of order p (see Davidson [7], Chapter 16.1 for the definition of 
mixingales). 

Obviously, E(St\Ft+t) = & a.s. for any s > 0, thus ||& - E(£t|Et+.)||P = 0. 
Further, we have Xt = __)zl pYt-j + (3sXt-s and E(Zt\Tt-s) = a2\p\2s(X2_s -
EXf_s), thus 

| | -3(6|*i-.) | | , = a2\P\2s\\Xls - EX2_S\\P < c\0\2s, 

where c is a positive constant independent of t. Then, from the strong law of large 
numbers for mixingales, (11) holds a. s. according to Theorem 20.16 in Davidson [7]. 

Finally, we have 

^ - _ ; E ((Xt-xYtflüXt-гY^ > tфisn)) 
n s n t = l 

1 .Д, 1 
< ^-~~*ZElx^WEm™*M7-^ 

t II b n £__£ e II bn j . _ ^ 

from which(10) easily follows. • 

Remark 1. In case that a2 = a2 (asymptotic weak stationarity), Assumption A2 
holds trivially and A3 holds with a2 = cr4(l — /3 2) - 1 . Thus, the results of Theorem 
1 coincide with those for stationary AR(1) process (see Brockwell and Davis [4], 
Chapters 7,8.) Some other generalizations of the assumption of i.i.d. innovations in 
autoregressive models of a finite order p > 1 were considered and central limit theo
rems were established (see e.g. Hall and Heyde [10], Diirr and Loges [8], Tj0stheim 
and Paulsen [18] or Basu and Roy [2] among others.) 

Notice that the asymptotic variance A2 depends on the parameter /3 (usually 
unknown) and on limiting values a2 and a2 which are also unknown. In next sections 
we shall deal with the bootstrap approximation of y/n(/3 — /3). 

3. BOOTSTRAP BASED ON ESTIMATED RESIDUALS 

Let X n , . . . , Xn be observations and (3 be the least-squares estimator of the parameter 
P. Put 

1 n 

rt = Xt- $Xt-_, t = 1,..., n, f=~Yjn (13) 
n t=i 

and consider centered estimated residuals Yt = rt — f,t = 1 , . . . ,n. Let Fn be the 
empirical distribution function based on Y_,.. . , Yn and Y0*, YT, • • •, Y* be i.i.d. with 
the distribution function Fn. 

Define X£ = YQ and generate bootstrap values 

x;=px;_1+Yt; t = i,...,n. (u) 
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Let 
E

n v* v* 
_ t=l A t - l A t 

P \r^n v*2 

2 ^ = 1 A * - i 

be the bootstrap counterparts of /3. 
In the case of i.i.d. innovations Yt the above bootstrap procedure is consistent, 

i. e. the bootstrap distribution of ^/n(fi* — f3) converges to the true distribution of 
y/n({3 — /3) (see e.g. Bose [3], Kreiss and Pranke [12], Praskova [16], Kreiss [13].) 

However, when Yt are independent with zero mean but different variances, the 
method becomes inconsistent. We shall show it in the next theorem. 

T h e o r e m 2. Under assumptions A1-A3, as n -» oo, 

sup\P*(yfii((3* -(3) <x)-$(x/^l-(32)\ -rO a.s. 
x 

where P* denotes the bootstrap probability and $ is the distribution function of 
N(o,i). 

P r o o f . Let E*, Var* be the expectation, respectively the variance related to 
P*. Then 

^ = it^=l- ^-ř)=^ 
n t=i n Í = I 

wir-íгÈtf-íľÈ 
-SÍ »« (u) 

2 - 2 *2 

rţ - r ~ а . n s n *=i 

Since rt = Xt — (3Xt_i = Yt — (ft — (3)Xt-i, we can deduce from Al, the strong law 
of large numbers for {Yt} and from the consistency of fi that f -> 0 a. s. Similarly, 
from (5), (6), (8) and A2 we get that £ J2t=i rt ls asymptotically a2 a. s. Thus, we 
can conclude that 

a*2 —r a2 as n —> oo a. s. (16) 

Prom the relation JKf* = ^ j = u P^tij ar-d the independence of 3^* , . . . , Y* it follows 

1 l - / 3 2 n " 1 " ST** *2 

'2 
1 -

n 1 - /3 -

and from (16) and the strong consistency of ft we get 

st^лa-îŕ^ -- < 1 7 > 
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Similarly, 

<2 = ^E*Xt-iE*Yt*2=^EE*Xt-i^T^2 a-s- (18) 
n t = l n t = l L p 

When we apply a version of Marcinkiewicz strong law of large numbers (Lemma 1 
in Liu [14]) we get with S from Assumption 1 

I 

a. s. nt=i nt=i. 
hence, 

££|y.r-=0(l) a.s. (19) 
n t= i 

Prom the same Lemma we also get that 

^ I - £ N 2 + 5 ^ 0 a.s. (20) 
1+Í 

í = l 
П X ^ 2 

a. s. 
(22) 

Hence, maxi<t<n \Yt\ = 0(77,2) a.s. and thus maxi< t<n \Xt\ = o(ni). From here and 
from (6) we have £ X^=i l-^-il2"1"5 = c(n*) a.s. When we use Theorem 20.11 in 
Davidson [7] with p = 2 and an = n^+£ for some e > 0, we can see that 

P-P = o(n~2+£) a.s. (21) 

and with properly chosen e 

if:kd2+f <4fif:i^i2+l+^-^2+f^x:i^-ii2+0=^(D 
nt=1. \n7=1. nt=1. J 

It means that with S as in Assumption 1, 

i - . |y | -+4 = I V > f - f|2+f = 0(1) a.s. (23) 
nt=i 

In a similar way we obtain 

-^f>|4^0 a.s. (24) 
*=-

and thus 

E*in*i4 = - E ^ - f i 4 = °(n) a-s- (25) 
n f—̂  í = i 
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Now, let us write 

Vn~(ß*-ß) 

yjï^fr ^v^s - . 1 1 ns" éí 

- 1 

According to an extension of Lemma 1 in Michel and Pfanzagl [15] (see Basu and 
Roy [2], Lemma 2.1), for any e > 0 and real V there exists 0 < c < 1 such that 

sup 
X 

P* [ yln" ^* ß < x ì - Ф(x) 

+ F * 

Put 

л/l - ŹЗ2 " 

< sup 
x 

nsl t=l 

> c j + c + c | У - l | 

л/l - в2 n 

(26) 

ns í = l 

Then, (17), (18) and the strong consistency of (3 yields 

V - l - > 0 a.s. 

Further, from the Chebyshev inequality we have 

(27) 

P* ^Ы,-v 
nsz t=l 

>e \<^CB-
2 0 *2 б^S 

^Êtó-.íГ.ЯГÄ) 
L n ť = i 

and since 

(--^Ew-i--^^«-i) 
t=i 

U{x? - E*x0*
2) - (x;2 - E*X*П

2)) +1 Ë(r ť*
2 - <т*2) + 2 Д І Ë xІ-i*t 

ть ть ^ n 
t=l t=l 

we can easily check that 

E* 
1 " I2 

t=i ( 1 - / 3 2 ) 2 
-(Я*У ľ 4 -cт* 4 ) 
n 

+ Џ>s*2 + Zn 
ÍЬ 

where Zn is o(l) a.s. 
From here and from (16), (18) and (25) we can conclude that 

E* £è(*«-.-м«--) 0 a.s. (28) 
í = l 
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and thus the second term on the right-hand side of (26) tends to zero a. s. 
Notice that with (28) the bootstrap version of (11) and (9) is satisfied in P*-

probability. 
Finally, 

^^B'(W_ 1 y;) a /{ |x ;_ 1 y; | > «;v^» 
nsn t = 1 

< i l+i, ^.E'lY^f^E'lXUM (29) 
C in1+f(s*)2+ 

t= i 

and since 

.i „.^L / ' l - | ) 9 | * \ 2 + 5 
E*\xt-\\+* <E*\Y{\1+* 

l - l / ' l 

which follows from the Minkowski inequality, we can conclude, using (23) and (18) 
that the right-hand side of (29) is asymptotically zero a. s. and the bootstrap version 
of (10) is satisfied. It means that 

sup 
X "{-irnpUVt'<x)-*(x) -> 0 a.s. 

which together with the strong consistency of (3 concludes the proof. • 

We can see that the asymptotic variance of \/n(/3* —(3) differs from that of y/n((i— 
6) given in (3). The bootstrap scheme (14) does not reflect the heteroskedasticity of 
the original data because it works with the innovations Yt* which are (conditionally 
on X 0 , . . . , Xn ) independent and identically distributed. 

Another bootstrap procedure can solve the problem of heteroskedasticity. 

4. WILD BOOTSTRAP 

In Kreiss [13] the bootstrap procedure is discussed, which mimics a procedure called 
wild bootstrap proposed for regression models with heteroskedastic errors (see e. g. 
Wu [19] or Liu [14]). 

With residuals r* = Xt—(3Xt-i, where (3 is given in (2), the bootstrap innovations 
are generated as 

Y?=rtKu t = l,...,n (30) 

where Kt are i.i.d. random variables with zero mean and the unit variance, inde
pendent of X o , . . . , Xn. Given observations X 0 , . . . , X n , the bootstrap observations 
are generated to satisfy 

Xr=PXt-i+Yt
w, t = l,...,n (31) 
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and the corresponding bootstrap estimator of (3 is then defined as the least-squares 
estimator in the regression model 

X? = pXt-i+Yt
w, * = l . . . , n 

with constant regressors Xt-i, i.e. 

r = ̂ r'zr • (32) 
In Kreiss [13], the procedure is considered and its consistency (in probability) is stud
ied in models with i.i.d. errors, respectively in stationary models with conditional 
heteroskedasticities. Here we give a proof of the strong consistency of the procedure 
in nonstationary model (1) under weaker moment conditions than in Kreiss [13]. 
Instead of Assumption Al let us assume 

Al': For some 5 > 0 and a positive constant M, £|Yi|3+<5 < M for all t, E\X0\
3+6 < 

M. Random variables K\,..., Kn are i.i.d. with zero mean, unit variance and 
finite moment of order 2 + 6', 5' > S. 

Theorem 3. Under assumptions Al ' , A2, A3, as n -> oo, 

sup\Pw(yfc(pw-(3)<x)-${x/A))\->0 a.s. 
x 

where Pw is the conditional probability given X 0 , . . . ,Xn and A is given in (4). 

P r o o f . Notice that 

Vn{P -P) = — P F ^ — 7 2 

n 2^t=l A t - i 

is a linear combination of independent random variables Y™ for which 

ETY? = E(rtKt\Xo,...,Xn) = 0, 

VarT™ = r2VaxKt = r2
t, . (33) 

Ew\Yt
w\2+s = \rt\

2+5E\Kt\
2+s = c\rt\

2+s 

where c = E\K!\2+S < oo. 
Since (6) remains valid under assumptions of Theorem 3, it suffices to prove the 

asymptotic normality of Y17=i ^tn, where Ztn = Xt-iY™/\/n. Let us denote 

B2
n = j ^ Var«%„ = lJZXt-^f (34) 

t=\ n t=i 

Then we have 

t=i t=i t=i (35) 
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Since X2_X{Y2 — EY2) and Xf_xYt are martingale differences, we can easily check, 
using Assumptions Al ' , A3 and (11), that the a. s. limit of the first term on the 
right-hand side of (35) is a2 and the second term tends to 0 a. s. Under Assumption 
Al ' , maxi<i<n \Yt\ = o(n*) a.s. and the same holds for maxi<t<n \Xt\. Combining 
this with (21) we obtain that the last term on the right-hand side of (35) is o(n~3+e) 
for some e > 0, thus, B„ —> a2 a. s. 

To verify the Feller-Lindeberg condition, write 

&£*• 
n t=i 

ЭД'{ Xt-iY? 
y/ñ 

>eBn\ 

< c-
1 1 n 1 1 n 

2+8 (36) 

further, 

4rí>-^i2+á 
n + 2 Í = I 

< 4^X: |X í _ 1 | 2 + í | r ť | 2 ^ + 4(^-/3) 2+< 5-l rE|X t_ ir
2 á. (37) 

1-4---П A ^ 2 
t=l 

14---
П ^ ^ 2 t=l 

The second term on the right-hand side of (37) tends to zero a. s. similarly as the 
last term in (35) while for the first one we get 

1-4---П X ^ 2 
i-f J2 | * - 1 | 2 +<( |Y . | 2 +' - E\Yt?+s) ^ 0 a. s. 

2 t=l 

according to the strong law of large numbers for martingale differences and 

^Ei^-ir^r^o 14---
П X ^ 2 

a. s. 
t=i 

which follows from (6) and (20). The proof is finished. D 

Corollary 1. Under assumptions of Theorem 3, as n -> oo, 

sup \Pw(yfti(J3w -J3)<x)- P(y/n(0-p) < x)\ -> 0 a.s. 

5. MODIFIED WILD BOOTSTRAP 

Bootstrap procedure (31) can be modified in the following way. Consider again the 
bootstrap innovations Yw defined by (30) and generate bootstrap observations as 
follows. Put XQW — 0 and further generate 

XГ = ßX*tľx+Yt
w, t = l,...,n, (38) 
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J3 is defined by (2). Notice that procedure (38) generates bootstrap observations 
that follow the same model as original observations. 

Let f3*w be the least-squares estimator of autoregressive parameter in the boot
strap model (38), i.e. 

E
n y*w VW 

- _ t= l J^t-lIt 
P £?=i W i ) 2 ' 

To prove the strong consistency of (3*w we need to replace Assumption Al ' by 

Al": For some 5 > 0 and a positive constant M, E|yt|
4+<5 < M for all i, E\X0\*

+5 < 
M. Random variables K\,..., Kn are i.i.d. with zero mean, unit variance and 
finite moment of order 4. 

Remark 2. Consistency of (5*w was studied by Kreiss [13] in stationary autore
gression and in Praskova [17] for nonstationary model (1) under strong moment 
conditions. 

Theorem 4. Under assumptions Al", A2, A3, as n -» oo, 

sup \Pw(yfii(J3*w -(3)<x)- $(x/A))\ -r 0 a. s. 
x 

where Pw is the conditional probability given Xn, . . . ,Xn and A is given in (4). 

P r o o f . We will proceed similarly as in the proof of Theorem 2. 
Prom (38) we have 

xr = o, 
t - 2 t - 1 

k=0 j=l 

hence, 

n t—1 ., n—1 n 
- i ) i^^w-i)2 = ^ E Ě ^ - ^ M ^ E ' 2 E^-4"1 

t=2 ť = 2 j = l t = l k=t+l 
1 i n—1 i n—1 

= —-— -E'?--E'?ř(n-Í) (39) 

Now, we can see that the first term in the last equality in (39) is asymptotically 
2 

-——-j a. s. and 

i n~~1 1 R2 _ /?2n 

i £ r ? , 3 - < » - 0 < max | r t p i . ^ = o(l) a.s. 
n —-' i<t<n- i n \ — Q2 

t = i 
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since max|r*| = o(n*) under Al". Thus, 

^ E ^ W - i ) 3 ^ ! ^ a-s-

Similarly, 

,«2 = if^ETiXftYn* = l±,rlJ2^-»r 

(40) 

(41) 
t=l ť=2 j=l 

When we insert rt = Yt — ((3 - fi)Xt-i into (41) and split the factors, then, using 
Assumptions Al", A3, the strong law of large numbers for martingale differences 
(Y2-EYt

2) Y^Zl /32{t~jLl)Y?, similar considerations that led to (11) and the strong 

consistency of /3, we get that 

^ E ^ E l ^ - ' - 1 ^ 2 - ^ 2 a.s. 
11 * _ o ..•_-í = 2 j=l 

and after very careful analysis of the other terms that appear on the right-hand side 
of (41) we obtain 

sw2-*c2 a.s. (42) 

Now, analogously to (26), we get 

sup 
X 

+PW 

where 

\fc(P*w-0) 
A 

<x ) -Ф(x) < sup ?w(^±xжw <*)-*(*) 

s " n *=i 

> є ) + є + c | V - l | (43) 

A 1 
^ = ^ - £ ^ ( * * - i ) 2 ^ i a-s-

S » " t = l 

which follows from (40) and (41). Further, repeating considerations that led to (28) 
with the only modification that Varw(Yt

w)2 = r\(EK\ - 1) we get under Al" by 
using the Chebyshev inequality that 

^i Xt-г)2-У 
s « n t=i 

> є I -> 0 a. s. (44) 

It remains to prove that a bootstrap analogy of (9) and (10) holds true. Due to (41) 
and analogously to (11) it suffices to prove that 

7 1 t=2 n t=2 
> є ) -> 0 a. s. (45) 
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and that 

;__7;itEWi(xt-iYtw)2n\x;-iYn > ^ O J -> 0 a.s. (46) 
s " n t = i 

To prove (45), observe that 

i £r 2 ( (*n ) 2 - Ew(X;wrf) = S1 + S2 
t=2 

where 

n - l 

* = ^£(^2-r2)ct , 
n t = i 

* = „ťí _.*"£.-> = „£*'.•• 
í=3 j=0 

« = £ ^2/32(j-t-1), 

n - 1 

t = 2 

j = í + l 

í - 1 

Уľ = YľY^^YГ-i 
fc=l 

Hence, from the Chebyshev inequality 

i£r.((x;_\)2-_5«'(xíľ1)
a 

" t=2 
>e < - ^ i i ^ S f - ^ - i ^ S f ) . 

Next, 

^ = i £ c2^y™2 - r2>2 = ( E X ' -1 }^ £ c 2 r t 
n t = i n t = i 

Obviously, under Al", maxi<t_n_i \ct\ = o(n*) a. s. and £ _Ct=i r* r e m a i n s bounded, 
thus, EwSf->0 a.s. 

Similarly, we find that 

n - l t - i 

- ^ = ± £ c2rť
2 __ j§»г?_fc = ^ • ì £ rť

2 £ j-»г.-- -> 0 a. s 
í = 2 fc=l 

and thus (45) holds. 
For the proof of (46) let us write 

i i 
s _ 2 ~ 
5 « П t = l 

-£ i^ [ (x ;___7) 2 /{ |^ iY r i > ^sw}] 
n. ' -» 

Ž щî-яèt--rai,-"iiт,ľ- (47) 
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Since 
Ew\Yt

w\3 = I r t l ^ l ^ l 3 < c(\Yt\
3 + 0- /TO-il 3 ), 

E^IX^I3 <c í ElČI'~1~Jl"íl) +c|/3-/i|3 Í E ^ ' " 1 " ^ ^ - ! ! ' 

strong consistency of /?, (21) and the fact that maxi< t < n \Yt\, respectively max \Xt\ 
~ ~~ \<t<n 

where c is a generic positive constant, we get after some computations, utilizing 
strong consistency of /?, (21) and the fact 

are of order o(n*) a.s. under Al", that 

\j2EW\xt-ifRW\Ytw\3 < < 4 - X > i 3 ( E i ^ _ 1 _ j i y i i ) +°(!) 
'* t=l " t=2 \j=l 

holds almost surely. Further, 

^-EiYtiMEi-r^i-ii 
" 2 i~i \1-i , 

max 2 <t< n | r " t | 2 1 y^-,^2 I V^ioit-i-.7i^i I f,\ 
< c - - | -^JYt I \ J / ? | >\Yj\J = o ( l ) a.s. 

which concludes the proof of (46). • 

Corollary 2. Under assumptions of Theorem 4, as n —Y co, 

sup \Pw(y/~0*w - £ ) < _ • ) - P{y/-@-p) < x)\ -> 0 a.s. 
X 

Remark 3. We presented here results for nonstationary AR(1) process, only. How
ever, we can extend them to a general nonstationary process 

Xt = 0iXt-i + • • • + PpXt-p + Yt, t > 0, X_! = • • • = X-p = 0 

under the assumption that all the roots of the polynomial Xp — P\\p~l /3P lie 
inside the unit circle. In such case we can write Xt in the form 

t 

Xt = ~^cjYt.j, t>0 
i=o 

where Cj are coefficients that depend on parameters / ? i . . . , /3P and geometrically 
decay to zero (see e.g. Brockwell and Davis [4], Chapter 3). Then we can obtain 
consistency results for wild bootstrap procedures by using limit theorems for vector 
martingale differences. 
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6. SIMULATIONS 

We studied all considered boots t rap procedures numerically. We generated nonsta
tionary process (1) with Yt being independent and normally distributed, with zero 
mean and the variances of = 1 + 0.5(—l)1 for various values of /3 and sample sizes n . 
In Figure, t rue value of asymptotic mean square error of fi is drawn (bold line) as 
well as its estimates by residual based bootstrap (dotted line), wild boots t rap (thin 
line) and modified wild boots t rap (dashed line) for values of ft varying from 0.1 to 
0.9 and n = 100, n = 200. We generated 1000 series for each combination of fi and 
n, and 1000 boots t rap replications in each series. The results show tha t residual 
based boots t rap does not work well while wild bootstrap does; it gives somewhat 
better results than modified wild boots t rap for larger values of (3 but yields larger 
standard deviations, especially for small values of fi. 

0.6 0.7 0.8 0.9 

Fig. Estimates of the asymptotic mean square error of fi by bootstrap 
for n = 100 (left panel) and n = 200 observations (right panel). 

(Received January 9, 2002.) 
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