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COUNTABLE EXTENSION OF TRIANGULAR NORMS
AND THEIR APPLICATIONS TO THE FIXED POINT
THEORY IN PROBABILISTIC METRIC SPACES

OLGA HADZIC, ENDRE PAP AND MIRKO BUDINGEVIC

In this paper a fixed point theorem for a probabilistic g-contraction f : S — S, where
(S,F,T) is a complete Menger space, F satisfies a grow condition, and T' is a g-convergent
t-norm (not necessarily T' > TL) is proved. There is proved also a second fixed point
theorem for mappings f : S = S, where (S, F,T) is a complete Menger space, F satisfy a
weaker condition than in [13], and T belongs to some subclasses of Dombi, Aczél-Alsina,
and Sugeno-Weber families of t-norms. An application to random operator equations is
obtained.

1. INTRODUCTION

The origin of triangular norms was in the theory of probabilistic metric spaces, in
the work K. Menger [9], see [4, 7, 14]. It turns out that t-norms and related t-
conorms are crucial operations in several fields, e.g., in fuzzy sets, fuzzy logics (see
[7]) and their applications, but also, among other fields, in the theory of generalized
measures [7, 11, 17] and in nonlinear differential and difference equations [11].

We present in this paper some results on t-norms which are closely related to the
fixed point theory in probabilistic metric spaces, see [4]. The first fixed point theorem
in probabilistic metric spaces was proved by Sehgal and Bharucha-Reid [15] for
mappings f : S — S, where (S, F,Tm) is a Menger space, where Ty = min . Further
development of the fixed point theory in a more general Menger space (S, F,T') was
connected with investigations of the structure of the t-norm 7'. Very soon the problem
was in some sense completely solved. Namely, if we restrict ourselves to complete
Menger spaces (S,F,T), where T is a continuous t-norm, then any probabilistic
g-contraction f : S — S has a fixed point if and only if the t-norm T is of H-type,
see [4].

We investigate in this paper the countable extension of t-norms and we introduce
a new notion: the geometrically convergent (briefly g-convergent) t-norm, which is
closely related to the fixed point property. We prove that t-norms of H-type and
some subclasses of Dombi, Aczél-Alsina, and Sugeno-Weber families of t-norms are
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geometrically convergent. We prove also some practical criterions for the geometri-
cally convergent t-norms.

A new approach to the fixed point theory in probabilistic metric spaces is given
in Tardiff’s paper [16], where some additional growth conditions for the mapping
F : S xS — Dt are assumed, and T > Ty,. V. Radu [13] introduced a stronger
growth condition for F than in Tardiff’s paper (under the condition T' > T1,), which
enables him to define a metric. By metric approach an estimation of the convergence
with respect to the solution is obtained, see [4].

We prove in this paper a fixed point theorem for a probabilistic g-contraction
f:S — S, where (S, F,T) is a complete Menger space, F satisfies Radu’s condition,
and T is a g-convergent t-norm (not necessarily T' > T1,). We prove a second fixed
point theorem for mappings f : S — S, where (S,F,T) is a complete Menger
space, F satisfy a weaker condition than in [13], and T belongs to some subclasses
of Dombi, Aczél-Alsina, and Sugeno—Weber families of t-norms. An application to
random operator equations is obtained.

Notions and notations can be found in [4, 7, 11, 14].

2. TRIANGULAR NORMS
A triangular norm (t-norm for short) is a binary operation on the unit interval [0, 1],
i.e., a function T : [0,1]? — [0,1] which is commutative, associative, monotone and
T(z,1) = z. t-conorm S is defined by S(z,y) =1-T(1-=z,1 —y).
If T is a t-norm, = € [0,1] and n € NU {0} then we shall write

) _ 1 ifn=0,

T =
T T (x(T" -, z) otherwise.

Definition 1. A t-norm T is of H-type if the family (a:s_,f’ ))neN is equicontinuous
at the point z = 1.

A trivial example of a t-norm of H-type is T. There is a nontrivial example of
a t-norm T such that (zg,’f ))nEN is an equicontinuous family at the point z = 1.

Example 2. Let T be a continuous t-norm and let for every m € NU {0}:
Ip=[1-2"T™1-2"7""1),
If
T(z,y) =1-2"" 427" 1T@Qm(z —14+2™™), 2™t (y —1+27™))
for (z,y) € Iy X I, and T(z,y) = min(z,y) for (z,y) ¢ U Im X I, then the

meNU{0}
family (:z:gf1 ))neN is equicontinuous at the point z = 1, i.e., T is a t-norm of H-type.
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Proposition 3. ([4]) If a continuous t-norm T is Archimedean than it can not be
a t-norm of H-type. '

A method of construction a new t-norm from a system of given t-norms is given
in the following theorem, see [4, 7).

Theorem 4. Let (Tk)rek be a family of t-norms and let ((ak, Bk))rek be a family
of pairwise disjoint open subintervals of the unit interval [0,1] (i.e., K is an at most
countable index set). Consider the linear transformations ¢y : [ak, Bx] = [0,1],k €
K given by

U — Qg

Br — o’

Then the function T : [0,1]2 — [0, 1] defined by

wr(u) =

min(z,y) otherwise,

T(oy) = { o (Te(on (@), 06 @) i (5,9) € (ams Be)?,

is a triangular norm, which is called the ordinal sum of (T%)rex and will be denoted
by T = (< (ak,Bk), Tk >)kek-

The following proposition was proved in [12].

Proposition 5. A continuous t-norm T is of H-type if and only if
T = (< (ak,Br), Tk >)rek and sup B, < 1 or supay = 1.

Remark 6. If T = (< (o%,0k), Tk >)rek and supfr < 1 or supax = 1, then
T is of H-type for any summands T} (not only for continuous and Archimedean
summands Tk, k € K, see [12]). Hence , if

T=(<@-27%1-27%1 T> )keNU{O}

we have sup oy = sup(1 — 27%) =1 (cf. Example 2).

For an arbitrary t-norm of H-type we have by [4] the following characterization.

Theorem 7. Let T be a t-norm. Then (i) and (ii) hold, where:

(i) Suppose that there exists a strictly increasing sequence (bp)nen from the
interval [0,1) such that li_)m b, = 1 and T'(bn,bn) = bn. Then T is of H-type.
n—00

(ii) If T is continuous and of H-type, then there exists a sequence (bn)nen as in

().

From the proof of the above theorem it follows that the condition of continuity
of whole sequence (:z:(T’.l )),.GN can be replaced by the condition that the function
dr(z) = T'(z,z) (z € [0,1]) is right-continuous on an interval [b,1) for b < 1.
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Theorem 8. Let T be a t-norm such that the function ér(z) = T'(z,z) (z € [0,1])
is right-continuous on an interval [b,1) for b < 1. Then T is a t-norm of H-type if
and only if there exists a sequence (bn)nen from the interval (0,1) of idempotents of
T such that nl'l)n;o b, = 1.

In particular, for continuous t-norms the following characterization holds, [4].

Theorem 9. Let T be a continuous t-norm. Then the following are equivalent:
a) T is not of H-type.

b) There exist ar € [0,1) and a continuous strictly increasing and surjective
mapping Y., : [ar, 1] —= [0, 1] such that

T(z,y) = 03} (Par () * Yar (y)), for every z,y > ar,

where the operation % is either Tp or Ty, where Tp(z,y) = zy and Ti(z,y) =
max(z +y — 1,0).

3. COUNTABLE EXTENSION OF t-NORMS

An arbitrary t-norm T can be extended (by associativity) in a unique way to an
n-ary operation taking for (zi1,...,z,) € [0,1]", n € N, the values T(z1,...,Ts)
which is defined by

0

n n—1
T.’Ei=1, TSCz:T(T $i,zn):T(zlr--azn)'
=1 =1

i=1

Specially, we have T (z1, .. .,Z,) = max (Z z; — (n— 1),0) and Tm(z1,...,2Tn) =
i=1

min(zy,...,Zn).
We can extend T' to a countable infinitary operation taking for any sequence
(Zn)nen from [0, 1] the values

fl z; = lim T ;. (1)

n

The limit on the right side of (1) exists since the sequence (T z;)nen is non-
=1

increasing and bounded from below.

Remark 10. An alternative approach to the infinitary extension of t-norms can
be found in [10].

In the fixed point theory it is of interest to investigate the classes of t-norms T
and sequences (Zn)nen from the interval [0, 1] such that li_)m T, =1, and
n—o00

(o)

00
o L 7= g T onei =1 @
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n
In the classical case T = Tp we have (Tp)ie; = [[ zi and for every sequence (z,)nen
=1

o0
from the interval [0, 1] with 5 (1 — z») < o0 it follows that

=1
(o]
i © = lim Ha:- =1.
A (Te)Zn = i, LL o

Namely, it is well known that

oo o0 [o0)
I-[la:i>0 & JL%Hmi:l & ;(1—zi)<oo.
1= =

i=n
The equivalence
el 00
Y (A-z)<oo & lim Tzi=1 (3)

n—0o0 ;_
i=1 =n

holds also for T' > Tt,. Indeed

(Ty)= z; = max (i z; —(n— 1),0) = max (i(zi -1+ 1,0) s

=1 i=1

and therefore 3 (1 —z,) < oo holds if and only if

n=1

)
nli»n;o(TL)?;"xi = max (nli)nc:o Z(:E, -1)+1, O) =1.
i

i—=n

For T > T, we have 'f‘ z; > (Tu)™,z; and therefore for such a t-norm T the

=1
implication
s o0
d(l-z)<oo = lim Tazi=1
i1 n—o0 i=n
holds.

We shall need some families of t-norms given in the following example.
Example 11. (i) The Dombi family of t-norms (T}) A€[0,00] 18 defined by

TD(III,y) if A =0’
Tm(z,y) if A = o0,

() (59)7) meos

TY(z,y) =
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(ii) The Schweizer-Sklar family of t-norms (T55)e(—co,00] is defined by

’

Tm(z,y) if A= —o0,
(2 +y* = /A if A € (—00,0),
T,\Ss(x,y) =4 Tp(z,y) if A=0,
(max(z* + y* - 1,0))/* if A € (0,00),
| To(z,y) if X = oo.

(iii) The Aczél-Alsina family of t-norms (TAA) A€[0,00] is defined by

Tn(z,y) if A=0,
T (z,y) =4 Tml(z,y) if A = oo,

e—(|log z|*+[logy|*) /> if \ e (0,00)

(iv) The family (T$W)¢[-1,400] Of Sugeno-Weber t-norms is given by

TD(zvy) if A= _la
Tl\sw(x,y) = Tp(.’L’,y) if A= 00,
max (0, Lyl—-l_l/\_iz\x_y) otherwise.

The condition 7' > Ty, is fulfilled by the families: 1. TS for X € [~o0,1]; 2. TSW
for X\ € [0, o0].

On the other side there exists a member of the family (T°)ae(0,00) Which is
incomparable with T, and there exists a member of the family (T/4) A€(0,00) Which
is incomparable with Ty,.

We shall give some sufficient conditions for (2).

Proposition 12. Let (z,)nen be a sequence of numbers from [0,1] such that
lim z, =1 and t-norm T is of H-type. Then (2) holds.

n—o00

Proof. Since t-norm T is of H-type for every A € (0,1) there exists §(A) € (0,1)
such that :

z>6(0) = ’Ip‘a:>1—,\

i=1
for every p € N. Since li_)m T, = 1 there exists ng(A) € N such that z,, > §(\) for
n—o00
every n > ng(A). Hence

T 60

i=1

> 1=

v

y 4
T Tn+i
i=1
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for every n > no(\) and every p € N. This means that (2) holds. ]

Remark 13. If T is a t-norm such that there exists a sequence (Zn)nen from the

00
interval (0,1) such that lim z, =1 and lim T z; = 1, then T is continuous at
n—o00 n—o00 i=n
the point (1,1). Indeed, let A € (0,1) be given. Then there exists no(A) € N such
that

00
T T; >1-— A\
i=no(>\)

Since T(Tng(n)s Tno(A)+1) = T i > 1—X we obtain that z,y > max(Tny(x), Tno(r)+1)
i=ng(A)
implies T'(z,y) > 1 — A

For some families of t-norms we shall characterize the sequences (z5)nen from
(0,1], which tend to 1 and for which (2) holds.

Lemma 14. Let T be a strict t-norm with an additive generator t, and the corre-
sponding multiplicative generator §. Then we have

fl r;=t"! (Z t(l'.'))

=1

or

'i:o‘ T = 6! (ﬁ 9(12,)) .
=1 i=1

The preceding lemma and the continuity of the generators of strict t-norms imply
the following proposition. '

Proposition 15. Let T be a strict t-norm with an additive generator t, and the
corresponding multiplicative generator 6. For a sequence (Zn)nen from the interval
(0,1) such that lim z,, =1 the condition

n—oo0

(e ¢]

Jim 3 te) =0,
=n
or the condition
(o ¢)
nlLH;o. 0(z;) =1,
=n

holds if and only if (2) is satisfied.
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Example 16. Let (T°)xe(0,00) be the Dombi family of t-norms and (zn)nen be a
sequence of elements from (0, 1] such that le z, = 1. Then we have the following

equivalence:

(=] A
1-=; . D)oo _
E ( ) <oo <& nll'n;o(T,\ )2z = 1.

T
i=1 v

For a t-norm TP , A € (0,00), the multiplicative generator 0}? is given by

1—z\A
=)

02 (z) = e~(
and therefore with the property 62 (1) = 1. Hence
1R (=) H el
p—id - Z:n(

and therefore the above equivalence follows by Proposition 15. Since li_’m T, =1,
n—o0
we have that

1—-z, A
( ) ~ (1-z,)* as n — oo.

Tn

Hence
[e) 00 1 T A
S(-z) <0 z( ) < oo,
n=1 n=1

which implies the equivalence
Z(l—zn)’\<oo & hm (TA) 2Ti = 1.
n=1

Example 17. Let (T#),¢(0,00) be the Aczél-Alsina family of t-norms given by
TAA(z,y) = e~ (Ileg el +log )/

and (z,)nen be a sequence of elements from (0, 1] such that l'l)m z, = 1. Then we
n—o00

have the following equivalence
> o o]
E l-z)* <0 & 711—14)1130 (T;‘AA)i=n z; =1.

For a t-norm TA4, ) € (0,00), the multiplicative generator 844 is given by

GAAA(IE) — e—(—log z)>
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and therefore with the property 9;‘\“‘(1) = 1. Hence

[[644@) = J[elos=”
i=n i=n
= e Z:n(—logz;)".

Since lim z; = 1 and logz; ~ z; — 1 as ¢ — oo by Proposition 15. the above

1—00
equivalence follows.
For t-norms wa, A € (-1, 00] we have the following proposition.

Proposition 18. Let (z,)nen be a sequence from (0, 1) such that the series

00
Y- (1 — z,) is convergent. Then for every A € (-1, 00]

n=1
lim (TSW)%, z; = 1.

n—o00

Proof. An additive generator of TSW for A € (~1,0) is given by

1+Az) 1
14X/ log(l+)\)°

tW(z) = —log (

We shall prove that for some n; € N and every p € N

14 p
14+ ATpyi 1
II SW X — § : nti—1 ) -1
9)\ (xn+z—l) €Xp (i_—_l log ( 1+ A ) log(l + A)) >e (4)

i=1

for every n > ny since in this case

14
(T Tngior = (O3V) ! (H 0§W(zn+i_1)) : (5)
i=1 .
We have to prove that for some n; € N and every p € N
1 P 14+ AZpyia )
-———— 5" - ronme 1 f
105(1+/\),~=ZO og( T < 1 for every n > nj, (6)

since (6) implies (4). From le (1 - z,) = 0 it follows that

A A
log <1+ 1+/\(xn—1)) ~ m(xn -1)

and therefore the series

1 = A
L S 2 _(z,—1
Tog(L+ ) ;bg (l tTae ))

=1
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is convergent. Hence it follows that there exists n; € N such that (4) holds for every
n > n; and every p € N, and this implies (5).
The above proposition holds also for A > 0 since in this case Ty W > Tt O
It is of special interest for the fixed point theory in probabilistic metric spaces to
investigate condition (2) for a special sequence (1 — ¢")nen for ¢ € (0,1).

Proposition 19. If for a t-norm T there exists go € (0,1) such that
. i i
Am, T (1—a0) =1, (7)

then
lim T (1-¢) =1,

n—oo i=n

for every ¢q € (0,1).

Proof. If ¢ < go then 1 — g™ > 1 — ¢f} for every n € N and therefore (7) implies

n—oo i=n

lim T (1-¢) > lim T (1-g) = 1.
n=0 i—n

Now suppose that q¢ > qo. First, we consider the special case when ¢2 = qq, i.e.,
v/3 = ¢q > qo. Then

Ta-¢ > r(Fa-¢Ta-¢m)

v

r(Fa-d Fa-ad)

i=m

and since T' by Remark 13 is continuous at (1,1) it follows that

im T (1-g¢)>T(1,1) =1

m—o0

1=2m
Therefore
im T (1-¢)2 lim T (1-¢)=1
im - —-¢) =1.
M0 _9m41 T M09, om

Now we consider an arbitrary ¢ > go from the interval (0,1). Since for ¢ > go there

exists m € N such that ¢~ > g we reduce this situation on the case of the m-
iterations of the preceding procedure. m]



Triangular Norms in the Fixed Point Theory 373

Definition 20. We say that a t-norm T is geometrically convergent (briefly g-
convergent, in [4] called g-convergent for some ¢ € (0, 1)) if

nlgl;o ;=[‘n(1 -¢)=1
for every ¢ € (0,1).

Since lim (1—¢")=1and ) (1—(1-¢™))* < oo for every s > 0 it follows that
n—o0 '
all t-norms from the family "

U U U @um™ U @™

A€(0,00) A€(0,00) A€(—1,00]

are g-convergent, where 7H is the class of all t-norms of H-type.
The following example shows that not every strict t-norm is g-convergent.

Example 21. Let T be the strict t-norm with an additive generator t(z) =
[S] .
_E(h'i' In this case the series Y t(1 — ¢) for any q € (0,1) is not convergent

i=1

since
tl—-q¢*)=— — = — - .
; ( ) ; log(q*) ; ilogg

In the following two propositions we shall give sufficient conditions for a t-norm
T to be g-convergent.

Proposition 22. Let T and T; be strict t-norms and t and t; their additive
generators, respectively, and there exists b € (0,1) such that t(z) < t;(z) for every
z € (b,1]. If T3 is g-convergent, then T is g-convergent.

Proof. Since T} is g-convergent we have li’m (T1)22,(1 — ¢*) = 1. Therefore
n—00

(o]
nll}rr;oz:tl(l—q) =0. (8)

Since there exists ng € N such that 1 — g™ € (b, 1] we have by the condition of the
proposition that

t(1-4q") < t1(1 — ¢") for every n > nyg.

Therefore, by (8) ILm S t(1 —¢¥) =0, ie, T is g-convergent. o
N0 j—n
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Proposition 23. Let T be a strict t-norm with a generator t which has a bounded
derivative on an interval (b,1) for some b € (0,1). Then T is g-convergent.

Proof. By the Lagrange mean value theorem we have for every = € (b,1) that
t(z) —t(1) = t(z) = t'(¢)(z - 1)
for some £ € (z,1), and therefore
e . e .
Zt(l_ql) SMqua
i=ig i=ig

where M = sup, ¢, 1 [t/(2)], and 1 — g% € (b, 1). m]

Proposition 24. Let T be a t-norm and ¢ : (0, 1] — [0, 00). If for some § € (0,1)
and every z € [0,1], y € [1 - 4,1]

|T($1 y) - T(xa l)l < "/)(y) (9)
then for every sequence (,)nen from the interval [0,1] such that li_)m zn, =1 and

io: ¥(zy,) < 00, relation (2) holds.

n=1

For the proof see [4].

Corollary 25. Let T and % be as in Proposition 25. If for some ¢ € (0,1),
[0 0]
D (1 -q") <oo
n=1

then T is g-convergent.

Proof. Since lim (1 —¢™) =1 by Proposition 25 we obtain that
n—o00

(o4
i —-q") =1. m]
g, L (=) =1

Example 26. Let o >0, p > 1 and 24, : (0,1] x [0,1] = [0, 00) be defined in the
following way:

za,p(z,w:{ Y- Tma—gp & @O0
y if (z,9) € {1} x [0, 1].

In this case the function 24, is equal to zero on the curve which connects the points
(1,0) and (1 - e, 1), where 1 — eo'? < 1.
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Let T be a t-norm such that T(z,y) > zap(z,y) forlevery (z,y) € [1-46,1] x
[0,1]. Then for every (z,y) € [0,1] x [1 —46,1)
IT(y,z) - T(l,IE)I

< Iza,p(yyfz) - Za,p(laz)l
a

|In(1 —y)l*’

lT(:l:,y) - T(II), 1)]

IA

i.e., (9) holds for
if yel[l-4,1),

wmz{lmﬂ—wP
0 if y=1.

Since

;1#(1 - q") = 1; lln(qn)lp

T
nP|In(g)[? ’

n=1

T is g-convergent.

4. FIXED POINT THEORY IN PROBABILISTIC METRIC SPACES

Let A* be the set of all distribution functions F' such that F(0) = 0 (F is a
nondecreasing, left continuous mapping from R into [0, 1] such that sup F(z) = 1).
TER

The ordered pair (S, F) is said to be a probabilistic metric space if S is a nonempty
set and F : Sx S — At (F(p, q) is written by F, 4 for every (p,q) € S x S) satisfies
the following conditions:

1. Fuu(z) =1foreveryz >0=u=v (u,v € S).

2. Fyy = Fy,, for every u,v € S.

3. Fup(z) =1and Fouw(y) =1 = F,u(z+y) =1for u,v,w € Sand z,y €
Ry = [0, 00).

A Menger space is a triple (S, F,T), where (S, F) is a probabilistic metric space,
T is a t-norm and the following inequality holds

Fuv(z +y) > T(Fyw(z), Fuwu(y)) for every u,v,w € S and every z > 0,y > 0.

The (g, A)-topology in S is introduced by the family of neighbourhoods

U ={Us(8, 1)} (v,e,0)eSxR 1 x(0,1)

where
Us(e,\) ={u|u€S, Fu,(e) >1-A}.
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4.1. Probabilistic g-contraction and g-convergent t-norms

Definition 27. ([15]) Let (S, F) be a probabilistic metric space. A mapping f :
S — S is a probabilistic g-contraction (q € (0,1)) if

T
Ffphfpz (:l;) 2 FP1.P2 (E) (10)

for every p;,p2 € S and every z € R

By Remark 13 each g-convergent t-norm T satisfies the condition sup, ., T'(z,z) =
1, which ensures the metrizability of the (g, A)-topology.

Theorem 28. Let (S,~f ,T') be a complete Menger space and f : S — S a proba-
bilistic ¢g-contraction such that for some p € S and k > 0
sup ¥ (1 — Fp p(z)) < 00. (11)
>0

If t-norm T is g-convergent, then there exists a unique fixed point z of the mapping
fand z = le f*p.
n—00

Proof.Let u € (¢,1) and § = ¢/p < 1. We shall prove that (f™p)nen is a Cauchy
sequence. Choose € > 0 and X € (0, 1) and prove that there exists ng(e, A) € N such
that

Fpnp fnimp(€) > 1 — X for every n > ng(e, A) and every m € N.

o0 . 0 .
Since the series ) 4 is convergent, there exists n; = n;(e) € Nsuch that ) & <e.
i=1 i=n1
Let n > n;. Then we have

> o]
anp‘fn+mp(€) Z anp’fn-f—mp (Z 61)

i=n

n+m-—1 .
Z Ff“p,f""'"‘p ( Z 62)
i=n
2 T(T(. ” (T (Ff"p,f"+lp(6n)’ Ff"“p,f"+2p(5"+1))a
N—rt
(m—1)-times
= ’Ff"+""1p,f"+mp(6"+'"—1))
>

01 (- (0 (o () ) - )

(m—1)-times
Let M > 0 be such that
z¥(1 — F, fp(z)) < M for every z > 0. (12)
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Suppose that n, is such that
1 — M(uF)™ € [0,1) for every n > nj. (13)
From (12) it follows that
1 k\n
Fp tp e >1— M(pu")" for every n € N
and by (13) for n > max(n;,n2)
F >T(T(--- (T (1-ME*H",1- M(pF) ! 1— M(ukyntm—1
o rimp(€) 2 (W51 = M(Eo)™), .. 1= M(bymt).
—_———
(m—1)-times
Let so be such that M (u¥)%0 < u*. Then for every n € N
1-— M(“k)n+so Z 1-— (uk)n+1
and therefore for n > max(n1,n2) and m € N
Ffﬁ+lop,fn+so+mp(6) > T(T( v (T(l — M(”k)ﬂ-l—so’ 1— M(uk)n+so+1),
N——_—————’

(m—1)-times

ooy 1= M(pkyrootm=t)
> T (-
i=n+1

Since T is g-convergent we conclude that (f™p)nen is a Cauchy sequence. Let z =
lim f™p. By the continuity of the mapping f it follows that fz = z. m]
n—o00

Corollary 29. Let (S,F,T) be a complete Menger space such that T is a strict
t-norm with a multiplicative generator 6, and f : S — S a probabilistic g-contraction
such that for some k£ > 0 and p € S (11) holds. If there exists u € (0,1) such that

,};n;oge(l—u)ﬂ,

then there exists a unique fixed point z of the mapping f and z = nli)nolo mp.

Let
7= U U U @4

A€(0,00) A€(0,00)
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Corollary 30. Let (S,F,T) be a complete Menger space such that T' > T} for
some T3 € T and f: S — S a probabilistic g-contraction such that for some & > 0
and p € S (11) holds. Then there exists a unique fixed point z of the mapping f
and z = nll)n;o fmp.

From the proof of Theorem 28 it follows that f : S — S has a unique fixed point
if (11) and the condition that T is g-convergent is replaced by the condition

in T A (5) =1 weo), (14

Using Examples 16 and 17 and Proposition 18 we obtain a fixed point theorem,
where the condition (11) is replaced by the condition

supIn® z(1 — F, ;,(z)) < oo, (15)
z>1
for some k > 0, which under some additional conditions implies (14).

Theorem 31. Let (S,F,T) be a complete Menger space and f : S — S a proba-
bilistic g-contraction. Suppose that one of the following two conditions is satisfied:
(i) T € {TP,T{AA} for some A > 0 and there exists p € S such that (15) holds,
where kA > 1.
(ii) T = TPW for some A € (—1,00] and there exists p € S such that (15) holds,
where k£ > 1.

Then there exists a unique fixed point z of the mapping f and z = lim 00 f"D-

Proof. (i) Suppose that sup z>1 In* z(1 — Fp sp(z)) < 00, i.e., that there exists
M > 0 such that

In* z(1 - F, ;,(z)) < M for every z > 1. (16)
Relation (16) implies that

Fosp (;1;) > 1- ——lnk ]&4_1_)
.

= [l (1 € (0,1)).

Suppose that 1 — EH—{WHP? > 0 for every n > ng. Then

T F (1) >T (1 M ) f >
, — ] 2> — ———— | for every n > nyp.
P\w) =2, U nflinpf

i=n

By Examples 16 and 17
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since for kA > 1

Zl iFA[In p[F> < 0.
Hence (14) holds.
(i) If T = TSW for some X € (-1 oo] and (16) holds for some k > 1 then (14)

holds, since by Proposition 18, 3, mp; < oo implies (14). m]

Remark 32. It is obvious by Proposition 18 that in the case (ii) the condition
(15) can be replaced by the Tardiff’s condition (see [16])

o 0]
/ InudFp,fp(u) < co.
1

2. An application to random operator equations

Special non-additive measures, so called decomposable measures, see [11], generate
a probabilistic metric space ([4]) on which Theorem 28 implies a random fixed point
theorem.

Definition 33. Let S be a t-conorm. An S-decomposable measure m is a set
function m : A — [0,1] such that m(@) = 0 and

m(AU B) = S(m(4), m(B))
whenever A,B€ Aand ANB =0.

Example 34. Taking Sp, t-conorm, ? = N, A = 2N and m(E) = min (|E|/N,1)
for a fixed natural number N, where | E| is the cardinal number of E, we obtain that
m is Sp.-decomposable measure.

Definition 35. Let S be a left-continuous t-conorm. A set function m : A — [0, 1]
is 0-S-decomposable measure if m(#) = 0 and

(U A ) S m(4:)
for every sequence (4;)ien from A whose elements are pairwise disjoint set.

The set function considered in Example 34 is o-Sy,-decomposable.

An S-decomposable measure m is monotone, which means that A,Be A, ACB
implies m(A) < m(B). A measure m is of (NSA)-type (see [17]) if and only if som
is a finite additive measure, where s is an additive generator of the t-conorm S
(see [17]), which is continuous, non-strict, and Archimedean, and with respect to
which m is decomposable (s(1) = 1). If (R2,.4,m) is a measure space and (M,d) is
a separable metric space, by S we shall denote the set of all the equivalence classes
of measurable mappings X : -+ M. An element from S will be denoted by X if
{X(w)} € X. The following proposition is proved in [14].
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Proposition 36. Let (2,.4,m) be a measure space, where m is a continuous S-
decomposable measure of (NSA)-type with monotone increasing generator s. Then
(S,]-;,fll) is a Menger space, where F and t-norm T are given in the following way
(F(X,)Y)=Fz3):

F)?,?(u) =m({w|w e Q, dX(w),Y(w)) <u}) =m({d(X,Y) < u})
(for every X,YeSue R),
T(z,y) = s~ (max(0,s(z) + s(y) — 1)), for every z,y € [0, 1].

Let f : @x M — M be a continuous random operator. Then for every measurable
mapping X : 2 — M,uthe mapping w — f(w, X (w))(w € N) is measurable. If
X : @ > M is a measurable mapping let (fX)(w) = f(w,X(w)),w € O, X € X.
Hence f :S = S.

Corollary 37. Let (Q2,.4,m) be a measure space, where m is a continuous S-
decomposable measure of (NSA)-type , s is a monotone increasing additive generator
of S, (M,d) a complete separable metric space and f : @ x M — M a continuous
random operator such that for some ¢ € (0,1)

m({w | w € Q,d((fX) W), (fY)(w)) < u})

>m ({w lwe Q,dXw),YW) < g}) (17)

for every measurable mappings X,Y : Q@ - M and every u > 0. If there exists a
measurable mapping U : 2 — M such that for some k& > 0

supz*(1 — m({d(T, fU) < z})) <
z>0
and t-norm T defined by -
T(z,y) = s~ (max(0,s(z) +s(y) — 1),z,y € [0,1],

is g-convergent, then there exists a random fixed point of the operator f.

Corollary 38. Let (€2,.4,m) be a measure space, where m is a continuous S§W-
decomposable measure of (NSA)-type for some A € (—1,00], (M,d) a complete
separable metric space and f : 2 x M — M a continuous random operator such that
for some q € (0,1) (17) holds for every measurable mappings X,Y : @ — M and
every u > 0. If there exists a measurable mapping U : @ = M such that for some
k>1

supln® z(1 — m({d(T, fU) < z})) < oo,

z>1

then there exists a random fixed point of the operator f.
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