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DECOUPLING AND POLE ASSIGNMENT 
BY CONSTANT OUTPUT FEEDBACK 

KONSTADINOS H. KlRITSIS AND TRIFON G. KOUSSIOURIS 

In this paper a system-theoretic approach is used to solve the decoupling in combination 
with the arbitrary pole assignment problem by constant output feedback and a constant 
nonsingular input transformation. Explicit necessary and sufficient conditions are given 
and a procedure is described for the determination of the control law. 

1. INTRODUCTION 

The problem of decoupling by constant output feedback has been studied in the past 
by Wolowich [10], Wang and Davison [8], Descusse [2], Howze [3], Bahey Argoun and 
Van de Vegte [1] and Parskevopoulos and Koumboulis [6]. In these papers necessary 
and sufficient conditions for the existence of constant output feedback to achieve 
noninteracting control have been obtained. 

In the present work the problem of decoupling in combination with arbitrary 
pole assignment is studied. In particular, using a system-theoretic method, explicit 
necessary and sufficient conditions are derived for the existence of a constant output 
feedback and a constant nonsingular input transformation that solve the problem of 
decoupling with arbitrary pole assignment. It is proved that the above problem has 
a solution if and only if all the reachability indices and the observability indices of 
the open-loop system are equal to one. This is equivalent to saying that both the 
number of the inputs and the number of the outputs of the system are equal to the 
number of states and the output feedback becomes state feedback. Furthermore a 
constructive procedure is given for the computation of the control law that decouples 
the closed-loop system and assigns arbitrarily its poles. 

2. PROBLEM STATEMENT 

Let us consider a linear time-invariant, discrete-time, reachable and observable sys
tem S having as many inputs as outputs and described by the following equations 

x(k -F 1) = Ax(k) + Bu(k) 

y(k) =- Cx(k) (2.1) 
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where u(k) E M™, y(k) E Mm and x(k) G Mn. 
The transfer function matrix T(z) of S is given by the relation 

T(z) = C(Iz - A)-XB = NR(z) Dnl(z) (2.2) 

where the matrices DR(Z) and NR(Z) over M[z] (the ring of polynomials having real 
coefficients) form a standard right matrix fraction description of T(z) [9]. 

Let the control law 
u(k) = Fy(k) + Gv(k) (2.3) 

be applied to the system (2.1), where F and G are m x m constant matrices, G is 
nonsingular and v(k) represents the m x 1 reference input vector. Then the state 
space description of the compensated system is given by 

x(k + l) = [A + BFC]x(k) + BGv(k) (2.4) 

y(k) = Cx(k). 

The problem of decoupling with arbitrary pole placement can be stated as follows. 
Find the control law, as in (2.3) so that for the compensated system: 
The transfer function matrix Tc(z) satisfies the relations 

Tc(z) = C(Iz - A - BFC^BG = diag[&i(z)/ai(z),. . . ,bm(z)/am(z)] (2.5a) 

det[Tc(z)] t 0 (2.5b) 

and the characteristic polynomial is 

det[/z - A - BFC] = a(z) (2.6) 

where a(z) is a monic polynomial of degree n having roots at the desired positions 
for the poles of the closed-loop system. 

Since the control law (2.3) does not affect the reachability and observability prop
erties for the compensated system, we have 

m 

a(z) = Y[ai(z). (2.7) 
i=l 

If the matrix fraction description is used for 5, the transfer function matrix of the 
compensated system under the control law (2.3) is given by 

Tc(z) = NR(Z) [G~1DR(Z) + G~1FNR(z)] -1 (2.8) 

and the problem is reformulated as follows. Find the matrices F, G in (2.8) so that 
relations (2.5)-(2.7) are satisfied. 

It is to be noted that a(z) must have some real roots if its factorization, as in 
equation (2.7), has to take place. Furthermore, it is to be pointed out that since 
relation (2.5b) holds, the matrices B and C have full column and full row rank 
respectively and thus m <n. 
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3. BASIC CONCEPTS 

Let us first introduce some notations that are used throughout the paper. For any 
p x q polynomial matrix A(z) [5], we write degr i A(z) = W{ for the degree of the zth 
row of A(z) and degci A(z) — V{ for the degree of the ith column of A(z). The p x q 
matrix A(z) is defined row reduced if its highest row degree coefficient matrix Ahr = 
l im^oo diag [z~Wl,..., z~Wp] A(z) has rank p, and is defined column reduced if its 
highest column-degree coefficient matrix Ahc = l im^oo A(z) diag[z~V l , . . . ,z~Vq] 
has rank q. If the rows of A(z) are arranged so that degr i A(z) > deg r j(z), for i < j , 
then A(z) is called row degree ordered while if degci A(z) > degCJ- A(z), for i < j is 
defined column degree ordered. 

Two polynomial matrices A(z) and B(z) of respective size p x q and p x m are 
defined relatively left prime over JR[z] it the matrix [A(z), B(z)] does not lose rank 
for every z G C. Similarly two polynomial matrices A(z) and B(z) of size q x m 
and p x m respectively are defined relatively right prime over M[z] if the matrix 
[.AT(z), BT(z)]T does not lose rank for every z G C. 

Definition 1. If T(z) is a matrix with rational entries, the polynomial matrices 
DR(Z) and NR(Z) such that 

(a) T ( » = C(Iz - A)~^B = NR(z) D~R\z), 

(b) DR(Z) and NR(Z) are relatively right prime, 

(c) 
DR(z) 
NR(z) 

is column reduced and column degree ordered 

are said to form a standard right matrix fraction description of T(z). 

Definition 2. Polynomial matrices DL(Z) and NL(Z) such that 

(a) T(z) = C(Iz - A)~lB = D~L
l(z) NL(z), 

(b) DL(Z) and NL(Z) are relatively left prime, 

(c) [DL(Z), NL(Z)] is row reduced and row degree ordered 

are said to form a standard left matrix fraction description of T(z). 

The right minimal indices of T(z) are defined to be the column degrees of any-
standard right matrix fraction description of T(z). Since the system (2.1) is both 
reachable and observable, the right minimal indices of T(z) are equal to the reach
ability indices of the system. 

The left minimal indices of T(z) are defined to be the row degrees of any standard 
left matrix fraction description of T(z). Since the system (2.1) is both reachable and 
observable, the left minimal indices of T(z) [4] are equal to the observability indices 
of the system. 

The polynomial matrices X(z) and Y(z) are equivalent over M[z] if there exist 
unimodular matrices U\(z) and c72(z) such that Y(z) = U\(z)X(z) U2(z). Since 
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the system (2.1) is both reachable and observable, NR(Z) and NL(Z) can be easily 
proved to be equivalent over M[z] and their Smith form describes the position and 
the structure of the finite invariant zeros of the system (2.1). 

4. PRELIMINARY RESULTS 

This section contains results that are needed to prove the main theorem of this 
paper. 

Lemma 4.1. Let (DR(z), NR(Z)) and (DL(Z), NL(Z)) be a standard right matrix 
fraction description and a standard left matrix fraction description of the strictly 
proper rational matrix T(z) respectively. Also let Vi for i = 1,2,.. . , m and Wj for 
j = 1,2,.. . ,p be the minimal right and the minimal left indices of T(z) respectively. 
Then for every mxp real matrix F and for every nonsingular mxm real matrix G 
we have 

(a) The polynomial matrices NR(Z) and G _ 1
 [DR(Z) + FNR(Z}] are relatively 

right prime. 

(b) The polynomial matrices NL(Z)G and [DL(Z) + NL(Z)F] are relatively left 
prime. 

(c) The numbers Vi for i = 1,2,.. . , m are the reachability indices of the closed-
loop system (2.4). 

(d) The numbers Wj for j = 1,2,... ,p are the observability indices of the closed-
loop system (2.4). 

(e) The open-loop system (2.1) and the closed-loop system (2.4) have the same 
finite invariant zero structure. 

P r o o f . See [7]. • 

Lemma 4.2. Let H(z) be a polynomial matrix with dimensions 2m x m and 
column degrees Vi for i = 1,2,. . . , m ( X ^ i v% =n)- Then the equation 

xTH(z)=rT(z) (4.1) 

has a solution xT over M, for every 1 x m polynomial vector rT(z) over M[z] with 
deg c i r

T (z ) = Vi Vi = 1 , . . . ,m, only if n < m. 

P r o o f . We assume that equation (4.1) as a solution for xT over M. Also let 
hi(z) for i = 1 , . . . , m be the columns of the polynomial matrix H(z). Then we have 

deg hi(z) = Vi for i = 1 , . . . , m (4.2) 
Vi Vi 

xThi(z) = ri(z) or xT Y^/i^z^f = / J ^ z * 7 , i = l , . . . , m (4.3) 
i=o j=o 
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where hji are real 2m x 1 vectors i = 1,2,.. . , m and r^ G M are the coefficients of 
the zth element of the polynomial vector rT(z). Equating coefficients of like powers 
of z in relationship (4.3) for i = l , . . . , m , we obtain the following set of linear 
algebraic equations 

x [/ioi,... 9hVlij... ,/iom, • • • ,hVmm] = [ r 0 i , . . . , r V l i , . . . , r 0 m , • • • ,rVmm] = 9-
(4.4) 

The matrix in square brackets on the left side in (4.4) has dimension 2m x (n + 
m). Since equation (4.1) has a solution for every polynomial vector rT(z) with 
deg c ir

T(z) = Vi for i = l , . . . , m , equation (4.4) must have a solution for ev
ery real 1 x (n + m) vector g. This is possible if, and only if the real matrix 
[hoi,... ,hVli,... ,hom,... ,hVmm] has full column rank. This implies that 2m > 
n + m or equivalently n <m. • 

5. BASIC RESULTS 

The main results concerning the solvability of the decoupling problem defined in 
Section 2 are presented here. 

T h e o r e m 5.1. Let Vi, Wi, for i = 1,2,.. . , m be the reachability and the observ
ability indices respectively of open-loop system (2.1). Then a necessary condition 
for the solvability of the decoupling problem under the control law (2.3) is 

Vi = Wi / 0 Vi = 1,2,... ,m. 

P r o o f . Let the problem of decoupling with arbitrary pole assignment have a 
solution. 

Then we have that 

Tc(z) = NR(z) [ G - ^ S J + G ^ F ^ 

(5.1) 
where bi(z) and a;(z) are relatively prime for i = 1,2,.. . , m and ai(z) is monic for 
i = 1,2, . . . , m . Without loss of generality we suppose that degai(z) > deg a j(z) 
for i > jm, for if not we can premultiply Tc(z) by a permutation matrix P and 
postmultiply Tc(z) by P T to obtain it and this corresponds to a renumbering of the 
reference inputs and outputs. 

Let us define the polynomial matrices 

DCR(Z) = DCL(Z) = d iag[a i (z ) , . . . , a m (z ) ] , (5.2) 

NCR(Z) = NCL(Z) = diag [6i(z) , . . . , bm(z)]. (5.3) 

Since bi(z) and a^(z) are relatively prime for i = 1,2,... ,m, the matrix [DQR(Z), 

NQR(Z)] does not lose rank for every z G C and therefore DCR(Z) and NCR(Z) 

are relatively right prime. The highest order coefficient matrix of DCR(Z) is equal 
to Im and since the column degrees of DCR(Z) are arranged in decreased order of 
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magnitude, DCR(Z), NCR(Z) constitute a standard right matrix fraction description 
of the matrix Tc(z). According to Lemma 4.1 dega;(z) = ti is the ith reachability 
index of the compensated system. Since the reachability indices are invariant under 
the control law (2.3), we conclude that 

ti = Vi, i = l , 2 , . . . , m . (5.4) 

Similarly the matrices DCL(Z) and NCL(Z) are relatively left prime, the highest order 
coefficient matrix of DCL(Z) is equal to Im and since the column degrees of DCL(Z) 
are arranged in decreased order to magnitude, DCL(Z), NCL(Z) constitute a stan
dard left matrix fraction description of the matrix Tc(z). According to Lemma 4.1 
dega;(z) = ti is the zth observability index of the compensated system. Since the 
observability indices are invariant under the control law (2.3), we conclude that 

ti = Wi, i = 1,2,.. . ,m. (5.5) 

Then theorem follows at once from (5.4) and (5.5). • 

Theorem 5.1 ignores the requirement for the arbitrary placement of the poles of 
the compensated system. For the solvability of the decoupling problem, as defined 
in Section 2, we have. 

T h e o r e m 5.2. Let V{, Wi for i = 1,2,... ,m be the reachability and the observ
ability indices respectively of the system (2.1). Then the problem of decoupling 
in combination with arbitrary pole assignment has a solution by constant output 
feedback iff 

Vi = Wi = 1 Vz = 1,2,... ,m. 

P r o o f . We assume that the problem of decoupling with arbitrary pole assign
ment under the control law (2.3) has a solution. Then the transfer function matrix 
of the closed-loop system is 

Tc(z) = NR(z) [G~1DR(Z) + G-lFNR(z)]_1 - NCR(z) D~l

R(z) (5.6) 

where DCR(Z) and NCR(Z) are as in equations (5.1) and (5.2). 

By Lemma 4.1 G~1[DR(Z) + FNR(Z)] and NR(Z) form a standard right matrix 
fraction description of Tc(z). Also from Lemma 4.1 DCR(Z) and NCR(Z) form a 
standard right matrix fraction description of Tc(z). Then there exists a unimodular 
matrix U(z) so that 

G~1DR(z) + G~1FNR(z) 
NR(Z) 

U(z) = 
DCR(Z) 

NCR(Z) 
(5.7) 

Let us consider an m x 1 real constant vector A. From equation (5.7) we have 

AT [G~1DR(Z) + G-1FNR(Z)] U(Z) = AT [G^^G^F] 
DR(z) U(Z) 

NR(z) U(z) 

= \TDCR(Z) = diag[Лiai(2r),...,Л т оam(z)]. (5.8) 
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Since det DCR(Z) = I~l£Li a%(z) -s the characteristic polynomial of the compensated 
system that is an arbitrary monic polynomial of degree n, its factors di(z) can be 
considered as arbitrary monic polynomials of degrees t>i,i = l , 2 , . . . , m respectively. 
Since equation (5.8) has a constant solution A T [G _ 1 ,G _ 1 F] for every polynomial 
vector [Aiai(z) , . . . , Amam(z)], from Lemma 4.2 we deduce that 

n<m. (5.9) 

Since detTc(z) ^ 0 is as in equation (5.1), we deduce that 

rankTc(z) = m < min(n,m) (5.10) 

and therefore (m = n) and the matrices By C are both nonsingular. Then by the 
definition of the reachability indices 

Vi = l for i = l , 2 , . . . , m . (5.11) 

Prom Theorem 5.1 and relation (5.11) we deduce 

Wi=Vi = l Vi = l , 2 , . . . , m (5.12) 

and necessity has been proved. 

To prove sufficiency we work as follows. Since the reachability indices are equal 
to one and the polynomials a,i(z) have degrees Vi = 1 we conclude that all the poles 
z = —Oi, i = 1,2,. . . , m, of the compensated system have to be real. We define 

£ = diag[cr;]. (5.13) 

Since V{ = 1 and X)£Li v% — n w e conclude that n = m and therefore the matrices B 
and C are nonsingular. Then T(z) = C(Iz — A)~lB is square and nonsingular for 
every z G C except for a finite number of Zk G C that are defined as the transmission 
zeros of T(z). Since the transfer function matrix T(z) of the system (2.1) is strictly 
proper, 

degci DR(z) =Vi = l> degci NR(z) for i = 1 , . . . , m. (5.14) 

Then the polynomial matrix NR(z) is a constant matrix and because T(z) is non-
singular for almost every z G C, NR(z) is nonsingular. 

Because of (5.14), we can write 

DR(z) = Dhz + DR0 (5.15) 

NR(z) = K. (5.16) 

Since DR(z) is column reduced, Dh is nonsingular. Prom equation (5.7) taking 

G = DhK-1® (5.17) 
F = DhK-lD-DmK-1 (5.18) 
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where $ is a real diagonal matrix with arbitrary nonzero elements, we have 

NCR(Z) = S = diag [</>!,..., c6m] (5.19) 

DCR(Z) = Iz + Y. (5.20) 

U(z) = K~l$. (5.21) 

Then 

Tc(z) = NCR(Z) DCR(Z) = diag [</>j/(z + a),..., <j>m/(z + am)] (5.22) 

i. e. it is a diagonal matrix and the poles of the compensated system are equal to 
Zi = —ai, for i = 1,2, . . . ,m. • 

Cons t ruc t ion 

Given A, B, C and S. Find F and G. 

Step 1. Find the standard right matrix fraction description and the standard left 
matrix fraction description of the open-loop system (2.1) 

T(z) = C(Iz -Ay'B = NR(z)D^(z) = D~L
x(z) NL(z). 

The column degrees of the matrix DR(Z) and the row degrees of the matrix -DL(z) 
are the reachability indices and the observability indices of the open-loop system 
respectively. 

Step 2. Check the condition of Theorem 5.2. If this condition is satisfied go to 
Step 3. If not go to Step 4. 

Step 3. Find the constant solution over JR for G~l and G~lF of the linear diophan-
tine equation (5.7). (This solution is given by (5.17) and (5.18).) 

Step 4. Our problem has no solution. 

6. CONCLUSIONS 

In this paper a system-theoretic approach is developed for the solution of the prob
lem of decoupling with arbitrary pole assignment by constant output feedback and 
a nonsingular input transformation. In particular it has been proved that the above 
problem has a solution if, and only if all the reachability indices and all the observ
ability indices of the open-loop system are equal to one. Furthermore a procedure is 
given for the construction of the constant output feedback which solves the problem 
of decoupling with arbitrary pole assignment. 

(Received September 20, 2000.) 
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