
K Y B E R N E T I K A — VOLUME 38 (2002) , NUMBER 1, P A G E S 6 7 - 8 0

TUNING THE ZHU-TAKAOKA STRING MATCHING
ALGORITHM AND EXPERIMENTAL RESULTS

THOMAS BERRY AND SOMASUNDARAM RAVINDRAN

In this paper we present experimental results for string matching algorithms which have
a competitive theoretical worst case run time complexity. Of these algorithms a few are
already famous for their speed in practice, such as the Boyer-Moore and its derivatives.
We chose to evaluate the algorithms by counting the number of comparisons made and
by timing how long they took to complete a given search. Using the experimental results
we were able to introduce a new string matching algorithm and compared it with the
existing algorithms by experimentation. These experimental results clearly show that the
new algorithm is more efficient than the existing algorithms for our chosen data sets. Using
the chosen data sets over 1,500,000 separate tests were conducted to determine the most
efficient algorithm.

1. I N T R O D U C T I O N

Many promising da ta structures and algorithms discovered by the theoretical com
munity are never implemented or tested at all. Moreover, theoretical analysis
(asymptotic worst-case running time) will show only how algorithms are likely to
perform in practice, but they are not sufficiently accurate to predict actual perfor
mance . In this paper we show tha t by considerable experimentation and fine-tuning
of the algorithms we can get the most out of a theoretical idea.

The string matching problem [8] has at t racted a lot of interest throughout the his
tory of computer science, and is crucial to the computing industry. String matching
is finding an occurrence of a pat tern string in a larger string of text. This problem
arises in many computer packages in the form of spell checkers, search engines on
the internet, find utilities on various machines, matching of DNA strands and so on.

Existing string matching algorithms which are known to be fast are described in
the next section. Experimental results for these algorithms are given the following
section. From the findings of the experimental results we identify two fast algorithms.
We combine these two algorithms and introduce a new algorithm. We compare the
new algorithm with the existing algorithms by experimentation.

68 T. BERRY AND S. RAVINDRAN

2. THE STRING MATCHING ALGORITHMS

String matching algorithms work as follows. First the pattern of length m, P [l . . . m],
is aligned with the extreme left of the text of length n, T[l . . . n]. Then the pattern
characters are compared with the text characters. The algorithms can vary in the
order in which the comparisons are made. After a mismatch is found the pattern
is shifted to the right and the distance the pattern can be shifted is determined
by the algorithm that is being used. It is this shifting procedure and the speed at
which a mismatch is found which is the main difference between the string matching
algorithms.

In the Naive or Brute Force (BF) algorithm, the pattern is aligned with the ex
treme left of the text characters and corresponding pairs of characters are compared
from left to right. This process continues until either the pattern is exhausted or
a mismatch is found. Then the pattern is shifted one place to the right and the
pattern characters are again compared with the corresponding text characters from
left to right until either the text is exhausted or a full match is obtained. This
algorithm can be very slow. Consider the worst case when both pattern and text
are all a's followed by a b. The total number of comparisons in the worst case is
0(nm). However, this worst case example is not one that occurs often in natural
language text.

The number of comparisons can be reduced by moving the pattern to the right
by more than one position when a mismatch is found. This is the idea behind
the Knuth-Morris-Pratt (KMP) algorithm [12]. The KMP algorithm starts and
compares the characters from left to right the same as the BF algorithm. When a
mismatch occurs the KMP algorithm moves the pattern to the right by maintaining
the longest overlap of a prefix of the pattern with a suffix of the part of the text
that has matched the pattern so far. After a shift, the pattern character compared
against the mismatched text character has to be different from the pattern character
that mismatched. The KMP algorithm takes at most 2n character comparisons. The
KMP algorithm does 0(m-\-n) operations in the worst case.

The Boyer-Moore (BM) algorithm [3, 19] differs in one main feature from the
algorithms already discussed. Instead of the characters being compared from left to
right, in the BM algorithm the characters are compared from right to left starting
with the rightmost character of the pattern. In a case of mismatch it uses two
functions, last occurrence function and good suffix function and shifts the pattern
by the maximum number of positions computed by these functions. The good suffix
function returns the number of positions for moving the pattern to the right by
the least amount, so as to align the already matched characters with any other
substring in the pattern that are identical. The number of positions returned by
the last occurrence function determines the rightmost occurrence of the mismatched
text character in the pattern. If the text character does not appear in the pattern
then the last occurrence function returns m. The worst case time complexity of the
BM algorithm is 0(nm).

The Turbo Boyer-Moore (TBM) algorithm [6] and the Apostolico-Giancarlo
(AG) algorithm [7] are amelioration's of the BM algorithm. When a partial match
is made between the pattern and the text these algorithms remember the characters

Tuning the Zhu-Takaoka String Matching Algorithm and Experimental Results 69

that matched and do not compare them again with the text. The TBM algorithm
and the Apostolico-Giancarlo algorithm perform in the worst case at most 2n and
1.5n character comparisons respectively.

The Horspool (HOR) algorithm [10] is a simplification of the BM algorithm.
It does not use the good suffix function, but uses a modified version of the last
occurrence function. The modified last occurrence function determines the right
most occurrence of the (k + m)th text character, T[k + m] in the pattern, if a
mismatch occurs when a pattern is aligned with T[k...k + m]. The comparison
order is not described in [10]. We assumed that the order is from right to left as in
the BM algorithm.

The Raita (RAI) algorithm [15] uses variables to represent the first, middle and
last characters of the pattern. The process used is to compare the rightmost char
acter of the pattern, then the leftmost character, then the middle character and
then the rest of the characters from the second to the (m — l)th position. Using
variables is more efficient than looking up the characters in the pattern array. The
use of variables to represent characters in the array is known as 'Raita's trick'. This
optimization trick is only used in the RAI algorithm. If at any time during the
procedure a mismatch occurs then it performs the shift as in the HOR algorithm.

The Quicksearch (QS) algorithm [18] is similar to the HOR algorithm and the
RAI algorithm. It does not use the good suffix function to compute the shifts. It uses
a modified version of the last occurrence function. Assume that a pattern is aligned
with the text characters T[k ... k + m]. After a mismatch the length of the shift is
at least one. So, the character at the next position in the text after the alignment
(T[k + m + 1]) is necessarily involved in the next attempt. The last occurrence
function determines the right most occurrence of T[k + m + 1] in the pattern. If
T[A: + m + 1] is not in the pattern the pattern can be shifted by m + 1 positions.
The comparisons between text and pattern characters during each attempt can be
done in any order.

The Maximal Shift (MS) algorithm [18] is another variant of the QS algorithm.
The algorithm is designed in such a way that the pattern characters are compared
in the order which will give the maximum shift if a mismatch occurs.

The Liu, Du and Ishi (LDI) algorithm [13] is a variant of the QS algorithm. The
algorithm uses the same shifting function as the QS but changes the order in which
the pattern characters are compared to the text. The characters are compared in
a circular method starting at the first character in the pattern and finishing at the
last. If a mismatch occurs then the pattern is shifted and searching restarts with
the pattern character that mismatched. For example, if the pattern was 'string'
and the pattern mismatched the text at the V then we would search in the order
(ringst\

The Smith (SMI) algorithm [16] uses HOR and Quick Search last occurrence
functions. When a mismatch occurs, it takes the maximum values between these
functions. The characters are compared from left to right.

The Zhu and Takaoka (ZT) algorithm [20] is another variant of the BM algorithm.
The comparisons are done in the same way as BM (i. e. from right to left) and it uses
the good suffix function. If a mismatch occurs at T[i], the last occurrence function

70 T. BERRY AND S. RAVINDRAN

determines the right most occurrence of T[i — 1 . . .i] in the pattern. If the substring
is in the pattern, the pattern and text are aligned at these two characters for the
next attempt. The shift is m, if the two character substring is not in the pattern.
The shift table is a two dimensional array of size alphabet size by alphabet size.

The Baeza-Yates (BY) algorithm is similar to the ZT algorithm. It calculates
the shift according to the last k characters of the pattern aligned with the text.
When k—2 the shifts are the same as ZT but without the good suffix function. The
main differences are constructing and storing the shift table. The shift table is a
one dimensional array of length cr2, where a is the size of the alphabet. The table is
constructed by bit shifting the two characters to form a 16 bit number and storing
the value of the shift at this location in the array.

Searching can be done in 0(n) time using a minimal Deterministic Finite Automa
ton (DFA) [9, 14]. This algorithm uses 0(am) space and 0(m -F a) pre-processing
time.

The pre-processing is needed for the algorithm to calculate the relevant shifts
upon a mismatch/match except for the BF algorithm, which has no pre-processing.
The pre-processing cost of the algorithms is important factor in the speed of the
algorithm with regard to the number of operations required and the amount of
memory required. This will be most noticeable when we are searching in smaller
texts.

3. EXPERIMENTAL RESULTS OF THE EXISTING ALGORITHMS

Monitoring the number of comparisons performed by each algorithm was chosen as
a way to compare the algorithms. All the algorithms were coded in C and their C
code are taken from [4] and animation's of the algorithms can be found at [5]. This
collection of string matching algorithms were easy to implement as functions into
our main control program. The algorithms were coded as their authors had devised
them in their papers. The main control program read in the text and pattern and
had one of the algorithms to be tested inserted into it for the searching process. The
main control program was the same for each algorithm and so did not affect the
performance of the algorithms. Each algorithm had an integer counter inserted into
it, to count the number of comparisons made between the pattern and the text. The
counter was incremented by one each time a comparison was made. Note that text
characters compared when calculating the valid shift are not included.

A random text of 200,000 words from the UNIX English dictionary was used
for the first set of experiments. We decided to number each of the words in UNIX
dictionary from 1 to 25,000. Then we used a pseudo random number generator to
pick words from the UNIX dictionary and place them in the random text. Separating
each word by a space character. Punctuation was also removed as we were concerned
with finding words and the punctuation would not effect the results obtained. We
selected a word (pattern) from the UNIX dictionary and searched the text for the
first occurrence of the word.

The text was searched for each word in the UNIX dictionary and the results
are given in Table 1. The first column in Table 1 is the length of the pattern.

Tuning the Zhu-Takaoka String Matching Algorithm and Experimental Results 71

The second column is the number of words of that length in the UNIX English
dictionary. For example, for a pattern length of 7, 4042 test cases were carried
out and the average number of character comparisons made by the KMP algorithm
was 197,000 (to the nearest 1000). The average was calculated by taking the total
number of comparisons performed to find all 4042 cases and dividing this number
by 4042. The figure given is the total number of comparisons taken divided by the
number of words for the pattern length and then divided by 1000.These columns are
arranged in descending order of the average of the total number of comparisons of
the algorithms. An interesting observation is that for (almost) each row the values
are in descending order except for the last two columns.

Table 1. The number of comparisons in 1000's for searching a text
of 200,000 words (1670005 characters).

p. len num. BF K M P DFA BY B M AG HOR RAI T B M мs LDI QS ZT SMI

2 133 7 7 7 7 3 3 3 3 3 2 2 2 3 2

3 765 38 38 37 19 13 13 13 13 13 11 10 10 13 10

4 2178 82 82 80 28 23 23 23 23 22 19 19 19 22 18

5 3146 151 150 145 39 34 34 34 34 34 30 30 30 32 28

6 3852 186 185 179 38 36 36 36 36 36 33 33 32 33 30

7 4042 198 197 191 34 34 34 34 34 34 32 31 31 30 28

8 3607 205 204 197 30 32 32 31 32 31 30 29 29 27 26

9 3088 212 211 204 28 30 30 30 30 30 29 28 28 25 24

10 1971 220 219 212 26 29 29 29 29 29 28 27 27 24 23

11 1120 209 207 201 22 26 26 26 26 25 25 24 24 21 21

12 593 218 217 210 21 25 25 25 25 25 24 24 24 21 20

13 279 224 222 215 20 24 24 24 24 24 23 24 23 19 19

14 116 228 227 220 19 23 23 23 23 23 23 23 23 19 19

15 44 151 150 144 11 15 15 15 15 14 14 14 14 11 12

16 17 227 225 217 16 20 21 21 21 20 20 21 20 18 16

17 7 233 231 222 16 20 20 20 20 19 19 20 20 15 16

18 4 236 234 225 15 19 20 20 20 19 19 20 20 14 16

19 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

20 1 132 131 122 7 10 10 10 10 10 10 10 10 7 8

21 2 311 309 295 16 24 24 25 25 23 23 24 24 15 18

22 1 491 486 455 23 33 33 33 33 33 31 34 34 22 27

Total 24966 180 179 174 31 31 31 30 30 30 28 28 28 27 25

The algorithm with the largest number of comparisons is the B F algorithm. This
is because the algorithm shifts the pattern by one place to the right when a mismatch
occurs, no matter how much of a partial/full match has been made. This algorithm
has a quadratic worst case time complexity. However, the KMP algorithm, which has
a linear worst case time complexity, does roughly the same number of comparisons
as the BF algorithm. The reason for this is that in a natural language a multiple
occurrence of a substring in a word is not common. Other linear time algorithms,
DFA, also have roughly the same number of comparisons as the BF algorithm.
We will see below that the other quadratic worst case time complexity algorithms
perform much better than these linear worst case time algorithms. This is a good
example showing that asymptotic worst-case running time analysis can be indicative
of how algorithms are likely to perform in practice, but they are not sufficiently
accurate to predict actual performance.

72 T. BERRY AND S. RAVINDRAN

The BM algorithm uses the good suffix function to calculate the shift which
depends on a reoccurrence of a substring in a word. But, it also uses the last
occurrence function. It is this last occurrence function that reduces the number of
comparisons significantly. In practice, on an English text, the BM algorithm is three
or more times faster than the KMP algorithm [17]. From Table], one can see that
the KMP algorithm takes six times as many comparisons than the BM algorithm
on average. The other algorithms, BY, TBM, AG, HOR, RAI, LDI, QS, MS, SMI
and ZT, are variants of the BM algorithm. The number of comparisons for these
algorithms is roughly the same number as in the BM algorithm.

The SMI algorithm and the ZT algorithm do the least number of comparisons for
pattern lengths less than or equal to twelve and greater than twelve respectively.

4. THE NEW ALGORITHM (BR)

From the findings of the experimental results discussed in Section 3, it is clear that
the SMI and ZT algorithms have the lowest number of comparisons among the others.
We combined the calculations of a valid shift in QS and ZT algorithms to produce
a more efficient algorithm, the BR algorithm [21]. If a mismatch occurs when the
pattern P[l . . . m] is aligned with the text T[k.., k + m], the shift is calculated by
the rightmost occurrence of the substring T[k + m + l... k + m + 2] in the pattern. If
the substring is in the pattern then the pattern and text are aligned at this substring
for the next attempt. This can be done shifting the pattern as shown in the table
below. Let * be a wildcard character that is any character in the ASCII set. Note
that if T[k + m + l...k + m + 2] is not in the pattern, the pattern is shifted by m + 2
positions.

T[k + m + 1] T[k + m + 2] sыñ
*
pи
P[m]

P[l]
P[i + 1]
*

Otherwise

m + 1
m — i + 1, 1 < i < m — 1
1
m + 2

For example, the following shifts would be associated with the pattern, 'onion'.

T[k + m + 1] T[k + m + 2] Shift
* o 6
0 n 5
n i 4
i 0 3
0 n 2
n * 1

Otherwise 7

After a mismatch the calculation of a shift in our new algorithm takes 0(1) time.
Note that for the substrings 'ni' and 'n*' have a value of 4 and 1 respectively. This
ambiguity can be solved by the higher shift value being overwritten with the lower
value. We will explain this later in this section. For a given pattern P[l . . .m]

Tuning the Zhu-Takaoka String Matching Algorithm and Experimental Results 73

the preprocessing is done as follows, and it takes 0 (m 2 + a) time, where a is the
size of the alphabet. The two dimensional array, ST (Shift Table), of size at most
m + 1 x m + 1 will store the shift values for all pairs of characters. The ST will be
initialised as m + 2. As the index of the ST is of type integer, we need to convert the
pairs of characters into pairs of integers. This is done by defining an array of ASCII
character set size called CON with each entry initialised to 1. For each character
in the pattern the right most position (numbering from the right, starting with 2)
is entered in the corresponding location in CON. For example, the relative position
of the character 'a' in the ASCII set is 97. Assume that the character 'a' is in the
pattern. The right most position of 'a' in the pattern is entered in CON[97].

If the pattern was the word 'onion' then the rightmost positions of n, o and i are
2, 3 and 4 respectively. The CON for 'onion' would look like this:

Character:
ASCII value:
CON:

a b ... h i j
97 98 ... 104 105 106
1 1 ... 1 4 1

n o p
110 111 112
2 3 1

The value of a shift for the pair T[fc+m+l] and T[A:+m+2] is ST(CON[T[fc+m+l]],
CON[T[fc + ro + l]]).

All the entries in the ST will be initialised as 7, and the above shift values will
be entered as follows.

[wildcard] [o] = 6

[o] [n] = 5

MM = 4

[•1[o]=3
[o] [n] = 2
[n] [wildcard] = 1

The ST for the pattern 'onion' would look like this after the complete insertion
of all the values.

1 2 3 4
1 7 7 6 7
2 1 1 1 1
3 7 2 6 7
4 7 7 3 7

The order of performing the steps is important in ensuring the correct values
appear in ST. Note that the higher values have been over written by the lower
values. We search for the pattern starting at P[m] and searching from right to left
finish at P[l]

We now give an example of our new algorithm in action to find the pattern 'onion'.
The tables above, ST and CON for the pattern 'onion' were used to calculate the
shift after a mismatch.

W e w a n t t 0 t e s t w i t h 0 n i 0 n

0 n i 0 n

mismatch shift on ST(CON[n], CON[t]) = ST(2, 1) = 1

74 T. BERRY AND S. RAVINDRAN

W e W a n 1 t t 0 t e s t W i t h o n i o n

=
0 n i o n

mismatch shift on ST(Con [t]], CON[]) = ST(1, 1) = 7.

W e W a n t t o t e s t ! W] L t h o n i o n

r' o n i o n

mismatch shift on ST(CON[s], CON[t]) = ST(1, 1) = 7

W e W a n t t o 1 u e s t W i t h 0 n i o n

ф
C > n i 0 n

mismatch shift on ST(CON[], CON[o]) = ST(1, 3) = 6

W e W a n t t o t e s t W i t h c) n i o n

= = = =
1 2 3 4

c) n i o n

So the word onion is found in 10 comparisons in a text of length 26. On the above
full match, the order in which the comparisons are conducted is shown on the third
row.

5. EXPERIMENTAL RESULTS AND COMPARISONS
WITH THE BR ALGORITHM

We select the best eight algorithms from the results in Table 1, the BM algorithm and
the KMP algorithm, and compare with our BR algorithm. Experiments were carried
out for different random texts as described in Section 3. There were 2 different texts
of 10,000 words (Texts A and B), a text of 50,000 words and a text of 100,000 words.
The results are described in Tables A1-A4 (see Appendix) respectively. Tables 3-6
(which can be found in the appendix at the back of this paper) show the average
number of comparisons required for a search for the given pattern length. They are
based on taking the total number of comparisons for the search for all the patterns
of a length and dividing the number by the number of patterns of that size to give
the average. So for example, in Table 3 the BM algorithm takes 12,000 comparisons
(to the nearest thousand) on average if the pattern length is seven. Prom these
tables one can observe that the relative order of their performance is the same as in
Table 1. The main observation is that the BR algorithm performs better than the
other algorithms for all pattern lengths and for all texts used in the experiments.

Table 2 summarises the results of Tables Al-A4. The entries in Table 2 are in
percentage form and describe how many more comparisons existing algorithms did
than our BR algorithm. The figures are an average of the four different texts used. To

Tuning the Zhu-Takaoka String Matching Algorithm and Experimental Results 75

calculate the difference as a percentage between our BR algorithm and the existing
algorithms we used the following formula. The average number of comparisons
was taken from the relevant cell in Tables A1-A4 and divided by the value for
that pattern length for our BR algorithm. This value was then deducted by 1 and
multiplied by 100 to give the percentage difference between the two algorithms.
An interesting observation of the existing algorithms when compared with the BR
algorithm, is that for each individual text the percentages were within 1 % for each
specific algorithm. Each value in Table 2 is calculated by taking the difference as a
percentage between each algorithm and our BR algorithm for each pattern length,
adding them together and dividing by 4. For example, for a pattern length of 4 the
BM algorithm takes on average 51.11% more comparisons than our BR algorithm.
Note that the figures only include direct comparisons between the text and the
pattern and not any text comparisons made during the calculation of a shift.

Table 2. The average (of Tables A1-A4) percentage difference
in the number of comparisons between existing algorithms and the BR algorithm.

pat . len . num . KMP BM HOR RAI TBM MS LDI QS ZT SMI
2 133 199.98 93.96 94.00 93.96 93.89 35.94 37.23 32.92 93.96 31.48
3 765 366.02 64.18 64.20 64.19 63.70 28.78 32.90 28.21 60.03 24.93
4 2178 449.02 51.11 50.86 50.90 50.77 28.25 31.09 25.77 43.19 19.73
5 3146 540.11 45.02 44.58 44.46 44.72 28.33 31.57 26.47 33.91 18.13
6 3852 626.30 42.42 41.83 41.68 41.91 30.02 32.38 27.32 27.71 16.42
7 4042 719.01 41.38 40.92 41.00 40.72 31.49 33.58 28.83 24.94 16.08
8 3607 807.61 40.58 40.28 40.35 39.95 32.27 34.99 30.10 21.67 15.49
9 3088 896.18 41.52 40.92 40.84 40.69 34.75 37.13 32.19 19.29 15.45

10 1971 982.63 42.19 41.69 41.79 41.16 36.62 39.31 34.37 17.75 15.64
11 1120 1067.87 44.14 43.67 43.79 42.97 38.57 42.14 37.18 17.06 16.32
12 593 1164.14 45.28 44.58 44.68 44.20 40.06 44.38 39.28 16.14 17.34
13 279 1245.53 47.88 47.22 47.32 46.36 42.26 46.69 41.61 12.65 17.54
14 116 1322.70 46.74 46.46 46.60 45.16 42.62 48.68 42.26 11.32 17.03
15 44 1426.02 51.20 51.51 51.59 49.23 44.73 52.89 45.29 8.72 19.00
16 17 1527.28 49.34 50.44 50.60 47.37 46.60 52.95 49.06 24.80 20.02
17 7 1598.50 45.29 44.51 44.58 43.42 40.22 50.20 45.01 6.72 16.95
18 4 1700.81 50.58 53.96 54.06 48.54 50.12 59.06 53.59 6.09 22.21
19 0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
20 1 1948.74 58.37 58.12 58.07 58.37 52.25 72.62 63.51 3.01 29.43
21 2 1947.96 57.38 63.98 63.99 56.32 57.59 64.09 57.50 2.22 21.84
22 1 2129.14 50.97 49.87 49.89 50.97 45.07 66.54 55.43 1.04 25.09

Total 24992 737.56 43.29 42.83 42.82 42.65 32.00 34.59 29.72 26.09 16.66

The result of a full search for the dictionary over all four texts is given in the
last row of Table 2. From this we can see that the BM algorithm is took on average
43.54% more comparisons than our BR algorithm (see 5th column, last row) for a
complete search for all the words in the dictionary.

We also measure the user time for these algorithms as the saving in the number
of comparisons may be paid for by some extra overhead operations. We timed the
search of bookl of for all occurrences of 500 words from the UNIX dictionary. The
words are of length 2 to 11 and there are 50 words of each length. The words were
chosen at random from the UNIX dictionary. We show the average length of a
shift performed by each algorithm in the second column. The percentage difference

76 T. BERRY AND S. RAVINDRAN

between the existing algorithms and the BR algorithm is shown in the third column.
We used a 486-DX66 with 32 megabytes of RAM and a 100 megabyte hard drive
running SUSE 5.2. The user time includes the time taken for any pre-processing and
the reading of the text into memory. Each algorithm was evaluated ten times for
and the average time taken is given in Table 3. The timing was accurate to 1/100 of
a second but was rounded to the nearest second. The difference between the slowest
and fastest time for each test for an algorithm was less than 0.2 of a second. The last
column shows the percentage difference of the user time between existing algorithms
and the BR algorithm.

Table 3. The average shift and the user time in seconds.

Algorithm average shift % difference time in secs. % difference
BF 1.00 708.00 3402 315.89

KMP 1.00 708.00 4727 477.87
DFA 1.00 708.00 3057 273.72

BY 5.61 44.03 987 20.66
BM 5.76 40.28 1518 85.57
AG 5.65 43.01 4396 437.41

HOR 5.72 41.26 1042 27.38
RAI 5.72 41.26 865 5.75
MS 6.40 26.25 1237 51.22

LDI 6.34 27.44 1115 36.31
QS 6.49 24.50 1094 33.74
ZT 6.38 26.65 1874 129.Ю

TBM 5.57 45.06 2240 173.84
SMI 7.11 13.64 1186 44.99
BR 8.08 N/A 818 N/A

If we list the algorithms in order of the average shift that they take from the
highest to the lowest starting at the BM, we will get: BM, LDI, ZT, QS, MS, SMI
and the BR. But, if we do the same for the timings we get BM, MS, SMI, LDI,
QS, HOR, BY, RAI and the BR. The reason for the difference in the lists is due to
overheads in traversing the data structures which are present in the algorithms for
the calculation of the correct shift value. Therefore, we can not assume that because
an algorithm has a higher average shift that it will be more efficient than another.

We then considered eight other texts, 'Book2', 'news' and the six papers from the
Calgary corpus [22]. The number of words and the number of characters of these
texts are shown in Table 5. We searched for the same 500 random words from the
UNIX dictionary for the BM, BR, BY, HOR, LDI, QS, RAI, and SMI algorithms.
The reason for using different texts of different sizes was to check that the pre
processing of the BR didn't become too expensive as the text became smaller in
size. We also needed to check that the distribution of the characters in the text
didn't effect the speed of the BR algorithm.

The results documented in Table 4 show that the BR algorithm is the faster than
the existing algorithms for when the text is large. The RAI algorithm is the fastest
algorithm for texts 'paper 4' and 'paper 5'. This is due to the time for the pre
processing in BR which is not as dominant in the RAI algorithm. The tests were
carried out for a wide range of text sizes as shown in Table 5. The main reason for
the speed of our BR algorithm is the improved maximum shift of m+2.

Tuning the Zhu-Takaoka String Matching Algorithm and Experimental Results 77

Table 4. User times in seconds for the eight chosen texts.

BM BR BY HOR LDI QS RAI SMI BNR ZHU
Paper 1 103.7 56.0 68.2 71.3 76.6 74.7 59.3 81.3 56.3 169.9
Paper 2 161.8 86.8 106.2 111.2 120.1 116.9 92.4 126.5 87.3 247.1
Paper 3 93.2 50.1 61.2 64.0 69.2 67.4 53.3 72.8 50.4 164.9
Paper 4 26.7 15.5 17.6 18.2 19.8 19.2 15.1 20.9 15.6 85.5
Paper 5 23.3 13.9 15.7 16.2 17.8 17.1 13.5 18.7 14.0 82.2
Paper 6 74.2 40.2 48.7 51.0 54.5 53.2 42.4 58.2 40.4 143.3
Book 2 1195.0 639.0 784.0 820.0 884.0 862.0 681.0 934.0 642.0 1485.0

News 727.0 391.0 476.0 498.0 533.0 520.0 414.0 570.5 393.0 862.0

Table 5. The number of words and characters of the texts
used in Table 4.

number of woгds number of characters
Paper l 8512 53162
Paper2 13830 82205
PaperЗ 7220 47139
PaperA 2167 13292
Paperô 2100 11960
Paperб 6754 38111
Bookl 139994 773635
Book2 101221 610856
News 53940 37711

6. CONCLUSIONS

The experimental results show that the BR algorithm is more efficient than the
existing algorithms in practice for most of our chosen data sets. Over our 4 random
texts and 9 real texts where the BR algorithm is compared to the existing algorithms,
our algorithm is more efficient for all but two of the texts. With the addition of
punctuation and capital letters it does not affect the BR algorithm. So in the real
world we would expect our savings to remain and make our BR algorithm competitive
with the existing algorithms. It is also possible to apply some of our findings to what
makes a fast algorithm to the existing algorithms. This may make them faster but
we were concerned with the original algorithms that were devised by their authors.

ACKNOWLEDGEMENTS

We wish to thank Carl Bamford for comments and suggestions made to us during the
writing of this paper.

(Received May 16, 2000.)

APPENDIX

The figure given in each table is the total number of comparisons taken divided by
the number of words for the pattern length and then divided by 1000.

78 T. BERRY AND S. RAVINDRAN

Table A l . The number of comparisons in 1000's for searching Text A
of 10,000 words (83360 characters).

p.len num K M P B M H O R RAI T B M M S LDI QS ZT SMI BR

2 133 6 3 3 3 3 2 2 2 3 2 2

3 765 20 7 7 7 7 6 6 6 7 5 4

4 2178 41 11 11 11 11 10 10 10 11 9 7

5 3146 60 14 13 13 13 12 12 12 12 11 9

6 3852 67 13 13 13 13 12 12 12 12 11 9

7 4042 68 12 12 12 12 11 11 11 10 10 8

8 3607 69 11 11 11 11 10 10 10 9 9 7

9 3088 70 10 10 10 10 9 9 9 8 8 7

10 1971 71 9 9 9 9 9 9 9 8 8 6

11 1120 70 9 9 9 9 8 8 8 7 7 6

12 593 70 8 8 8 8 8 8 8 6 7 5

13 279 72 8 . 8 8 8 8 8 8 6 6 5

14 116 69 7 7 7 7 7 7 7 5 6 5

15 44 72 7 7 7 7 7 7 7 5 6 5

16 17 70 6 6 6 6 6 6 6 5 5 4

17 7 75 7 7 7 6 6 6 6 5 5 4

18 4 87 7 7 7 7 7 7 7 5 6 5

19 0 0 0 0 0 0 0 0 0 0 0 0

20 1 89 7 7 7 7 7 7 7 4 5 4

21 2 88 7 7 .7 7 6 7 7 4 5 4

22 1 89 6 6 6 6 6 6 6 4 5 4

Total 24966 64 11 11 11 11 10 10 10 10 9 7

Table A 2 . The number of comparisons in 1000's for searching Text B
of 10,000 words (83425 characters).

p. len Num K M P B M H O R RAI T B M мs LDI QS ZT SMI BR

2 133 6 3 3 3 3 2 2 2 3 2 2

3 765 21 7 7 7 7 6 6 6 7 6 4

4 2178 42 12 12 12 12 10 10 10 11 9 7

5 3146 59 13 13 13 13 12 12 12 12 11 9

6 3852 66 13 13 13 13 12 12 12 11 11 9

7 4042 68 12 12 12 12 11 11 11 10 10 8

8 3607 69 11 11 11 11 10 10 10 9 9 7

9 3088 70 10 10 10 10 9 9 9 8 8 7

10 1971 71 9 9 9 9 9 9 9 8 8 6

11 1120 70 9 9 9 9 8 8 8 7 7 6

12 593 71 8 8 8 8 8 8 8 6 7 5

13 279 71 8 8 8 8 8 8 7 6 6 5

14 116 70 7 7 7 7 7 7 7 6 6 5

15 44 64 6 6 6 6 6 6 6 5 5 4

16 17 74 7 7 7 7 7 7 7 5 5 4

17 7 64 6 6 6 6 5 6 6 4 4 4

18 4 87 7 7 7 7 7 7 7 5 6 5

19 0 0 0 0 0 0 0 0 0 0 0 0

20 1 41 3 3 3 3 3 3 3 2 3 2

21 2 72 5 6 6 5 5 6 5 4 4 3

22 1 89 6 6 6 6 6 6 6 4 5 4

Total 24966 63 11 11 11 11 10 10 10 10 9 7

Tuning the Zhu-Takaoka String Matching Algorithm and Experimental Results 79

Table A3 . The number of comparisons in 1000's for searching a text
of 50,000 words (417923 characters).

p.len num KMP BM HOR RAI TBM MS LDI QS ZT SMI BR
2 133 9 6 6 6 6 4 4 4 6 4 3
3 765 37 13 13 13 13 10 10 10 13 10 8
4 2178 77 21 21 21 21 18 18 18 20 17 14
5 3146 133 30 30 30 30 27 26 26 28 25 21
6 3852 159 31 31 31 31 29 28 28 28 26 22
7 4042 170 29 29 29 29 27 27 27 26 24 21
8 3607 176 27 27 27 27 26 25 25 24 22 19
9 3088 181 26 26 26 26 25 24 24 22 21 18
10 1971 185 24 24 24 24 23 23 23 20 20 17
11 1120 184 23 23 23 23 22 22 22 18 18 16
12 593 186 21 21 21 21 21 21 20 17 17 15
13 279 183 20 20 20 20 19 19 19 15 16 14
14 116 194 20 20 20 20 19 20 19 15 16 14
15 44 164 16 16 16 16 16 16 16 12 13 11
16 17 217 20 20 20 20 20 20 20 17 16 13
17 7 172 15 15 15 14 14 15 15 11 12 10
18 4 147 12 13 13 12 12 13 13 9 10 8
19 0 0 0 0 0 0 0 0 0 0 0 0
20 1 41 3 3 3 3 3 3 3 2 3 2
21 2 221 17 18 18 17 17 17 17 11 13 10
22 1 397 27 27 27 27 26 28 28 18 22 18

Total 24966 155 27 26 26 26 24 24 24 23 22 18

Table A4 . The number of comparisons in 1000's for searching a text
of 100,000 words (834381 characters).

p. len num KMP BM HOR RAI TBM MS LDI QS ZT SMI BR
2 133 13 7 7 7 7 5 5 5 7 5 3
3 765 37 13 13 13 13 10 10 10 13 10 8
4 2178 80 22 22 22 22 19 18 18 21 17 14
5 3146 149 34 34 34 34 30 30 29 31 28 22
6 3852 182 36 36 36 36 33 32 32 33 29 24
7 4042 193 33 33 33 33 31 30 30 29 27 23
8 3607 201 31 31 31 31 29 29 29 27 26 21
9 3088 198 28 28 28 28 27 26 26 24 23 19
10 1971 198 26 26 26 26 25 25 25 22 21 18
11 1120 199 25 25 24 24 24 23 23 20 20 17
12 593 217 25 25 25 25 24 24 24 20 20 17
13 279 207 23 23 23 22 22 22 22 18 18 15
14 116 180 19 19 19 19 18 18 18 14 15 12
15 44 218 22 22 22 21 21 21 21 17 17 14
16 17 162 15 15 15 15 15 15 15 12 12 10
17 7 220 20 20 20 19 19 19 19 14 15 13
18 4 208 17 17 17 17 17 18 18 12 14 11
19 0 0 0 0 0 0 0 0 0 0 0 0
20 1 157 12 12 12 12 12 13 13 8 10 7
21 2 89 7 7 7 7 7 7 7 11 5 4
22 1 315 21 21 21 21 20 22 22 14 18 13

Total 24966 173 30 30 30 29 27 27 27 26 24 20

80 T. BERRY AND S. RAVINDRAN

REFERENCES

[1] A. Apostolico and R. Giancarlo: The Boyer-Moore-Galil string strategies revisited.
SIAM J. Comput. 15 (1986), 1, 98-105.

[2] R. A. Baeza-Yates: Improved string searching. Software - Practice and Experience 19
(1989), 3, 257-271.

[3] R. S. Boyer and J. S. Moore: A fast string searching algorithm. Comm. ACM 23 (1977),
5, 1075-1091.

[4] C. Charras and T. Lecroq: Exact string matching, available at:
http://wivw.dir.univ-rouen.fr/~ lecroq/string.ps (1998).

[5] C. Charras and T. Lecroq: Exact string matching animation in JAVA available at:
http://www. dir.univ-rouen.fr/~charras/string/ (1998).

[6] M. Crochemore, A. Czumaj, L. Gasieniec, L. Jarominek, T. Lecroq, W. Plandowski,
and W. Rytter: Speeding up two string matching algorithms. Algorithmica 12 (1994),
4, 247-267.

[7] M. Cгochemore and T. Lecroq: Tight bounds on the complexity of the Apostolico-
Giancarlo algorithm. Inform. Process. Lett. 63 (1997), 4, 195-203.
M. Crochemore and W. Rytter: Text Algorithms. Oxford University Press 1994.
C. Hancart: Analyse exacte et en moyenne ďalgorithmes de recherche ďun motif dans
un texte. These de doctorat de ľUniversite de Paris 7, 1993.

10] R. N. Horspool: Practical fast searching in strings. Software - Practice and Experience
10 (1980), 6, 501-506.

11] A. Hume and D. Sunday: Fast string searching. Software - Practice and Experience
21 (1991), 11, 1221-1248.

12] D. E. Knuth, J. H. Morris Jr., and V. R. Pratt : Fast pattern matching in strings. SIAM
J. of Comput. 6 (1980), 1, 323-350.

13] Z. Liu, X. Du and N. Ishi: An improved adaptive string searching algorithm. Software
- Practice and Experience 28 (1998), 2, 191-198.

14] B. Melichar: Approximate string matching by finite automata. In: Computer Analysis
of Images and Patterns (Lecture Notes in Computer Scince 970), Springer-Verlag,
Berlin 1995, pp. 342-349.

15] T. Raita: Tuning the Boyer-Moore-Horspool string searching algorithm. Software -
Practice and Experience 22 (1992), 10, 879-884.

16] P. D. Smith: Experiments with a very fast substring search algorithm. Software -
Practice and Experience 21 (1991), 10, 1065-1074.

17] G. V. de Smit: A comparison of three string matching algorithms. Software - Practice
and Experience 12 (1982), 57-66.

18] D.M. Sunday: A very fast substring search algorithm. Comm. ACM 33 (1990), 8,
132-142.

19] W. Rytter: A correct preprocessing algorithm for Boyer-Moore string searching. SIAM
J. Comput. 9 (1980), 509-512.

20] R. F. Zhu and T. Takaoka: On improving the average case of the Boyer-Moore string
matching algorithm. J. Inform. Process. 10 (1987), 3, 173-177.

21] The code for the BR algorithm is available at:
http://java.cms.livjm.acuk/homepage/research/cmstberr/

22] The Calgary Corpus available at:
ftp://ftp.cpscucalgary.ca/pub/projects/text.compression.corpus/

Dr. Thomas Berry, Dr. Somasundaram Ravindran, School of Computing and Mathe-
matical Sciences, Liverpool John Moores University, Byrom Street, Liverpool, LЗ ЗAF.

U.K.

e-mails: t.berryúlivjm.ac.uk, s.ravindranůlivjm.ac.uk

