
K Y B E R N E T I K A - VOLUME 37 (2001) , NUMBER 6, P A G E S 6 6 9 - 6 8 4 

SOME INVARIANT TEST PROCEDURES 
FOR DETECTION OF STRUCTURAL CHANGES; 
BEHAVIOR UNDER ALTERNATIVES1 

MARIE HusKovA 

Regression- and scale-invariant M-test procedures for detection of structural changes in 
linear regression model was developed and their limit behavior under the null hypothesis 
was studied in Huskova [9] In the present paper the limit behavior under local alternatives 
is studied. More precisely, it is shown that under local alternatives the considered test 
statistics have asymptotically normal distribution. 

1. INTRODUCTION 

The present paper is a continuation of the paper Huskova [9], where a class of M-type 
regression- and scale- invariant test statistics for detection of a change in regression 
models are developed and their limit behavior under the null hypothesis (no change) 
is studied. Here we focus on the limit behavior under alternatives. 

We consider the regression model with a change after an unknown time point mn: 

Yin = xJ/3 + xJSnI{i > mn} + eu i = 1 . . . , ra, (1.1) 

where m n ( < n), /3 = (/?i,... ,/3p)
T, Sn = (dn\,... ,Snp)

T ^ 0 are unknown param
eters, Xi = ( x a , . . . ,XiP)T, Xi\ = \,i = 1 , . . . ,n, are known design points, and 
e i , . . . , en are iid random variables with common distribution F that fulfills regu
larity conditions specified below. Here I {A} denotes the indicator of the set A. 

We write the index n with the observations Yin and the parameters mn and Sn 

because we study the limit properties as n -» oo and we assume that both mn and 
Sn are changing together with n. More precisely, we assume that, as n -» oo 

mn = [An] for some A G (0,1] (1.2) 

and 

IIM-+0. (1.3) 
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at a certain rate. Here ||.|| denotes the Euclidean norm and [a] denotes the integer 
part of a. 

Model (1.1) describes the situation where the first mn observations follow the 
linear model with the parameter /? and the remaining n — mn ones follow the linear 
regression model with the parameter /? + Sn. Such models are called two phase 
regression models. The parameter mn is usually called the change point. 

Huskova [9] developed regression- and scale-invariant M-type test for 

H0 : A = 1 against FTi : A G (0,1) (1.4) 

and derived their limit distribution under /In. The null hypothesis is saying that 
"no change has occurred" and the alternative states "a change has occurred". 

In applications one meets often the testing problem (1.4) sometimes called detec
tion of structural changes. Typically, one observes a sequence of variables and might 
be interested to know whether the possible statistical model remains the same dur
ing the whole observational period or whether the model changes at some unknown 
time point. Such problems occur in various situations, e. g. changes in hydrological 
or meteorological or econometric time series. For recent references, see, e.g. Csorgo 
and Horvath [3]. 

There are not too many results on the behavior of the test statistics for detection 
of changes in regression models under alternatives. More information about recent 
development can be found, e.g. in Horvath [4] and Csorgo and Horvath [3]. 

Here, we show that under a class of local alternatives the limit distribution of 
properly standardized test statistics is normal even if the score function depends on 
observations. 

Set 
k 

Ck=Y,*ixT> C°k=Cn-Ck, fc = l , . . . , n . (1.5) 
2 = 1 

The M-test procedures generated by a score function ip are defined as 

Tn(t/0= max {SkWriCfCniOti-^SMfiffiffl (1.6) 
p<k<n-p 

}• 
and 

T (rb a) - SUP ISjin+mWVC^S^+DtW) . . ( 

where q is a weight function and 

k 

SkW>) = Y*i1>(Yi-*TX(4>)), k = l , . . - , n (1.8) 
t = i 

and So(ip) = 0. Here /?n(V0 -s the M-estimator with the score function ^ based on 
l^i, , y n and dn(il>) is an estimator of a2(i/j) = f I/J(X)2 dF(x) with the property 

£ n M - * 2 W 0 = o p ( l ) , ™->00. (1.9) 

*the subscript [(n + l)t] should replace [nt] also in analogous definitions in HuSkova [9]. 
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It is known that 

^ ) = ̂ X>2(r.-sf3„W>)) (no) 
i=l 

has the desired property (1.9) for a quite broad spectrum of ip and local alternatives. 
However, another possible estimator is 

ЦW = ӘЦф) - m & JÇJLJJ (£ * (Қ - ,Г?.(«)) , 
(1.11) 

that has the desired property (1.9) even under more general alternatives and works 
well even for moderate sample sizes. 

However, the test statistics Tn(ip) and Tn(V>, q) are regression-invariant but gener
ally not scale-invariant. Our main aim is to study the regression- and scale-invariant 
M-tests defined in (1.6)-(1.9) with the score function X/J replaced by 

$n(-)=iK-,Kn(l-a)), (1.12) 

with 

{ x \x\<K 

(1.13) 
if sign a; \x\ > K 

and Kn(l — a) is an estimator of the (1 — a)-quantile F~l(l — a) of the distribution 
function F. Namely, we consider the estimator 

Kn(l -a) = Kn(l - a,Yn) = 1 (/3nl(l - a) - 0nl(aj) , (1.14) 

where /?ni(l — cO and (5ni(a) are the first components of the (1 — a)th and a th 
regression quantiles based on Yn = (Yi , . . . , Yn)

T. The score function ^ n was de
veloped by Jureckova and Sen [11] and is called the adaptive Huber score function. 
We should remark that ipn is an estimator of the score function ?/>(•; F - 1 ( l — a)) , 
for detail see Jureckova and Sen [11]. 

We remind the definition of the a-regression quantiles. Towards this we denote 

<j)a(x) = a-I{x<0}, xeR\ (1.15) 

pa(x) = X(/)a(x), x G i?1. (1-16) 

The a-regression quantile Pn(a) is defined as a solution v of the following minimiza
tion problem: • 

n 

mmJ^P^Yi-^Xi). (1.17) 
1=1 

If the solution is not unique we may set a rule how to choose it. 
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Large values ofTn(ipn) and T n (^ n , q) indicate that the null hypothesis is violated. 
Approximations to the critical values can be found through their limit distribution 
under the null hypothesis. For more details confer to Huskova [9]. 

In the next section the main results are formulated. The proofs are postponed to 
Section 3. 

2. MAIN RESULTS 

In this section we formulate and discuss the main assertions on the limit distribution 
of Tn(ip) and T n (^ , q) under a class of local alternative hypotheses. The assumptions 
on the distribution function F of the error terms are identical with those considered 
by Jureckova and Sen [11] while the assumptions on the design points coincide with 
those on design points for L<i procedures for detection of a change in linear models. 

We assume that the design points X{ = (xu,... ,X{P)T,i = 1 , . . . ,n, satisfy: 

(A.l) xn = 1, i = 1 , . . . ,n. 

(A.2) There exists a positive definite p x p matrix C such that limn_>oo ^C[nt] = 
tC, t G (0,1], where C is a positive definite matrix. 

(A.3) As, n -> oo, 

V 1=1 i=k+l ) 

The distribution function F of the error terms e '̂s satisfies the following set of 
assumptions: 

(B.l) F has absolutely continuous density / and finite nonzero Fisher's information 
0 < / ( / ) = H . (f'(x)lf(x))2 dF(x) < oo, / ' (*) == df(x)/dx. 

(B.2) f(-x) = f(x),xeR1. 

(B.3) 0 < f(x) < oo and f'(x) is bounded in a neighborhood of K > 0 (which will 
be specified later). 

We consider the following class of weight functions qn 

(C.l) q„(t) = (t(l - t))", t e (0,1) with r, e [0,1/2). 

We still need assumptions on the amount of the change Sn 

(D.l) as n -> oo, 
V ^ I I M - + 0 f | | 5 n | | v ^ ( l o g n ) - 1 / 2 - r c o . 

The assumption (D.l) corresponds to local alternatives but contiguous ones are 
not covered. In the following we denote 

$aA*) = ^ ' ^ - ' ( l - a)) , x 6 R1. 

Now, we formulate the main results. 
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Theorem 2.1. Let Yi n , . . . , F n n follow the model (1.1), let assumption (1.2) with 
A G (0,1) be satisfied. Moreover, let assumptions (D.l), (A.1)-(A.3), (B.1)-(B.2) 
and (B.3) with K = F _ 1 ( l - a ) for a-G (0,1/2) be satisfied. Then, the limit behavior 
of Tn(^n) is the same as that of 

{SmMa,F)(Cm\Cn(CmXl)SrnnWa,F)}la2W«,F). 

If additionally 

nV2\\8n\\
3->0 (2.1) 

is satisfied, then , as n -r co, 

(4^„K 2 (Va,F,E ) )~ 1 / 2 (T„(^„) - Zm„K2Wa,F,F)) -*d Np(0,Ip), 
V J (2.2) 

where 

fmn = &nCmnCn CmnSn, (2.3) 

^F) . d ^ ^ l . (,4, 

For the case of Tnfyn,qn) we have 

Theorem 2.2. Let the assumptions of Theorem 2.1 be satisfied. Moreover, let 
(C.l) be satisfied, then the limit distribution of Tn(^n ,g„) is the same as that of 

SmA^F)C--Smn(^F) 
V2(ll)a,F)qn(X) 

If additionally (2.1) is satisfied, then, as n —> co, 

(4K
2(Va,F,E)Cnm)"1/2 (T„(£„>9l,)(A(l - A))2" - K2(lI>a,F,F)Cnm) ->" Np(0,Ip), 

(2.5) 

where 
Cmn =&nCmnCn CmnC~ CmnC~ CmnSn. 

The proofs are postponed to the next section. 

Remark 2.1. The assertions of both theorems remain valid if ^pn is replaced by 
a score function rp(-;K) with arbitrary K > 0. The assertions hold true even for 
unbounded score function ty satisfying some smoothness assumptions, however the 
proofs become still more cumbersome. It is in fact quite^interesting that the limit 
behavior is not effected by the estimated score function ipn. 
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Remark 2.2. Notice that the limit behavior under alternatives is completely dif
ferent from that under the null one given in Huskova [9]. 

Remark 2.3. It can be seen from the proof that under the alternatives the sin
gle terms in Tn(ij)) can be decomposed into a random and nonrandom part. The 
nonrandom part dominates the random one. Moreover, the nonrandom part as a 
function of k attains its maximum just for k = m and hence the limit behavior is 
determined by the term for k = m. Checking the proofs one can find that the index 
ran for which a max is reached is a consistent estimator of the change point ran, 
which means that together with testing one can also estimate the location of the 
change. 

Remark 2.4. By Theorem 2.1 and Theorem 2.2 in Huskova [9] the critical regions 
with asymptotic level a based on the limit distribution of Tn(ilJn) and Tn(iljn]qn) 
under the null hypothesis are 

y/2\og\ogn(Tn(^n))
ll2 (2.6) 

> - log log ((1 - a ) " 1 / 2 ) 4- 2 log log n + | log log log n - \og(2T(p/2)) 

and 

(Tn($n,qn))
1/2>bp(l-a,qv), (2.7) 

respectively, where T(p) = J0°° tp~x exp{-£} dt and bp(l — a,qn) is the quantile of 
f (~~p B2(t))1/21 

sup0<t<i i i=l"(t) \ w i t h { f liC); * € (0,1)}, j = 1 , . . . ,p being independent 

Brownian bridges. While the critical region (2.6) is easy to calculate, the quantile 
bp(l — a,qn) is explicitly known only for some particular cases, e.g. for r\ = 0. In 
most cases bp(l — a,qn) has to be simulated; for more information see Csorgo and 
Horvath [3]. By Theorem 2.1. we find that under the considered alternatives 

Tn$n) = nSlCSnK
2(^F,F)\(l - A)(l + oP(l)) 

and by the assumption (D.l) the right hand side tends to 00 faster then log log n and 
therefore the test with critical region (2.6) is consistent. Similarly, by Theorem 2.2 

Tn($n,qv) = n8lCSnK
2(^a>F,F)(X(l - X))2^-^(l + oP(l)) 

and hence the test with critical region (2.7) is also consistent. 

3. PROOFS 

.To prove Theorems 2.1-2.2 we have to use a number of results proved elsewhere 
and also we have to derive a number of generalization of results connected mostly 
with the so called asymptotic linearity. These results are interesting of its own. 

For simplicity we will write I/J instead of ^(-; K) whenever possible. 
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We start with various asymptotic linearity results. We give the proof of the first 
one and skip the proofs of the others for they are quite close. The proofs are quite 
technical and we try to give their essence and to avoid too many technicalities. We 
set 

Ani(í) = SnI{i >m}- Cn
lCm8n - qnt, t Є Rv (3.1) 

Lemma 3.1. Let assumptions of Theorem 2.1 be satisfied and let qn —> 0. Then 
for any c G (0,1), as n -> oo 

max sup —j= 
l<k<CП| | t | |<£) y/k 

A» 

]TXi (^(ei+xjAni(t)) - xj>(ei) 

-Eý(ei+xjAni(t)))\\ 

(3.2) 

= 0P((\\Sn\\ + Ы ) \ / Ь g ^ ) . 

1 II H 

nax sup . J V XiU(ei+xjAni(ť))-il)(ei) 
<k<"\\t\\<DVn-k\\.fTÍ, 
max 

nc 

(3.3) 
i=к+l 

-EiP(ei+xjAni(t))) 

= Op((\\Sn\\ + \qn\)y/Í^l), 

1 
sup —= 

||Í||<D Vn 

Ý,Xi {ifii* +xjAni(t)) - V(eť) - Eý(ei+xjAni(t))) 
| i = i 

= 0P(\\Sn\\ + \qn\), 

(3.4) 

lll к 

max sup -\\EУxi(ф(ei+xjAni(t))-ф(ei)) (3.5) 
l<fc<n||ť||<D«ll ţ^ 

- {(Cк - Cm)SnI{к >m}- CкCn

lCmSn - qnCкt) IţУ(*) dF(x) 

= Op(||ín||3 + kn|3) 

and 

max sup — M E Y Xi(tl>(ei+xjAni(t))-iP(ei)) (3.6) 
i < * < » | | * | | < i j n - * : » i ^ 1 

- {C°m^k,m)Sn ~ O^On ~ 9„O°fcí) f </>'(*) dF(X) 

= Op(IIM3 + knl3) 

for any D > 0. 
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P r o o f . It is a modification of the proof of Theorem 2.1 in Huskova [6], therefore 
we give only a sketch of the proof. For fix t denote 

Zi(t) = il>(ei - xjAni(t)) - ip(ei) - Eipfa - xfAni(t)), i = 1 , . . . , n, 

where Ani(t), t £ Rp is defined by (3.6). By the Markov inequality for each t, z > 0 
and A > 0 

p(J2xvzM ^A 

< exp{-zA} I.Eexp< -z^x^Z^t) > -F.Eexp< z^x^Z^t) > J . 

Since Z{(t), i = 1 , . . . , n, are independent with zero mean and 

EZf(t)<iam{(xTAn(t))
2Di,K) 

with some Di > 0 we obtain after few standard steps for 0 < z and z = O ( 'u\\s°n+\—ry J 

X>І-*.(-) 
i=l 

>A) <2exp{-zA + z2D2k(\\6n\\2 + q2

n)} 

with some D2 > 0. We want the right hand side smaller than n v for an arbitrary 
but fixed r) > 0. This will be obtained for 

1/2 

Z = 
logn 

*(ll*»Ha + £ll-H2) 

and A > Vk(rj + I?2(||(Jn||2 + r/2), where D% > 0 is large enough (it depends neither 
on n nor on k). 

Hence for any r) > 0 and D > 0 there exist A„ > 0 and nn such that for all n >nn 

Vk 
Y^Xi (tf>(ei - xfAni(t)) - iP(ei)) - E^(e{ - xf Ani(t))) 
2 = 1 

>Av(\\8n\\ + \qn\)y/\^j <n~* 

for 1 < k < n and fixed ||t|| < D. Similarly we get 

£ z y ( Z « ( t i ) - Zi(t2)) >A\ <2exp{-zA + z^t1-t2\\
2Dsk((\\8n\\

2 + q2
n)} 

i = i / 

with some D3 > 0. To finish the proof of (3.2) we apply Theorem 12.1 of Billings-
ley [1]. The proofs of (3.3) and (3.4) can be obtained in the same way hence it is 
omitted. 

The relations (3.5)-(3.6) follow easily applying Taylor expansion and by direct 
calculations. • 
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Lemma 3.2. Let the assumptions of Theorem 2.1 be satisfied.Then for any D > 0 

sup 
HtlK-D 

52 {paid - F-'W+xfAinW) - Pa(ei - F-^a)) (3.7) 
i=l 

-xfAin(t)tpQ(ei - F-'(a) + Ain(t))) 

+lf(F-1(a)) (ST
nC°mC-lCmSn + qltTCnt) J = 0P(\\Snfn + \\Sn\\qln) 

P r o o f . The lemma is a generalization of Theorem 2.1 in Huskova [6], where we 
have particularly Ain(t) = n~lt2t. In our situation the proof can be done in the 
same way as that of the mentioned theorem and therefore is omitted. • 

Lemma 3.3. Let Yi,... ,Yn follow the model (1.1) and let assumptions (A. l )-
(A.3), (B.1)-(B.2) and (B.3(K))) for a K > 0 be satisfied. Then, as n -> oo, 

0n(l-a)-0(a) =C-1CmSn+0P(\\Sn\\2+n-1/% a e ( 0 , l ) (3.8) 

and 

PnW -0 = Cn
lC»m8n - Cn\,l(J:.FMJZ^{ei) + 0P(\\8nf + n-^\\8n\\\ 

j tp [x) at* (x) .=1 ^ 

where 0(a) = (A + F " 1 ^ ) , . . . ,/?P)T. 

P r o o f . The relation (3.8) follows from Lemma 3.2 in the same way as Theo
rem 2.4 from Theorem 2.1 in Huskova [6] therefore it is omitted. Applying (3.3) and 
(3.4) together with a standard arguments one receives that (3.9) holds true. • 

Lemma 3.4. Let the assumptions of Lemma 3.1 be satisfied. Then, as n -» oo, 

k k n 

Y,*MYi -xffinW) = E * . ^ . ) - CkCn
x J2x^ei) (3-10) 

i = l 2=1 i = l 

-Hk8nJil>'(x)dF(x) + Op (^/k\^l\\Sn\\+k\\Snf) , 

uniformly for 1 < k < m, 

52 x^(Yi - xfPnM) = 52 -^fa) - clcňl 52x^i) (3-ii) 
i = k + l i=k+l i=l 

-HkSn JrP'(x) dF(x)9 + 0P (y/(n-k)\ogn\\Sn\\ + (n- k)\\Snf) , 

uniformly for m < k < n, 

where , A n 

Hk = fCkC" m 1-k~m 

\c°kC-lCm m<k<n. 
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Moreover, 

a2
nm-;K)) - a2(i>(-;K)) = op(\) (3.12) 

d2M(-; K)) - o2W(-; K)) = Op(\\Sn\\), (3.13) 

where dn(^)) and an(ip) are defined in (1.10) and (1.11), respectively, and 

a2(il>)= I\p2(x)dF(x). 

P r o o f . Since (3.9) one can apply (3.1) and (3.4) with Ani(t) replaced by (Pn(ip) — 
0) and we observe that 

^^xrt(Yi-xjpnm = 

k n p 

= ]>>iKei) - CkC'1 £>V(e i ) - HkSn / </>'(*) dF(x) 
i = l i = l •* 

+ O p ( v
/ H ^ # n | | + * # n | | 3 ) 

uniformly for 1 < A; < ra, and (3.10) follows. Noticing that 

n k 

Y *nKYi - zJPnM) = -Y*«l>(Yi ~ *iPnW>)) 
i=k+l i=\ 

and applying (3.2) and (3.5) we get (3.11) quite similarly as (3.10). 
Now we turn to the proof of (3.13). By Lemma 3.3 in Huskova [9], as n —.> oo, 

max (Yxiф^вi) - CкCn

l үxiф(Єi) C^C^CІГ1 

~ П \І=1 І=l / 
/ к n \ 

^2XІФ(ЄІ) -CкCn

l
 Y^XІФ(ЄІ) = Op(loglogn). (3.14) 

U=l i= l 

Then using (3.10)-(3.11) and (3.14) and noticing that the first component of Xi 
equals 1 we obtain 

max 
Kк<n 

v/i°«1°š"+V^^(^°«"l|ínl1+|W')) +OP 

= 0P(n\\Sn\\
2logn), 
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where (y)\ denotes the first component of the vector y. Moreover, 

n -

Y, Erp2(ei +xiAni(t)) = n / ip(x)dF(x) + 0P 

i= l "! 

n I Tj>2(x) dF(x) + OP (n(\\Sn\\ + \qn\)). 

^ x . A n i ( í ) 
І=\ 

Also, it can be easily checked that (3.3) holds true if X/J is replaced by ip2. Combining 
these arguments together with (3.9) we find that (3.13) holds true. Property (3.12) 
of <?£ty(-, K)) can be shown in the same way and hence it is omitted. • 

L e m m a 3.5. Let assumptions of Theorem 2.1 be satisfied and let qn -> 0 and 
nn -r 0. Then for any K > 0 and any c G (0,1), as n -> oo, 

1 II * max sup sup -7= 5^a?i tyfe +xjAn;(J); K + SKU) 
l < k < c n | s | < D | | t | | < D V f c l ' ^ 

-</>fe + xTAni{t)] K)-E tyfe + xjAni(t); K + SKU) 

-il>{ei+xlAni(t)iK))) 

= 0P{\Kn\y/\ogn), 

1 II n 

max sup sup V^ X{ tyfe +xf Ani(t)]K + sKn) 
cn<k<n |S |<D n<D y/n - k II .fj^l 

- V f e + xjAni{t); K)-E tyfe + xjAni(t); K + sKn) 

-t/ ;fe + xfAni(t);iv-))) 

(3.15) 

= Op(|«n|VÍogn) 

1 II n 

sup sup —-= y^ajj (V>(ei + xf An i(ť); K + s« n ) 
M<->II*II<J> v » » £ í 

-V(ei + xf An i(í) ; K) - £ (V>(e. + xf An i(ť); K + SKn) 

-rP(ei + xjAni(t);K))) 

= 0P(\Kn\), 

(3.16) 

(3.17) 

1 * 
max sup sup -S^XÍE (ý(ei +xjAni(t);K + SKn) 

1^k<cn \s\<D \\t\\<D K f^ 

-xP(ei + xjAni(t);K)) 

= OHM3 + |Kn|(||<U+<Zn)) 
(3.18) 
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and 

i n 

max sup sup y ^ XÍE (t/»(e, +xjAni(t);K + SKn) 
cn<k<n|,|<D||t||<c n-k , ^ i 

-i>(ei+xjAni(t);K)) 

= Op(\Kn\
3 + \Kn\(\\Sn\\ + qn)) 

for any D > 0, where Ani(t) is defined in (3.6). 

(3.19) 

Proof. We follow the line of the proof of Lemma 3.1 and we point out differences 
only. Namely, in our situation for s > 0 

-0(e; K + SKU) - %l)(e\ K) — l 

sкn e < —K — sкn 

e + K —K — sкn < e < —K 

0 -K <e<K 

e-K K <e < K + sкn 

sкn e> K + sкn 

and similar expression holds also for s < 0. Then standard arguments give 

1 k 

T^E (iP(ei + xjAni(t); K + SKU) - V(e. + xj Ani(t); K)) 
І=l 

= 0(K3

n + Kn(\\Sn\\ + \qn\)) 

uniformly for 1 < k < n and 

maxE (xl)(ei + xjAni(t); K + sKn) - i/>(e. + xjAni(t); K)f = O (\s\2K2

n) . 

The rest of the proof is the same as that of Lemma 3.1. D 

Proof of T h e o r e m 2.1. At first we prove that Theorem 2.1 holds true if ipn 

is replaced by ip = ip(-] K), K > 0. 
By Lemma 3.4 Sk(ip) can be decomposed into random and nonrandom part and 

the nonrandom part dominates the random one, namely, (3.10) implies 

SkW = tk(1>) - HkSnjrP'(x) dF(x) + OP ( v ^ H | « S „ | | + fc||<Sn||
3) 

(3.20) 

uniformly for 1 < k < m, where 

k 

CfeW = YlXi^e^~CkCníJHXi^ei^ * = -»•••»' (3.21) 
І = l i = l 
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Then using (3.14) and (3.20) we have 

sIWOO* ̂ (OfcT f̂cW-) = tlMCfc^clr^M 

-2^Hfc"O-1On(O°fc)-16 W / V>'(*) dF(x) 

+6lHTCk
1Cn(Cl)-1Hk6n(f fP'(x) dF(x))2 

+0P {-j^Q ((llfc WOII + ¥n\\k) (v^gr7||5n|| + fc||<5„||3) 

+felogn||5n||
2 + fc2||(5n||

6)} 

= -26lC0
m(Cl)-^kW J^'(x)dF(x) +6T

nGk6n (J^'(x)dF(x)) 

+0P (\og\ogn+y/\og\ognVk\\6n\\3 + \\6n\\
2(yJk\ogn+\ogn)+k\\6n\\

6>j 

uniformly for 1 < k < m, where 

Gk =HkCk Cn(Ckr Hk. 

Clearly, 
Gk = -ClC-'Cl + CKClr'Cl, l<k<m, 

and therefore the sequence Gfc, 1 < k < m is monotone (natural ordering of sym
metric positive definite matrices) in fc, the maximum is attained for k = m and 

Gm = CmCn Cm. 

Moreover, by the assumption (D.l) 

^G[nt]<Srt(logn)_1 ->oo 

for any t G (0,1), while standard arguments give 

\\6lC0
m(Cl)-^k(rP)\\ = OP (lIMv'fcloglogn) = op(\\6n\\

2n) 

uniformly for 1 < k < m. This implies that, as n —> oo, 

p( max 5r(V)Ofc-
1On(O0

fc)-
15fcW= max SK^C^C^Clr'S^))-^! 

\l<k<m m(l-e)<k<m J 

for any e E (0,1). Analogous results holds true for the maximum over m < k < n. 
Moreover, 

max I ^ W q ' C n ^ l - ^ W - ^ W C C l O - ^ m W I 
\k—m\<em 

= op ( max {lie/bW-^WII-llc^On^)-1!!-!^^)!! 
\\k—m\<em 

+ ll£m«')H2||Ofc-
1|| • lIGm -GfcH • IIG^Gn^)-1!!}) 

= 0P(e), 



682 M. HUSKOVA 

which means that choosing e positive small enough the maximum can be made 
arbitrary small. Combining the above relations together with (3.13) we can infer 
that the limit behavior of Tn(^) is the same as that of 

SlWC-'C^Clr'S^rJ,)-^. 

The assertion (2.2) can be concluded just inserting (3.15) with k = m into (3.20) 
and noticing that fmWO is a sum of independent random vectors with zero means 
and the variance matrix 

a\^)CmC-lCm 

and the assumptions of central limit theorem are satisfied. 
The proof for T„(^(-;R")) is finished. 
Now, we show that the assertion of our theorem is true, i.e. for Tn(ipn). At first 

by Lemma 3.3, (3.3) and (3.16) we find that 

X($n)-I3 = W ^ ' j ^ f>.^(e.)+Op (lIM3 +n-1/2H<Ml) • 

Then going step by step through the proof for Tn(-0) we observe that 

Sk$n)=£kW)-Hk8nU\x)&F(x) + 0p (^Jk\ogn\\8n\\ + k\\8nf) 

and 
zltin) - a2(v(-; F-HI - «))) = Op(IIM) 

which means that the asymptotic representations remains the same if ̂ (-; F1~1(l-a)) 
is replaced by its estimator r/>n. The rest of the proof is identical with that for Tnfy). 

• 
Proof of Theo rem 2.2. Similarly as^in the proof of Theorem 2.1 we show 

the assertion for Tn^,qn) and then for r n ( ^ n j ^ ) - By (3.10) and (3.11) we have 

SlWC-lSkW (3.22) 
rp 

= Ul(^)-HkSn f ^'(x)dF(x) + Op(^k\ogn\\Sn\\ + k\\Snf)
Sj Cn

l 

• UkW)-HkSnJrP'(x)dF(x) + Op(y/klogn\\Sn\\ + k\\Sn\\
3)) 

= - 2 t f M Cn
lHkSn + SnH

T
kC-lHkSn(f rp'(x) dF(x))2 

+ O P ( l + | |M 3 * 3 / 2 /n + l M 6 ) * 2 / n 

uniformly for 1 < k < m. The sequence 

SnHlC~lHkSn i—--- ) 
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is monotone in k for 1 < k < m and arbitrary 0 < r\ < 1/2 and maximum is reached 
for k = m. We set foC0) = 0 and .Ho = 0. Moreover, uniformly for 0 < t < A 

^ ( z / O O ^ f f ^ l = OP (IIMVS) = OP {\\Sn\\
2n) 

and 
. ^.SnH^C^HmSn n 

liminf Tic no > 0-
n-»oo | |d n | | zn 

Analogous results can be derived for m < k < n. Thus arguing as in the proof of 
Theorem 2.1 one can conclude that the limit behavior of Tn{ip,qn) is the same as 
that of 

g2(A)a-0) " 

The first part of our theorem for Tn(i}),qn) follows while the second one is a conse
quence of (3.22) for k = m. 

The proof for the T n (^ n , qn) can be derived proceeding in quite the same way as 
at the end of the proof of Theorem 2.1 and therefore is omitted. • 
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