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PERMUTATION TESTS FOR MULTIPLE CHANGES1 

MARIE HUŠKOVÁ AND ALEŠ SLABY 

Approximations to the critical values for tests for multiple changes in location models 
are obtained through permutation tests principle. Theoretical results say that the ap
proximations based on the limit distribution and the permutation distribution of the test 
statistics behave in the same way in the limit. However, the results of simulation study 
show that the permutation tests behave considerably better than the corresponding tests 
based on the asymptotic critical value. 

1. INTRODUCTION 

Consider the model for multiple changes in the location model: 

Q 

Xi = ^ /j,jl{mj < i < mj+\} + e;, i = 1 , . . . , n (1.1) 
3=0 

where 0 = ran < m\ < . . . < mq+\ = n and /in,. . . , / ig , are unknown parameters 
fulfilling fij 7-= Mj+i, j = 0 , . . . , q — 1; q can be known or unknown. The observations 
Xi,...,Xn are obtained in some time ordered points t\ < • • • < tn. The error terms 
e\,..., en are assumed to follow the assumption: 

e\,..., en are independent identically distributed, 
(1.2) 

Eei = 0, 0 < vare* < oo, E\ei\2+A < oo with some A > 0. 

In this context, the values rai,... ,mq are change points and the respective differ
ences /ij+i — /Xj, j = 0 , . . . , g — 1, are magnitudes of the changes. 

We are testing the null hypothesis 

Ho : m\ -=. . . -= mq = n (1-3) 

against the alternative that at least one change has occurred: 

H\ : m\ < . . . < mq, where at least one inequality is strict, (1.4) 

1Partially supported by Grant 201/00/0769 of the Grant Agency of the Czech Republic and by 
the MSM 113200008 Project. 
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where q can be or need not be specified. 
There is a number of tests available for this testing problem, for information see, 

e.g., Csorgo and Horvath [5] and Horvath and Kokoszka [10]. One of the main 
problems is to find reasonable approximations to the critical values. Typically, ap
proximations based on limit behavior of the test statistics under the null hypothesis 
are used. However, the convergence to the limit distributions of the test statistics 
for the change point problem is rather slow and therefore these approximations are 
reasonable only for very large sample sizes and, usually, the resulting tests are con
servative otherwise. Csorgo and Horvath [5], among others, pointed out this fact 
and proposed an improvement. This is based on asymptotic arguments combined 
with a proper trimming. 

In the present paper we focus on the test statistics generated by a kernel func
tion K. Their limit behavior under the null hypothesis will be derived. Particular 
attention will be paid to the related permutation tests. An approximation to the 
critical values through the bootstrap method will be also discussed. 

We assume that the kernel K satisfies either assumptions (K.l) and (K.2) or 
(K.l) and (K.3): 

(K.l) K is a non-negative symmetric function such that 

K(t)=0, ^ [ - 1 , 1 ] , f K(t)dt>0. 

(K.2) The second derivative K^ exists and is Lipschitz of order (3 > \ on (0,1), one 
sided second order derivatives exist at 0 and 1 and K(0) + K(l) > 0. 

(K.3) The second derivative K^ exists and is Lipschitz of order 1 on (0,1), one 
sided second order derivatives exist at 0 and 1 and K(0) + K(l) = 0. 

Notice that the set of assumptions (K.l) and (K.2) covers the situation where at 
least one of K(0) and K(l) are nonzero while the set (K.l)and (K.3) corresponds to 
the case when K(0) = K(l) = 0. Inside of the interval (0,1) and (-1,0) the kernels 
are assumed to be smoothed. Both sets of assumptions imply that K is bounded 
and therefore f_x K(u) du < oo. 

The test procedure also depends on G which is related to the bandwidth in the 
area of nonparametric regression! We assume that G = G(n) satisfies, as n -» oo, 

£ l o g ( n / G ) ^ 0 , ^ g ^ y ^ o o (1.5) 

which means that G tends to infinity together with n but not too fast. 
We consider the test statistic 

Tn(G) = max — - = = = = = — x (1.6) 
G<k<n-G ^ £ © i X 2 ( i / G ) °n 

i W - ^ - E W - ^ ) 
:Jt-rí-U1 >• / 4—t-i-l >« / 
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where 
ffn = ^ E ( ^ - ^ n ) 2 , (1.7) 

i=l 

which is an estimator of vare; defined in (1.2). 
Motivation for this test statistic comes from the area of nonparametric regression 

estimation. Notice that 

N~(k/G) = ̂  £ X 1 K ( * Z * + T ) (1.8) 
i=k-G+l ^ ' 

and 

N+(k/G) = ± JT I ^ ( ^ ) (1.9) 
i=k+l ^ ' 

are kernel type estimators of the expectation E Xk based on the observations Xk-G+i -
. . . , Xk (i. e., G observations till time point tk) and Xk+i, • •., -Y&+G (-• e., G obser
vations after time point £*.), respectively. Then Tn(G) can be expressed as 

Tn(G) = max G ^ ^ ^ - ( f c / ^ - i V + ^ / G ) ! . 
G<*<n"G ^ 2 X)SLi ^ 2 ( i /G) °n' ' (1.10) 

Clearly, large values of Tn(G) indicate that at least one change has occurred. Possible 
approximation to the critical value follows from Theorem 2.1 below where the limit 
distribution of Tn(G) under iiI0 is stated. The test based on Tn(G) is sensitive 
w.r.t. to a wide spectrum of alternatives. Moreover, the differences N+(k/G) — 
iV~(fc/G), k = G + 1 , . . . , n — G, can be helpful to identify the change points vrtj. 

The limit behavior of Tn(G) under the null hypothesis H0 is studied, the consis
tency of the tests based on Tn(G) is proved and various modifications of this test 
statistic are discussed in Section 2. The permutation tests related to Tn(G) are 
developed and investigated in Section 3. Section 4 contains results of a simulation 
study. 

2. LIMIT PROPERTIES OF Tn(G) 

Here we derive the limit behavior of Tn(G) under the null hypothesis (no change), 
prove the consistency of the related test and discuss possible modifications and 
extensions. The main assertion of this section states: 

T h e o r e m 2 .1 . (no change) Let X i , . . . ,.Kn be i.i.d. random variables with 
nonzero variance and E |X i | 2 + A < oo with some A > 0. Let (1.5) be satisfied. 

(i) If the kernel K satisfies (K.l), (K.2) then, as n -r oo, 

p(V21og(n/G)T n (G) < y + 21og(n/G) + \ loglog(n/G) 

, 2K2(0) + K2(1) 1- , x\ f n f n „i 
+ l 0 g n r - U ^ , , - 9 l Q g W -> exp{-2exp{-y}}, y 6 R\ 

2JoK\t)dt 
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where Tn(G) is defined in (1.6). 

(ii) If the kernel K satisfies (K.l), (K.3) then, as n —> oo, 

P (y/2\og(n/G)Tn(G) < y + 2log(n/G) + \log { % ( f ^ ^ f - logOr)) 
V - 4f0K

2(t)dt J 
-> exp{-2exp{-2/}}, 2/ e -R1. 

Proof. The proof is divided into three steps. In the first one we show that it is 
sufficient to study the the limit behavior of Tn(G) for X{ being i.i.d. with IV(0,1) 
distribution. Then we prove that properly standardized N~(k/G) — N+(k/G), k = 
1,.. . ,71, defined by (1.8) through (1.9), converge to a Gaussian process and, finally, 
applying the results on the extremes of Gaussian processes we get the desired results. 

Without loss of generality we may assume that X{ have zero mean and unit 
variance. 

Denoting 
3 ' 

Mn(j) = YX^ J = 1, ••• ,", (2-1) 
i=l 

we find that 

k+G , , _ .v 

Y, Xi K f — - ) = (Mn(k + G)- Mn(k))K(0) (2.2) 
i=k+i ^ ' 

G 

+ Y {Mn(k + G)- Mn(k + j - 1)) {K(-j/G) - K(-(j - 1)/G)) 

and a similar expression for ~2i=k_G+1 X{K {k~^1) can be derived via the par-
tialsums Mn(k). By arguments of Einmahl [7] there are Wiener processes {Wn(t), 0 < 
t < 00}, n = 1, . . . , such that, as n —Y 00, 

max kW+^lMnik) - Wn(k)\ = Op(l) (2.3) 
l<fc<n ' ' 

that immediately implies 

max_ max | {Mn(k + G)- Mn(k + i)) - {Wn(k + G)- Wn(k + i)) \ 

= 0P(G1 /(2 + A)). (2.4) 

By Theorem 1.2.1 of Csorgo and Revesz [4] we have 

sup sup0<s<G \Wn(t + s) - Wn(t)\ 
0<t<n-G (2 K) 

= Op((Glog(n/O))1/2) +Op((Ologlogn))1/2). 
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Then by the assumptions the kernel K has finite variation and then combining (2.1) 
through (2.5) we observe that 

Tn(G) = Op(y/\og(n/G)) 

and moreover, that it suffices to derive the limit distribution of Tn(G) for the case 
A"i,... , X n being i.i.d. with IV(0,1) distribution. 

Hence it remains to derive the limit behavior of 

max |Ln(A;)| 
G<k<n-G] v n 

where 

Ln(k) = =x (2.6) 

V-E.li^/G) 

with X/vi,.. -iXjsin being i.i.d. with iV(0,1). Notice that Ln(k), k = G , . . . ,n — G, 
is a stationary 2G-dependent sequence of random variables with distribution with 
zero mean, unit variance and covariances for G < k\ < &2 < n — G, k<i — k\ < G 

- ^ LM} - ̂ k^ (,=LK (^)K (^) 
^(^ym-ij^H^^)} 

Define the process 
yn(t) = Ln([Gt]), 1 < t < n/G - 1. 

Using standard arguments one can show that 

{yn(t), 1 < t < n/G - 1} -> {Y(t), 1 < t < oo} 

where 

:, ř > l , Y(t) =( f K(y-t) dW(y) - I K(y - t) dW(y)) 1 

\Jt Jt~1 J ^2f^K2(u)du 

with {W(t),0 < t < oo} being a Wiener process. The process {Y(t); 1 < t < 00} is 
a stationary Gaussian process with unit variance and the autocorrelation function 
p(v) = cov(Y(t + v), Y(t)). It has the property 

p(v) = 0, v>2, 
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and for 1 > v > 0 

p(v) = 1 + j J K(z)(K(z + v)- K(z -v)- 2K(z)) dz 

+ [ K(z)(K(z + v)- K(z -v)- 2K(z)) dz 
Jo 

+ / K(z)(K(z-v)-2K(z))dz\ | 2 f K2(z)dz) . 

To finish the proof we have to check the behavior of the covariance for v -^ 0. The 
limit depends on the assumptions on the kernel K. Under the assumptions (K.l), 
(K.2) we receive that for v -> 0+ 

. 2K2(0) + K2(1) , 
p(v) = 1 - v . + o(«) 

2 / 0 R 2 ( 2 ) d 2 

and under assumptions (K.l), (K.3) we obtain that for v -+ 0+ 

2J0\K'(z))2dz , 
p(u) = 1 - V » + 0 ( V ) . 

2 / 0
1 R - ( z ) d 2 

Then applying Theorem 12.3.5 in Leadbetter et al [13] we receive the desired asser
tions. • 

Remark 2.1. Going through the paper by Einmahl [7] we find that (2.3) holds 
true even for triangular array, i. e., (2.3) remains true if in the definition of Mn(k/G) 
(see (2.1)) X i , . . . ,Xn are replaced by Xin,... ,Xnn that are i.i.d. with zero mean, 
unit variance and -E |Xi n | 2 + A < D2 > 0, n > no, where D2 > 0 does not depend 
on n. 

Remark 2.2. Notice that Tn(G) will not change if Xi is replaced by the residual 
Xi — Xn, i = 1 , . . . , n, where Xn = X)fLi Xi/n. So that Tn(G) can be rewritten as 
a functional of these residuals. Then one can develop corresponding M- and i?-test 
statistics. They are obtained from Tn(G) just replacing the residual Xi — Xn and 
the estimator an by their M- or ^-counterparts. It can be shown that under the 
null hypothesis and under some assumptions on scores and score function they have 
the same limit behavior as Tn(G). 

Remark 2.3. The critical region of the test (1.3) versus (1.4) based on Tn(G) on 
the level a has the form 

Tn(G) > zi_a,n(G) (2.7) 

where zi-a%n{G) is the 100(1 — a) % quantile of the distribution of Tn(G) under H0. 
Theorem 2.1 provides an approximation to zi-a,n(Gf) and implies that 

Zl-a,n(G) = 2 ^ o g g ( l + 0(1)). (2.8) 
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Next, we study the limit behavior of Tn(G) under alternatives. Namely, we 
assume that in the model (1.1) with /io,--->/^, \i% ¥" Vi+i a n d q are fixed (not 
dependent on n and that ra;, i = 0 , . . . , q increase together with n, namely, 

vfii/n - r Ki, i = 0 , . . . , q + 1, 0 = K0 < K\ < • • • < Kq+\ = 1. (2.9) 

Theorem 2.2 Let X\,..., Xn follow the model (1.1) with / i 0 , . . . , /i9, Hi ^ jii+\ 
and g fixed. Let (1.5) and (2.9) be satisfied. Then the test with the critical region 
(2.7) is consistent. 

P r o o f . Standard tools give 

Tn(G) = max J ^ 1 ^ ' V ^ Jo '*(")<-" {21Q) 

i=o,...,,-i ^ a 2 + YZzohH-ft)2{Ki+i-Ki) ^J^ K*(u)du 

+0P{y/log(n/G)) 

where ~p = Yli=o A^fat+i _ ^i)- This together with (2.9) and the assumption (1.5) 
implies the consistency. • 

Remark 2.4. Studying the limit behavior of the test based on Tn(G) under var
ious alternatives we find that it is sensitive w.r.t. a wide spectrum of alternatives 
(multiple abrupt changes, gradual changes). 

Remark 2.5. The statistics N~ (k/G) - N+(k/G), k = G,..., n - G can be used 
to estimate the change points m i , . . . ,mq, for details see Grabowsky et al [9]. 

Next, we study the i?-type (rank based) version of the test statistics of Tn(G). It 
will appear to be extremely useful when studying the permutation tests in Section 3. 

The rank based version of Tn(G) is defined as 

TntQ{G) = max x (2.11) 
G<k<n-Gyj2Zl\K>(i/G)Tn 

*| £ an(Qi)K ( -^±i) - £ an(Qi)K (k-p) 
\i=k-G+\ \ ^ / i=k+1 \ ^ J 

where Q\,..., Qn are the ranks of X\,..., Xn\ a n ( l ) , . . . , an(n) are scores and 

i=l i=\ 

(2.12) 
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Theorem 2.3. Let X i , . . . , Xn be i.i.d. random variables with continuous distri
bution function. Let the scores a n ( l ) , . . . , an(n) have the properties 

rn>Du n>n0 (2.13) 

and 

-f2\^nii)-an\2+Al<D2, n>n0 (2.14) 
i = i 

with some positive Di,D2,no and Ai . Then the assertion of Theorem 2.1 remains 
true if Tn(G) is replaced by TUjQ(G). 

P r o o f . To prove the assertion it is sufficient to show that TUiQ(G) is close to 
Tn(G) with Xi replaced by suitable random variables Zi that are i.i.d. and are 
fulfilling the assumptions of Theorem 2.1. 

Notice that the ranks Q i , . . . , Qn can be viewed as the ranks corresponding to 
the random sample U\,...,Un from uniform distribution on (0,1), where Ui = 
F(Xi), i = 1 , . . . ,n and F is the distribution of Xi under the null hypothesis. We 
introduce the simple linear rank statistics 

k 

Sk = ^2(an(Qi)-an), fc = l , . . . ,n , (2.15) 
2 = 1 

and the accompanying partial sums of i.i.d. random variables 

k 

Zk =
 y*r(an(l + [nUi])-an), fc = l,...,n. (2.16) 
i = l 

Direct calculation gives 

ESk = EZk = 0, k = 1 , . . . , n, (2.17) 

v a r 5 , = ^ v a r ( z , - ^ z 4 = ^ L ^ ^ , * = !,. . . ,n, (2.18) 
n — 1 ^ n J n 

and 

E\an(l + [nUi])-an\
2+Al <D2. (2.19) 

Then the assumptions of Theorem 3 in Huskova [11] are satisfied and this theorem 
implies that, as n -> oo, 

1 
max —-== 

G<k<n-G y/G 
Sk - (Zk %n ) Op(n~v) (2.20) 
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with some v > 0. Replacing Xi by (an(Qi) - (an([Uin] + 1) - Zn/n)) in (2.2) we get 

£ (a„(Q.) - (aB([ntfi] + 1) - Zjn)) K ( f c " ! , + 1 ) 

G 

= £ ((5 fc+G - St+j-i) - (Zk+G - Zk+j-! -(G-j + l)Z„/n)) x 
i= i 

x(K(-j/G)-K(-(j-l)/G)) 

+ ((Sk+G - Sk) - (Zk+G -Zk- GZJn)) K(0). 

After few standard steps these relations together with (2.21) imply that, as n -+ oo, 

1 
max —-= 

G<fc<n-G д/G 

y ! (an(Qi)-(an([nUi) + l)-Zn/n))K (^-^) 
i=k-G+l J \ G ) 

= oP((\og(n/G))-1'2) (2.21) 

and similarly, as n -> oo, 

k+G 
1 

max —-= 
G<к<n-G yJG 

2 (on(Qi)-(a„([n^] + l )-Z n /n)) i i : (------) 
i=ifc+i V ° / 

= opíOogín/G))-1/2). 

(2.22) 

The random variables an([nUi] +1), i = 1, . . . , n satisfy the assumptions of Theorem 
2.1 and Zn/n cancels from the corresponding statistic Tn(G), so that Theorem 2.1 
holds true if Xi is replaced by an([nUi] +1) - Zn/n for i = 1 . . . , n. Then the assertion 
of our theorem can be concluded if Remark 2.1 is taken into account and (2.22) and 
(2.23) are applied. • 

The problem of the choice of the kernel K and of the limit behavior under alter
natives will be considered in a different paper. 

3. PERMUTATION TESTS 

Here we describe the permutation test related to the statistic Tn(G) and study its 
limit performance. 

Elements of theory of permutation tests together with relevant references can be 
found in the books by Lehmann [12] and by Good [6] among others. Rather general 
remarks on the permutation tests in change point analysis can be found in Romano 
[14]. Antoch and Huskova [3] investigated permutation tests for at most one change 
in location model. 
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The permutation distribution of Tn(G) can be described as the conditional dis
tribution, given X\,...,Xn, of 

Tn(R,G) = max — (3.1) 
G<k<n~G y/2Y:tiK2(i/G) 'n 

, * k-i + 1 *.±? Jfc-t 
nx| -T xRtK(!L-Ltl)--rxRiK^)\, 

i=k-G+l i=k+l 
where R = (R\,..., Rn) is random permutation of ( 1 , . . . , n) independent of X\,... 
. . . ,Xn. This permutation distribution Fn(. \X) can be expressed as 

Fn(x\X) = -]#{reTZn\Tn(r,G)<x}, x e R\ (3.2) 
n! 

where 1Zn is the set of all permutations of ( 1 , . . . , n) and #A denotes the cardinality 
of a set A. Denoting by Xi_a>n(G,X) the corresponding 100(1 — a)% quantile the 
critical region of the permutation test based on Tn(G) with the level a has the form 

Tn(G)>Xl-a,n(G,X). (3.3) 

Computational aspects of the critical values xi-ayTl(G,X) are discussed in Appendix. 

Next, we derive the limit distribution of the permutation distribution Fn(x\X) 
which is the main result of the paper. 

Theorem 3.1. Let the observations X\,... ,Xn follow the model (1.1). Let the 
assumptions (1.2), (1.5) be satisfied, let q < D-

N < £ > 4 > 0 , j = 0,...,q, (3.4) 

with some D- > 0 and D± > 0 be satisfied. Let (1.5) be satisfied. 

(i) If the kernel K satisfies (K.l), (K.2) then, as n -> co, 

p(x/21og(n/G)Tn(i2,G) < y + 2log(n/G) + 1 loglog(n/G) 

/2X2(0) + i r 2 ( l ) \ 1 x 
l o g( 2/0'^«)d« J-5-«W*••••.*•) 
exp{-2exp{-y}}, [P]-a.s., 

+ ] 

where P(A\X\,..., Xn) denotes the conditional probability of an event A given 
Xi,...,Xn and [P]-a.s. denotes probability measure generated by random 
variables X^s. 

(ii) If the kernel K satisfies (K.l), (K.3) then, as n -> co, 

pU2\og(n/G)Tn(R,G) < y + 2\og(n/G) + \log ( jl?®£™) 

- log(7r) Xi,...,Xn) -> exp{-2exp{-y}}, [P]-a.s. 
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P r o o f . We apply Theorem 2.3 with an(i) = X{, i = 1 . . . ,n. Hence the proof of 
our theorem reduces to the verification of the assumptions of Theorem 2.2. 

Clearly, 

=1 i = l 

1 ч 

+ ñ £(**-•' _ P n ) 2 ( m І + l - m Л 

i = l i = l j = 0 i = Ш j + l 

Я 

П 
3=0 

where 

1 

J = 0 

Classical strong law of large numbers and few standard steps imply that 

1 n _ 
lim inf - J^lXi - Xn)

2 > vara > 0, [P]-a.s. 
n—>oo n --—-*/ n—>oo n 

i = l 

Further, by the Minkowski inequality 

l/(2+A) , 1 " I 0 L A X 1 / ( 2 + A ) 

•=1 "" n i = l 

(iEi^-v+a)' /<2+Aí(iEi—-r4)' 
1=1 i = l 

+ (^ E IW " l"n|2+A(mi+l - m i)j 
!/(-+--) 

l / | i - i u n r " r " ( m i + i ~ m i ) j 
i=o 

which together with the strong law of large numbers and the assumptions implies 

l / (2+A) 
limsup(iV|Xi-Xn|

2+A)1 

n->oo \Tl •f—' / 
t = l 

< 2( (E | e 1 | 2 + A ) 1 / ( 2 + A ) + D 1 / ( 1 + A ) ) , [P]-a.s. 

Hence the assumptions of Theorem 2.3 are satisfied and our theorem follows. • 

R e m a r k 3 .1 . Notice that the assumptions of Theorem 3.1 covers both the null hy
pothesis and alternatives. Moreover, the limit permutation distribution is the same 
in both cases and does not depend on the original observations X\,... ,Xn. This 
means that the critical value for the permutation test provides an approximation to 
the critical value to the test based on Tn(G). 

Under the null hypothesis the permutation principle provides the exact critical 
values, otherwise it does reasonable approximation. The resulting tests are consistent 
for a large variety of alternatives. The behavior of the power function will be treated 
in a separate paper. 
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4. SIMULATIONS 

To investigate behaviour of Tn(R, G) under various alternatives and kernel choices 
we carried out a comprehensive simulation study. Also, the study illustrates how far 
the limit critical values can depart from the exact ones. 

We simulated values of Tn(R,G) for G = y/n and the following six types of 
kernels. 

(i) K\(x) = l 

(ii) K2(x) = l-\x\ 

(iii) K3(x) = l-x2 

(iv) K4(x) = \x\(l-\x\) 

(v) K,(x) = \x\ 

(vi) K6(x)=x2. 

The kernel K4 satisfies condition (K.3) while the rest satisfy condition (K.2). Specif
ically, K(0) > 0 and K(l) = 0 hold for kernels K2, K3 while K(0) = 0 and K(l) > 0 
hold for kernels K$} K$. Finally, values K(0) and K(l) are both positive for ker
nel K\. The choice of K\ relates to the classical moving sum statistic, which has 
been widely studied in literature. More information about these kernels can be found 
in the Appendix. 

All the six statistics above were studied under six different change-point hypothe
ses introduced below. 

H0: q = 0 (no change) 

Hi: q = 1, rai = n /2 , /ii - fi0 = 1 

H2: q = 1, rai = n /2 , fi\ - fi0 = 2 

H3: q = 2, m\ = n / 3 , ra2 = 2n/3, fi\ - fi0 = 1, /i2 - £*i = 1 

H4: q = 2, m\ = n / 3 , ra2 = 2n/3, /ii - //0 = 1, V>2 - V>\ = - 1 

iI5: q = 2, rai = n / 3 , ra2 = 2n/3, fi\ - fi0 = 1, fi2 - fi\ = -2. 

We used samples from the following three standardized error distributions: normal, 
Laplace, t4. It implies 18 different underlying probability model setups. The sample 
sizes were chosen as n = 100,200. All that resulted in 36 combinations studied for 
each kernel (i) through (vi). 

For each combination of change-point hypothesis, error distribution and sample 
size we proceeded as follows: 

(1) Observations X\,... ,Xn following model (1.1) with the (fixed) combination 
parameters are generated. 

(2) A random permutation r = (rA,... , rn) of ( 1 , . . . , n) is generated. 
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(3) Tn(R, G) with R = r is calculated and stored for each kernel (i) through (vi). 

(4) The steps (2) through (3) are repeated 10,000 times. 

(5) Sample quantiles corresponding to those 10,000 simulated values of Tn(R,G) 
are computed for each kernel (i) through (vi). 

The results for n = 100 are summarized in Table 2. 
quantiles corresponding to Theorem 3.1. 

Table 1 contains asymptotic 

As the case of n = 200 basically incites the same conclusions as the ones discussed 
below the corresponding tables for n = 200 are omitted. If we compare Table 1 and 
Table 2 it is evident that asymptotic critical values are conservative in contrast with 
the permutation procedure. The differences given by Table 1 and Table 2 varies 
between 0.4 and 1.3. The size of the differences increases with size 1 — a. Further, 
choices of kernel (ii) and (vi) lead to the largest differences while the choice of 
kernel (iv) lead to the smallest differences. These observations are independent of 
error distribution. 

Recall that Theorem 3.1 shows the limit behaviour of Tn(R,G) is independent 
of alternative. The results in Table 2 matches this fact though we can see slightly 
different sizes subject to error distribution. Anyway, the differences are much smaller 
in contrast with deviations from the corresponding asymptotic quantiles. It may be 
explained in the following way. 

To derive limit behaviour of Tn(R, G) an approximation by certain i.i.d. normally 
distributed variables is employed. Convergence of Tn(R, G) based on these variables 
to some standardized Gaussian process is then used and the limit distribution is ob
tained via extreme value theory for Gaussian processes. The simulation results lead 
to a supposition that the convergence to those i.i.d. normally distributed variables 
is much faster than the convergence to the Gaussian process. 

The higher sample quantiles (95%, 99%) are slightly larger for Laplace and £4 
errors than for normal errors. The relation between Laplace and £4 distribution may 
depend on the alternative. For instance, under Ho the sample quantiles are larger 
in case of Laplace distribution while under #5 it is the other way around no matter 
what kernel or probability we choose. On the other hand there is no such clear 
relation under H4. 

Table 1. Asymptotic quantiles 
for different kernels (n = 100). 

l - a 90% 95% 99% 
Ri 3.634 3.970 4.729 
K2 3.957 4.293 5.052 
Kз 3.738 4.074 4.833 
K4 3.358 3.693 4.453 
R5 3.634 3.970 4.729 

к6 
3.872 4.208 4.967 
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Table 2. Sample quantiles for different setups of the simulation (n = 100). 

ЄГГOГS Normal Laplace n 
1 - a 90% 95% 99% 90% 95% 99% 90% 95% 99% 

Ri Я 0 
3.042 3.260 3.714 3.062 3.297 3.750 3.058 3.291 3.738 

Hx 3.037 3.235 3.665 3.014 3.232 3.654 3.032 3.238 3.679 

н2 
3.061 3.258 3.678 3.053 3.270 3.680 3.034 3.248 3.661 

Hг 
3.032 3.236 3.651 3.027 3.238 3.652 3.027 3.244 3.680 

я 4 
3.039 3.239 3.673 3.036 3.267 3.708 3.059 3.275 3.748 

я 5 
3.032 3.250 3.678 3.041 3.262 3.726 3.073 3.289 3.756 

K2 H0 3.131 3.337 3.750 3.305 3.540 4.029 3.198 3.410 3.860 
Я j 3.113 3.298 3.677 3.140 3.345 3.759 3.135 3.341 3.743 

я 2 
3.109 3.316 3.691 3.159 3.364 3.757 3.104 3.295 3.700 

Я 3 
3.110 3.296 3.648 3.105 3.298 3.701 3.179 3.381 3.764 

я 4 
3.122 3.309 3.673 3.184 3.398 3.855 3.191 3.394 3.829 

я 5 
3.113 3.317 3.694 3.177 3.379 3.815 3.237 3.461 3.874 

K3 H0 3.105 3.307 3.723 3.192 3.429 3.899 3.138 3.351 3.794 
Hx 

3.097 3.273 3.667 3.096 3.308 3.712 3.102 3.305 3.717 

я 2 
3.092 3.301 3.678 3.129 3.328 3.729 3.089 3.276 3.709 

Я 3 
3.081 3.275 3.679 3.074 3.271 3.671 3.125 3.329 3.735 

я 4 
3.092 3.288 3.633 3.129 3.348 3.790 3.141 3.349 3.789 

я 5 
3.095 3.308 3.675 3.129 3.322 3.757 3.176 3.400 3.836 

ДГ4 Я 0 
2.943 3.173 3.647 3.019 3.262 3.736 2.984 3.206 3.668 

Я І 2.935 3.147 3.565 2.931 3.143 3.575 2.931 3.157 3.635 

я 2 
2.942 3.147 3.602 2.949 3.177 3.640 2.928 3.149 3.591 

Я 3 
2.918 3.146 3.575 2.926 3.148 3.590 2.939 3.161 3.638 

я 4 
2.927 3.145 3.546 2.974 3.198 3.657 2.972 3.219 3.687 

я 5 
2.937 3.165 3.573 2.957 3.193 3.653 2.997 3.241 3.701 

-ř-̂ 5 Ho 3.036 3.236 3.669 3.213 3.465 3.960 3.095 3.321 3.812 
Я І 3.010 3.220 3.626 3.032 3.250 3.654 3.036 3.260 3.686 

я 2 
3.019 3.228 3.660 3.068 3.276 3.671 2.992 3.185 3.603 

Я 3 
3.007 3.219 3.596 3.024 3.236 3.656 3.063 3.275 3.716 

я 4 
3.028 3.243 3.652 3.072 3.313 3.796 3.077 3.291 3.746 

я 5 
3.015 3.220 3.618 3.069 3.297 3.754 3.118 3.347 3.812 

Rб Я 0 
3.093 3.299 3.697 3.431 3.683 4.149 3.209 3.432 3.895 

Я І 3.049 3.240 3.610 3.097 3.315 3.740 3.110 3.307 3.725 

я 2 
3.038 3.235 3.642 3.142 3.361 3.761 3.020 3.203 3.569 

Я 3 
3.037 3.229 3.586 3.081 3.282 3.657 3.155 3.359 3.814 

я 4 
3.071 3.272 3.680 3.184 3.403 3.877 3.172 3.385 3.805 

я 5 
3.052 3.247 3.629 3.175 3.394 3.806 3.243 3.468 3.956 

Comparing the asymptotic quantiles (Table 1) and the sample quantiles (Table 2) 
with their counterparts in the paper Antoch and Huskova [3], where the problem of 
one change point is treated, we see very similar patterns, i. e. the empirical critical 
values are substantially smaller then the corresponding asymptotic ones and the 
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empirical critical values are not almost influenced by the amount of change, location 
of change point(s) and the underlying distribution. 

APPENDIX: COMPUTATIONAL PROCEDURES 

This section contains quantities which are subjective to particular choice of kernel 
K and which we used for the purpose of the simulation. First introduce a useful 
notation. 

i 2K2(0) + K2(1) 1 , , „ , > 
log V^ —- - « log(7r) under (K.2), 

6 2 j 0

1 R2(f)d* 2 &K ' v h 

Є{K) = { 

W£Sг-~«W — (к.з), 
2 4ftKЦt)dt 

І=l 

G-l G-l 

V(K) = 2 £ > 2 ( £ ) , 
i=l 

G-l 

Mk(K) = Y,yk+iK(^)-J2Y^G+iK{^)y fc = l , . . . ,n-2G + l 
2=0 i=0 

where, in the simulation, Yk = Xjik. Then 

Tn(G) = a - V ( K ) - 1 / 2 max \Mk(K)\. 
l<k<n—2G+l 

We introduce computational procedures for Mk(K) optimized subject to com
putational time for particular choices of K. They are generally based on summing 
differences and their speed increase merely with n independently of G. Typically, it 
involves at most bn arithmetic operations (b varies according to K up to 10 within 
our choices) whereas the speed of explicit formulae is 4G(n — 2G) arithmetic oper
ations. This independence is the cause the procedures based on differences to be 
better than corresponding explicit formulae. 

To be specific we consider 

D0 = Mi 

Dk = Mk+1-Mk, fc = l , . . . , n - 2 G , 

which implies that 

k-i 

Mk(K) = Y,Di(K), fc = l , . . . , n - 2 G + l . 
2=0 

In cases of quadratic-type kernels we have to difference twice. We typically end with 
a formula containing a simple moving sum. The moving sums can be easily obtained 
as differences of respective cumulative sums. The formulae below may seem rather 
complicated but when properly programmed they result in very fast procedures. 
The summary of formulae for particular kernels used in the simulation follows. 
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(i) K(x) = 1 

0(K) = - i l o g y , V(K)=2G 

G - l G - l 

м fc(K)=x;n+i-E^+G+i 
i=0 i=0 

(ii) K(x) = l-\x\ 

«*>--!-«:. nю-^^1 

G - l G - l 

GDo(K) = ^ i y i + 1 - ^ ( G - i ) y G + i 
i = l i = l 

2 G - 1 

GDk{K) = ( 2 G - l ) n + G - E y*+*' * = l,---n-2G 
i = l 

(iii) K(x) = 1 - X2 

1, 64тг -,,1-4 (O-1 ) (16G 3 + G 2 + G + 1) 
W = " 2 l 0 g 225' У W = " ^ " ш P " 

G2D0(K) = Yj(G
2-(G-iÝ)Yi+l-Ý.(G2-i2)Y^ 

i = l i= l 
fc-1 

G2Dk(K) = (2G2- l)n+G + E A i W ' * = l , . - - ,n -2G 
i=0 

/ G - l G \ 

A)W = - E í ^ - ^ + ^ ^ + E ^ - w + o 
\ i = l i = l / 

( G 2G-1 > 

Ey*+*- E y*+* 
i=2 i = G + l > 

(iv) R» = |:r|(l - 1*1) 

*ttr\ i I P \ v(K\ (G-1)«? + 1)(G2 + 1) ^(K) = - l o g ( ; / - 7 r l , V(K) = 
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G - 1 

G2D0(K) = J2i(G-i)(Yi+1-Yi+G) 
i=l 
k-1 

G2Dk(K) = J2MK), fc = l , . . . ,n-2G 
2=0 

G - 1 

A0(K) = ^ ( G - 2 ^ 1 ) ^ ^ - ^ ! ) 
i= l 

Ak(K) = (G-l)(Yk+1+Yk+G+i-Yk+G-Yk+2G) 

( G-l G-1 \ 

£ Y f e + G + i - £ Y t + 1 + j 
i=l i=l ) 

(v) K(x) = |x| 

W = -|.ogf, ^)= ( G + 1 ^ G + 1) 

G-1 G-1 

GD0(K) = ^ ( O - o r m - ^ . y i + G 
i=0 2=0 

2G-1 

GDk(K) = Yk+G-G(Yk+Yk+2G)+J2Y*+i> fc = l,.. .n-2G 
2 = 1 

(vi) /^(x) = x2 

G2D0(R) = £ ( O - . ) 2 r i + 1 - £ . 2 y i + G 
2 = 0 2 = 1 

J f c - 1 

G2Dk(K) = Yk+G-G2(Yk+Yk+2G) + ^MK), fc=l,...,n-2G 
2=0 

A0(K), Ak(K) as in case (iii). 
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