
K Y B E R N E T I K A - VOLUME 37 ( 2 0 0 1 ) , NUMBER 5, PAGES 5 6 5 - 5 7 3 

SEPARATION PRINCIPLE FOR NONLINEAR SYSTEMS 
USING A BILINEAR APPROXIMATION 

M O H A M E D A L I H A M M A M I A N D H A M A D I J E R B I 

In this paper, we study the local stabilization problem of a class of planar nonlinear 
systems by means of an estimated state feedback law. Our approach is to use a bilinear 
approximation to establish a separation principle. 

1. INTRODUCTION 

State observation of nonlinear dynamic systems is becoming a growing topic of in
vestigation in the specialized literature. The reconstruction of the time behaviour of 
state variables remains a major problem in both control theory and process diagno
sis. For linear systems and for the local case, the Luenberger-like observer solve this 
problem. Nevertheless, the design of asymptotically stable observers remains a hard 
task in the nonlinear case. For bilinear systems, one can design an observer provided 
that the inputs are small. It is well known that for nonlinear systems, there exists 
a local exponential observer if and only if the linear approximation of the system at 
the origin is detectable. If moreover it is stabilizable by a state feedback, the prob
lem of feedback stabilization with state detection is solvable with a linear observer 
and a linear control law. In this paper we consider the planar nonlinear systems of 
the form 

(x = f(x)+ug(x) m 

\y = h(x) W 

where x G U is a neighborhood of the origin in M2, u is a scalar input and / , g are 
smooth vector fields and h is a real analytic function on iR2, such that f(0) = g(0) = 
0 and h(0) = 0. Many authors [2, 7] investigate the stabilizability problem when 
#(0) 7̂  0. However few results are known in the case where g(0) = 0, [1, 4, 5, 11]. 
The principal difficulties arise from the fact that the linearized system is independent 
of the control and the vector field g is not locally rectifiable. Our approach is to 
consider the bilinear approximation system of (1): 

/ x = Ax + uBx /0x 
\y = Cx (2) 
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where 

A - g ( 0 , , B = | ( 0 ) and C - £ ( 0 ) 

to study the stabilizability of the system (1) by means of a state estimated feed
back law. In [6], the author studied the problem of finding a global state space 
transformation to transform a given single-input homogeneous bilinear system to 
a controllable linear system. A local state space transformation and a complete 
analysis of globally state linearizable bilinear systems in the plane are given. The 
authors, in [3, 8, 10], solved the problem of stabilizing in observer design for some 
classes of nonlinear systems. Suppose that we have a stabilizable and observable bi
linear system with states x. We use a state feedback law u = u(x) to asymptotically 
stabilize the system (1). If the states are not available, we must construct a bilinear 
observer for (2) which is expected to produce the estimation x(t) of the state x(t). It 
turns out that for planar systems, one can consider bilinear systems with bad inputs 
(inputs for which the system is not observable). There is at most only one input 
which is constant that makes the system unobservable. Then we apply the feedback 
u = u(x) which not nearly to the bad one to show that the system is asymptotically 
stabilizable. 

2. STABILIZATION USING STATE DETECTION 

Consider the single-input single-output nonlinear systems of the form (1). Since 
/ , g, h are of C1 , one can write 

f(x) = Ax + fi(x) 

g(x) = Bx + gi(x) 

and 
h(x) = Cx + h\(x) 

where / i , g\ and h\ satisfy 

| | / i (*) | | < A-filMI, \\gi(x)\\ < M2\\x\\ and \\h,(x)\\ < M3\\x\\, Vx G U' C U (3) 

with Mi, M2 and M3 some positive constants. We shall call (2), the approximating 
system for the system (1). 

If the states of the bilinear system are available, we can formulate the stabiliza
tion problem of the system (1) as follows: Consider the system (1) defined on a 
neighborhood of the origin of 2R2, where we suppose that /(0) = #(0) = 0. 

A function (p is said to be positively homogeneous of degree m > 0, if for any 
vector x and any real positive A, we have 

ip(Xx) = Xm(p(x). 
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If the bilinear approximation system (2) is stabilizable by means of a positively 
homogeneous feedback of degree zero and of class C1 on M2 \ {0}, then the system 
(1) is locally stabilizable. 

Indeed, let u(x) be a positively homogeneous stabilizing feedback of degree zero 
for system (2). Set 

F(x) = Ax + u(x) Bx 

and 
G(x) = fi(x) +u(x)gi(x). 

Since u is of class C1 on U' \ {0} then F and G are locally Lipschitz. Moreover, 

\u(x)\ < M0 

for every x and using (3), 

\\G(x)\\<(Ml+M0M2)\\x\\ 

for all x G U'. It follows from Massera's theorem [14] that the origin of the differential 
equation 

x = F(x) + G(x) 

is asymptotically stable equilibrium point. 

Notice that, in [4] the authors gave a complete classification of planar homoge
neous bilinear systems, where for stabilizable bilinear systems, a smooth on M2 \ {0} 
homogeneous of degree zero feedback u is given. 

Stabilization of a class of planar bilinear system: 

In a suitable basis of JR2, the matrices A and B can be written as 

- ( : î ) в = U 0 
First of all, we wish to write the matrices A and B as simply as possible. Consider 
the linear change of coordinates whose transformation matrix is given by 

T = ( 1\ g j w h e r e e1 = (a-d)- y/(b + c)2 + (a- d)2 and e2=b + c. 

Under this transformation, matrix B remains unchanged whereas matrix A becomes 

- ( ã 

\ ( c - l 

(b - c)/2 \ , 5 = ( a e i + (c + 6) exe2 + de|)/(e? + e\) 
~ ) where 

fi)/2 d J d = {ael-{c + b)e1e2+de\)l{e\ + el). 

Suppose that the following assumption holds: 

(i) Tr(A) > 0 Tr(B) = 0 and -ad = (6 + c)2 - lad > 0. 



568 M. A. HAMMAMI AND H. JERBI 

Proposit ion 1. Under the above assumption, the following feedback law: 

t\x\ + (d — a)xiX2 + t2x\ c — b 
H{x\ + xj) 2fi 

u(x1,x2) = ^ T Z* % + - ^ w h ^ e h > 0 t_ > 0 

and 

rf-yi+a>o 
stabilizes the system (2). 

P r o o f . Consider the following system: 

(x)= (^!:S )= w + 4 ) K^) + " ( ^ ) B (^ ) ] -
Y is a homogeneous vectors fields of degree three. Since (x\ + x | ) is definite positive, 
then it is not hard to see that, there is equivalence between stability of (2) and the 
above system. Set 

F(x) =xxY2(xux2) -x2Yi(xux2) 

a simple computation gives 

F(xux2) = -(tlX\ + t2x\) (x\ + xl). 

Furthermore, F has not a linear factor then the phase portrait of Y is determined 
by the flow near (0,0). It is a global centre if I = 0, and it is a global stable (resp. 
unstable) focus if and only if I < 0 (resp. I > 0), (for the proof see [13], where I is 
given by 

..r-5fl4_,__£*+« where ,=JE. 
J-oo F(I,X) t2t(t + i) yt2 

Observer design: 

Consider now the system (1). If the linear pair is observable, the bilinear system is 
also observable for small controls. In this case, one can design an observer for (2) of 
the form 

x = Ax + uBx - L(Cx - y) (4) 

where L is the gain matrix such that Rel X(A — LC) < 0, then there exists P = 
PT > 0 such that 

P(A - LC) + (A- LC)TP = - J 

which is possible by observability of the pair (_4, C). Let e = x — x, a Lyapunov 
function can be chosen as: 

V(e) = eTPe. 

The derivative of V along the trajectories of the error equation 

e = Ae + uBe — LCe 
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is given by 
V(e) = - e T e + 2ueTPBe. 

Thus, 
^ ( e ) < - | N | 2 + 2H| |FB| | | |e | |2 

V(e)<(-l + 2H||PB||) | |e | |2 . 

It follows that for u sufficiently small u <uo = ^ 5 , when e ^ Ker PB, (otherwise 
if e G K e r P B one gets V(e) < - | | e | | 2 ) . It follows that, the origin of the error 
equation is globally exponentially stable. Hence the system (4) is an exponential 
observer for (2) with the following estimate: 

l|e(t)ll < AillcWHc-^*, A 1 , A 2 > 0 . (5) 

Stabi l izat ion in t h e presence of the bad input : 

In the two dimensional case, there is at most only one input Uf, which is constant 
that makes the bilinear system unobservable. It is given by the linear equation 

det{c(A + uB))=°-

From [12], for bounded and analytic (on M2 \ {0}) stabilizing feedback law tx(x), 
there exists S > 0 such that 

u(x) > Uf, — S and u(x) < Ub + S, Vx G M2, 

where Ub is the bad input. Assume that there exists a bounded and analytic (on 
M2 \ {0}) stabilizing law u(x) for (2) such that, for any bad input u&, there exists 
e > 0 such that 

u(x) # (ub — e,Ub + e), Vx G M2 

and u(x) is homogeneous of degree zero. Then, the system (2) is globally asymptot
ically stabilizable. Indeed, since the feedback law u(x\,x2) is bounded and analytic 
(on M2 \ {0}) then there exists S > 0, such that 

-S <u(xi,x2) <Ub-e, V(xi,x2) e M2 

or 
Ub + e < u(xi,x2) < S, V(xi,x2) € M2 

where x = (xi,x2). Suppose that, 

Ub + e < u(xi,x2) < S, V(x\,x2) G M2, 

(the same proof in the second case), then, under a change in the input space of the 
form 

u -+ u + 5 
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the systém (2) becomes 

x = Ax + uBx 
_ _ n where A = A + 6B. 
y — o x 

Denoting u^ the only bad input of the above system, and u(xi,X2) the stabilizing 
feedback law, then 

uh = ui, — 5 and u(x\,X2) = u(x\,X2) — S. 

However, u(xi,X2) is a homogeneous feedback of degree zero which satisfies 

|u(xi ,x2) | < \iib\ ~e< \ub\. 

A separation principle: 

Now, in order to investigate the stabilizability problem in observer design, one can 
consider the observer (4) for the bilinear system. For the stabilization purpose, we 
shall suppose that, 

(7i) : There exists a homogeneous feedback law of degree zero u(x), (u(Xx) = u(x) 
for A =fi 0), and of C1 (on U \ {0}), stabilizing the bilinear system (2). 

It can be remarked that, by the assumption (7/), the closed-loop system 

x = Ax + u(x)Bx 

is a continuous homogeneous vector field of degree one. Therefore, according to [9], 
there exists a homogeneous Lyapunov function V for the above differential equation. 
Since, its partial derivatives are also homogeneous, it follows that, there exists a 
positive constant a such that 

\\VV(x)\\<a(l + V(x)). 

Theorem 1. Suppose that the pair (A, C) is observable. Then, under the assump
tion H, the following system: 

J x = Ax + u(x — e)Bx ,fiv 
\e=(A + u(x-e)B-LC)e W 

is globally asymptotically stable. 

P r o o f . By (5), there exist Ax > 0 and A2 > 0 such that, ||e(t)|| < Ax | |e(0)||e_A2t. 
Taking into account, this estimation which implies the global exponential stability of 
the error equation and the fact that the system x = F(x) = Ax + u(x)Bx is globally 
asymptotically stable, then the system (6) is locally asymptotically stable [16]. In 
order to show the global asymptotic stability, by using the argument of Seibert-
Suarez [15], it suffices to prove the boundedness of any trajectories (e(£),x(£)), t > 
0, of the system (6). Since e(t) given in (5) is bounded, then it suffices to show 
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the boundedness of the component x(t). From % and using the fact that F is a 
homogeneous vector fields, there exists a C1 -homogeneous Lyapunov function V 
such that 

V(x) > 0 , V x ^ O , V(0) = 0 and V(x) = VVx(F(x)) < 0, V x ? - 0 

and a > 0 such that 

l |VT4 | |<a ( l + y(x)), VxGiR71. 

These properties can be found in [9]. Therefore, the derivative of V along the 
trajectories of time varying differential equation 

£ = F(x) - LCe(t) 

satisfies 

V(x) = VVx(F(x) - VVx(LCe(t)). 

Since VVx(F(x) < 0, it follows that 

V(x)<\\VVx\\.\\LC\\.\\e(t)\\. 

Then, one obtains 
V(x) <iie~X2t(l + V(x)), fi>0. 

Therefore, Log(l-F V^x)) is bounded by a positive constant. Hence, x(t) is bounded. 
It follows that, (6) is globally asymptotically stable. • 

Now, let us consider the equation 

x = Ax + uBx - L(Cx - y) (7) 

where we take y = h(x) as the output of the original system (1). Letting e = x - x, 
where x is the state of (1) and x satisfies the above equation (6). The derivative of 
the error e is given by 

e = f(x) + ug(x) — Ax — uBx + L(Cx — y) 

= Ax + / i (x) + uBx + ug\ (x) — Ax — uBx + L(Cx — Cx — hi (x)) 

= (A + uB)e + / i (x) + ugi (x) - LCe - Lhx (x) 

= (A + uB - S-ltCC)e + / i(x) + ugx(x) - Lhx(x). 

Then, the latter expression in conjunction with the system (1) in closed-loop with 
the estimated feedback law 

u = u(x - e) (8) 

yields 

_ / (A + u(x - e)B)x \ ( fi(x) + u(x-e)gi(x) \ 

\ (A + u(x-e)B-LC)e J \ fi(x) + u(x - e)gi(x) - LhY(x) ) ' 
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Set 

6(xe)-( {A + u(x-e)B)x 
nx' £,~\(A + u(x - e)B - LC)t 

Since « is O1 on v' \ {0}, it can be seen that 4> and ip are locally Lipschitz. 
Moreover, there exists Mo such that 

\u(z)\ < Mo for every z. 

Furthermore, it can be seen that <f> is homogeneous of degree one, and by using (3), 
one can verify that tf> satisfies 

| M * . e ) | | < M | | ( s . e ) | | , V(x,e) 6 U' x U' 

where M is a positive constant which depends on Mo, Mi, M2, M3, rj and ||C||. 
It follows from a theorem of Massera [14], that the solution (x,e) = (0,0) of the 
differential equation 

*(£, e) = (/>(x, e) + I/J(X, e) 

is asymptotically stable. 

Hence, using this fact, one can state the following theorem. 

Theorem 2. If the approximating system (2) is observable for any input and 
stabilizable by means of a homogeneous feedback u(x) of degree zero and of a class 
C1 on U \ {0}, then it is stabilizable by means of a state estimate feedback given 
by the bilinear observer (4), and that the feedback law u = u(x — e) given in (8), 
makes the origin of the original system (1) locally asymptotically stable. 

Proposit ion 2. If the (i) condition is met then, the system (2) is stabilizable 
thanks to a homogeneous feedback of degree zero which is analytic on JR2 \ {0}. 

P r o o f . There is at most only one input Ub which is constant that makes the 

system unobservable. Furthermore for t\ positive constant large enough and dJI1 + 

a > 0, then the following proposition is useful 

k(^i,a:2)| > Kl + i. • 

(Received April 20, 2000.) 
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