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STATISTICAL-LEARNING CONTROL 
OF MULTIPLE-DELAY SYSTEMS 
WITH APPLICATIONS TO ATM NETWORKS 

CHAOUKI T. ABDALLAH1 , MARCO ARIOLA 2 AND VLADIMIR KOLTCHINSKII3 

Congestion control in the ABR class of ATM network presents interesting challenges 
due to the presence of multiple uncertain delays. Recently, probabilistic methods and 
statistical learning theory have been shown to provide approximate solutions to challenging 
control problems. In this paper, using some recent results by the authors, an efficient 
statistical algorithm is used to design a robust, fixed-structure, controller for a high-speed 
communication network with multiple uncertain propagation delays. 

1. INTRODUCTION 

This paper illustrates the application of statistical-learning control results for an 
Available Bit Rate (ABR) congestion control algorithm in an Asynchronous Trans
fer Mode (ATM) communications network. The ABR service category is a best-effort 
class used in ATM networks to handle highly bursty and varying data applications. 
ATM was selected by the International Telecommunication Union (ITU) for Broad
band Integrated Service Digital Network (B-ISDN), and is detailed in [2]. ATM 
requires the transmission of fixed size cells (each containing 53 bytes) and is a 
connection-based network combining the advantages of packet and circuit switch
ing [8]. 

ABR traffic sources receive explicit feedback from the ATM switches and adjust 
their transmission rates in order to match their share of the network resources. 
ATM networks and specifically their ABR service control has provided a fertile 
area of applications for control designers as witnessed by the recent flury of papers 
[3, 4, 6]. Most of these papers however have made simplifying assumptions regarding 
the model of the network or its connectivity. In particular, few of these papers have 
considered the fact that multiple delays exist in such networks and that such delays 
are usually uncertain. 
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The study of dynamical systems with delays has recently seen a fleury of activities 
as witnessed by the references [1, 5, 10, 11]. We now understand how to design 
various controllers for linear and nonlinear systems to achieve various performance 
objectives. We can also account for various uncertainties in the modeling of the open-
loop systems. The presence of delays in dynamical systems may have destabilizing 
effects [11], cause chaotic behavior [11], and in general the design of stabilizing 
controllers for such systems may be NP-hard [13]. In [4], the authors used tools 
from robust control to account for the fragility of the standard controllers in the 
presence of uncertain time delays in an ATM network. 

The presence of multiple delays in physical systems has been illustrated in com
modity markets, active displacement control, and other systems. In communications 
networks, it is also understood that delays are not only present, but that they have 
an important impact on the performance and even on the stability of such networks. 
Moreover, and if one also accounts for the fact that the delays are uncertain, one 
is faced with the challenging problem of trying to control a large, interconnected 
network, with many uncertain delays and to do so in the face of modeling errors and 
disturbances. In this paper, we shall focus on one type of networks (ATM), under 
one type of operational characteristics (ABR) and only consider the uncertainties in 
the time delays. 

The current paper will first address the problem of designing fixed-structure con
trollers which will meet various performance objectives for an open-loop system 
with multiple uncertain delays. The results of this design will be illustrated on the 
aforementioned ATM networks. 

In what follows, we will follow the ATM network model used in [9] which ad
dressed the ABR control in the presence of delays using a Smith-predictor control 
architecture [12]. 

2. THE NETWORK MODEL AND THE CONTROL PROBLEM 

The ABR class is designed as a best-effort class for applications such as file transfer 
and e-mail. Thus, no service guarantees are required, but the source of data packets 
controls its data rate, using a feedback signal provided by switches downstream that 
measure the congestion of the network. Due to the presence of this feedback, many 
classical and advanced control theory concepts have been suggested to deal with the 
congestion control problem in the ATM/ABR case. 

We will focus our modeling on one particular queue in the network which is 
associated with a link shared by many virtual circuits. A virtual circuit is established 
for any two stations wishing to communicate, by informing all switches bewteen them 
of their requirements. Assuming that the flow of packets is conserved, the queue level 
model for each buffer in the ATM network (as proposed in [9]) is 

ż(ť) = X>.(* - T.) - d(ť) 
i = l 
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or stated otherwise 

x(t) = jT (-d(T) + f>.(r - Ti)J dr (1) 

where 

- x(t) is the queue level associated with the considered link; 

- n is the number of virtuaJ circuits sharing the queue associated with the con
sidered link; 

- Ui(t) is the inflow cell rate caused by the ith virtual circuit] 

- T{ is the propagation delay from the ith source to the queue, and is usually 
uncertain; 

- d(t) is the rate of packets leaving the queue. 

More details on this model and its physical interpretation is available from [9]. 
Equation (1) appears to be linear since the saturation effect due to the limited 
buffer capacity has been neglected. Our control design however, must ensure that 
this condition is actually satisfied, so that the controller is not saturated. 

2 .1 . T h e control p rob lem 

The author in [9] proposes the control scheme of Figure 1. The objectives of the 
control law proposed in [9] are to guarantee 

- Stability: 
x(t) <r° t>0 

where r° is the queue capacity. This condition guarantees no cell loss and is 
not the usual stability requirement; 

- Full Link Utilization: 
x(t) > 0 t > TtT. (2) 

The time TtT in (2) mainly accounts for the transient time of the dynamics. 
Assuming that T{ = Ti and disregarding for the moment the presence of d, the 

scheme in Figure 1 can be shown to be equivalent to the one in Figure 2 [9]. In 
this case, the designer knows exactly the value of all delays T{, i = 1, • • •, n, and the 
closed-loop system exhibits the following nice properties: 

- Considering r(t) = r° • l(t) where l(t) is the unit step, and d(t) = a-l(t), with 
0 <a <1 the stability property is satisfied. 

- Considering d(t) = a • 1(£), with 0 < a < 1 the full utilization property is 
satisfied, provided that 

'•-HI4 
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Fig. 1. The controlled system. 

The technique which is used in order to obtain the desired closed-loop system is 
the well-known Smith's principle [12]. 

r(t) + 
•\ ь k 

u(t) 
1 
5 

1 
n Ľľ=i в" s T i 

x(t) 

*c ) * 
k 1 

5 
1 
n Ľľ=i в" s T i 

Fig. 2. The desired closed-loop system. 

The main drawback of the approach of [9] is that it works well as long as the 
propagation delays T* are exactly known. When this is not the case, even stability, 
in the sense defined above, can be lost. In order to illustrate this limitation and the 
potential of losing stability, we carried out the following simulation: Assuming that 
n = 4, Ti = 10s, T 2 = 30s, T3 = 60s, T4 = 120s, k = 0.1, and r° = 40, the stability 
condition is satisfied (see Figure 3) if we choose f{ = Ti, i = 1,. . . 4. 

Then we perturbed all the T~-, i = 1, • • •, n by 5 %, without modifying the assumed 
Tj, i = 1, • • • ,n. As shown in Figure 4, stability is lost since x(t) is greater than 
r° during some time intervals. However, we found that stability is regained if the 
controller gain k is changed to k = 0.01 (see Figure 5) at the expense of a slower 
response. When the T{S however are not known, the designer cannot a-priori design 
a Smith-predictor-type controller in order to guarantee the desired degree of stability 
and performance. 
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Fig. 3. Queue level when the propagation delays are assumed to be known. 

Our choice of k = 0.01 came out of a trial-and-error procedure. How then should 
one choose the best controller gain fc, assuming the controller structure proposed 
in [9]? In order to give an answer to this question we propose an algorithm based 
on statistical learning theory [7]. 

3. CONTROLLER DESIGN 

In this section, using a randomized algorithm which is described in detail and proven 
elsewhere [7], we shall describe a way of choosing the controller gain k (see Sec
tion 2.1) in an optimal way. The basic idea of this control design approach is to 
convert a difficult control design problem into a sequence of efficient analysis prob
lems. The number of these analysis problems will be determined by our algorithm, 
and each one of them must be efficiently resolved. This type of approach works 
well when we have a fixed-structure, multiobjective control design problem and the 
corresponding analysis problem is efficiently solvable. 

The time-delays T{ are assumed to be uncertain but known to lie in a given 
interval. In fact, let them be uniformly distributed in the following intervals 

Ti G [9,11], T2 G [27,33], T3 G [54,66], T4 G [106,132] 

i. e. there is a 10 % uncertainty in their value, and the amplitude a of the disturbance 
d(t) is assumed to have the maximum value a = 1. Our objective is to find the 
controller which solves the following problem: given a certain, fixed value for r°, 
find a controller gain k which guarantees the best possible robust performance, in 
terms of stability and full utilization as defined in Section 2.1 in the presence of the 
worst-case disturbance d(t) = a • 1(£), with a = 1. More formally our target is to 
find a controller gain k such that, given r° = 95. 
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Fig . 4. Queue level when the propagation delays are perturbed by 5%. 

1. The closed-loop system with the nominal time delay is guaranteed to be both 
stable and to fully utilize the network's capabilities in the presence of the 
worst-case disturbance with a value of Ttr (see (2)) no greater than 20. 

2. A certain cost function is minimized in the presence of uncertain time delays. 
This cost function accounts for the closed-loop stability and performance (in 
terms of full utilization) in the presence of variations of the time delays. The 
desired value for Ttr is Ttr < 30. 

We assume no previous design experience in the value of the controller gain and 
so we choose k to be uniformly distributed in the interval y = [0.01,1]. 

In order to use the randomized algorithm methodology, this problem has been 
reformulated in the following way (see also [7, 15]). We let X = [Ti T2 T3 T4] and 
Y = k, and define a cost function 

Ф(Y) = maxШY),ţMУ)} (3) 

where 

MY) = 

1 if the nominal plant is not 
stabilized or the full utilization 
property is not guaranteed-with a Ttr < 20 

0 otherwise 

(4) 

and 

ф2(Y) = E(((X,Y)) (5) 
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Fig. 5. Queue level when the propagation delays are perturbed by 5 % and k = 0.01. 

where E indicates the expected value with respect to X, and 

аx,ү) = < 

1 if the randomly generated 
plant is not stabilized or the full utilization 
property is not guaranteed with a Ttr < 30 

0 otherwise. 

Our aim is to minimize the cost function (3) over y. The optimal controller is 
then characterized by the parameter Y* for which 

Ф* := Ф(Y*) = inf Ф(Y). 
v ' YeУ 

(6) 

Finding the scalar Y* which minimizes (6) would imply the evaluation of the ex
pected value in (5) and then the minimization of (3) over the set y. What we shall 
find is a suboptimal solution, a probably approximate near minimum of \-/Q0 with 
confidence 1 — 5, level a and accuracy e (see [7]). 

Definition 1. Suppose * : y -> M, that P is a given probability measure on y, 
and that a G (0,1), S £ (0,1) and e > 0 are given. A number $ 0 is a a probably 
approximate near minimum of * Q 0 with confidence 1 — 5, level a and accuracy e, 
if 

Prob ( inf * ( F ) - e < * 0 < inf tf (Y) + e 1 > 1 - S 
[Yay v ' ~ u - Ysy\s v ' ) ~ (7) 

with some measurable set S C y such that P(S) < a. In (7), y \ S indicates the 
complement of the set S in y. 

An interpretation of the definition is that we are not searching for the minimum 
over all of the set y but only over its subset y \ <S, where S has a small measure (at 
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most a ) . Unless the actual infinum \£* is attained in the exceptional set «5, \-/n is 
within e from the actual infinum with confidence 1 — 5. Although using Monte Carlo 
type minimization, it is unlikely to obtain a better estimate of \P* than *o (since the 
chances of getting into the set S are small), nothing can be said in practice about 
the size of the difference * 0 — **• 

Based on the randomized algorithms discussed in [7], a probably approximate 
near minimum of #(Y) with confidence 1—8, level a and accuracy e, can be found 
with the following Procedure, which was derived in [7]. 

Procedure 

Step 1. Let j = 0. 

Step 2. Choose n controllers with random uniformly distributed coefficients Y\,..., Yn G 
y, where (we indicate by [-J the floor operator) 

n = 
ìog(2/5) 

Llog[l/(l-a)] 

Evaluate for these controllers the function fa in (4) and discard those con
trollers for which ip\ = 1. Let n be the number of the remaining controllers. 

Step 3. Choose m plants generating random parameters X\,..., Xm G X with uniform 
distribution, where 

-*{[>4)H-
Step 4. Evaluate the stopping variable 

i m 

7 = max 
l < j < n 

m . 
i = i 

where T{ are Rademacher random variables, i. e. independent identically dis
tributed random variables taking values +1 and —1 with probability | each. 
If 7 > | , let j = j + 1 and go back to Step 3. 

Step 5. Choose the controller which minimizes the function 

1 m 

m r-w 

i = i 

This is the suboptimal controller in the sense defined above. 
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Fig. 6. The stopping variable. 

Remark 1. The proposed algorithm consists of two distinct parts: the estimate of 
the expected value in (5), which is given with an accuracy e and a confidence 1 — J/2, 
and the minimization procedure which is carried out with a confidence 1 — S/2 and 
introduces the level a. As it can be seen from the Procedure, the number m of 
samples in X which are needed to achieve the estimate of the expected value (5), 
known as the sample complexity, is not known a priori but is itself a random variable. 
The upper bounds for this random sample complexity however, are of the same order 
of those that can be found in [14]. 

In our case, the procedure needed just one iteration to converge, i.e. j = 1. 
Therefore, for S = 0.05, a = 0.005 and e = 0.1, n evaluated to 736 controllers 
and m evaluated to 50,753 plants. In Figure 6, the stopping variable is shown. The 
suboptimal controller is k = 0.9787, and the corresponding value of the cost function 
is *o = 0.5020. The performance of this controller is illustrated in 'Figure 7 for the 
noniman TiS and the case of no disturbance, although the non-nominal cases are 
also shown to meet all design specifications. 

4. CONCLUSIONS 

In this paper we have illustrated a new approach to the design of fixed-structure 
control design for multiple, uncertain time-delay systems. We illustrated our design 
approach for controlling the ABR case in an ATM communications network. We 
showed that by using statistical learning concepts, we were able to design a controller 
that will not only guarantee various performance objectives for the nominal ATM 
system, but to do so even when the multiple-time delays are not exactly known. 
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Fig. 7. The performance of the closed-loop system. 

The same design approach may be used in other multi-delay control problems or to 
include other performance objectives. 

(Received November 22, 2000.) 
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