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A COUNTING PROCESS MODEL OF SURVIVAL 
OF PARALLEL LOAD-SHARING SYSTEM 

P E T R V O L F AND ALES LINKA 

A system composed from a set of independent and identical parallel units is considered 
and its resistance (survival) against an increasing load is modelled by a counting process 
model, in the framework of statistical survival analysis. The objective is to estimate the 
(nonparametrized) hazard function of the distribution of loads breaking the units of the 
system (i. e. their breaking strengths), to derive the large sample properties of the estima
tor, and to propose a goodness-of-fit test. We also examine the relationship between the 
survival of the system and the survival of its components. 

1. INTRODUCTION 

In the present contribution we model the reliability (survival) of a system composed 
from m parallel identical components. The reliability is understand as a resistance 
of the system against a load (strength, stress) causing its failure, the reliability of 
the system is derived from the reliability of the components. 

We assume that the system is tested by a load increasing from 0 up to the level 
breaking the system (i. e. all its components) - or up to a given maximal load 5max 
when the experiment is terminated. Let the testing experiment be relatively fast, so 
that the time of duration of the stress does not influence the survival. We use more 
or less the standard survival analysis approach and the counting processes model, 
however, instead the time, the load per one component is the variable of interest. 
Simultaneously, we consider a rather simple scheme of re-distribution of the load 
among the components, namely the Daniels load-sharing model, see Crowder et al [5]. 
We assume that the breaking strengths of individual components are independent 
and identically distributed random variables, and that at each moment the load 
applied to the system is divided equally among the (unbroken) components. The 
same model has been used, for instance, in Belyaev and Ryden [4]. The global load 
affecting the system is observed. However, as the break of a component leads to 
immediate re-distribution of the load to the other components (so that to abrupt 
increase of the load per each component), the consequence can be an immediate 
break of several of remaining components. Therefore, in such a case of multiple 
breaks we observe directly the strength causing the break of the first component 
only. Moreover, we often are not able to register the order in which the components 
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broke, but in the case of identical components the information on the order is not 
important. The statistical analysis will use the values of directly observed (i.e. 
noncensored) data only. The censoring of the other breaks will be expressed by a 
properly defined observability indicator process, as it is common in the setting of 
the counting process model. Thus, we actually omit a part of information. On the 
other hand, the estimation and the proofs of the large-sample properties are then 
much more straightforward. 

We have to admit that we deal with a rather simple description of a parallel 
system, that a more accurate model should consider for instance the (irreversible) 
consequences of shocks caused by the abrupt increase of the load per one component. 
Some cases, for instance the case of a wire or a textile yarn composed from a set 
of strands, are even more complicated due the elasticity of the material, or due the 
mutual dependence of twisted strands. Therefore, the present model is just a step 
to a more profound investigation of the reliability of systems. 

The theme of reliability of a system composed from parallelly organized units has 
already been studied by a number of authors. In most instances the time to break 
under a constant stress has been analyzed. The random process approach was used 
for instance in Daniels [6], who examined the behaviour of maxima of certain Gaus
sian processes and with their aid he modelled the breaking strengths of a bundle 
of fibres. As we have already said, the starting point of our analysis is the model 
of the counting process characterized by a nonparametric hazard function. In the 
same setting, Belyaev and Ryden [4] proved the uniform consistency and the local 
asymptotic normality of the Nelson-Aalen estimate of the cumulative hazard func
tion (C.H.F.) characterizing the probability distribution of the breaking strengths 
of components. 

Our objectives are mostly methodological, i. e. we want to collect and propose 
a set of methods for modelling, computing, testing and simulation of reliability of a 
parallel system. Quite naturally, certain theoretical problems have to be solved, too. 
In Section 2 the counting process model of the breaking strengths of the components 
in a load-sharing system is recalled. In the beginning of Section 3, still following 
Belyaev and Ryden [4], we present the Nelson-Aalen estimator of C.H.F. of the 
breaking strength of one component. The main results are concentrated in Sections 
3 and 4. After a rather trivial statement of Lemma 1, we offer a modified proof of 
uniform consistency in Theorem 1. Then the main Theorem 2 proposes the weak 
convergence of residual process to a Wiener process, on a whole interval. In Section 
4 this global asymptotic normality is utilized for the formulation of a goodness-of-fit 
test. The proofs use the relevant results and theory available in a number of papers 
and monographs dealing with the counting processes models (e.g. Andersen and 
Borgan [1], Fleming and Harrington [7], Andersen et al [2]). 

The problem how to derive the probability distribution of the breaking strength 
of the system, if the distribution of breaking strengths of its components is known, is 
discussed in Section 5. We recall both the computation approach proposed already 
in Suh et al [10] and the simulation method, and we compare them. In concluding 
Example 3 we consider also a more general case of two types of units with propor
tional hazard rates, and we analyze such a situation as a simple case of the Cox's 
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hazard regression model (Andersen and Gill [3]). 

2. THE COUNTING PROCESS OF BREAKS OF COMPONENTS 

Let us first consider one component and the random variable U - its breaking 
strength. We assume that U has a continuous distribution on [0,oo) with a dis
tribution function F(u), density f(u), hazard function h(u) = 1lwu\ defined on 

u G [0, S] such that F(S) < 1. By H(u) = f™ h(v) dv we denote the cumulative haz
ard function. The 'fate' of a component during the increase of the load affecting it, 
u, is described by two random processes, by the counting process Nl(u) and the in
dicator I1(n). Ix(u) = 1 if the load u affecting the component is observed, otherwise 
Ix(u) = 0. Namely, Ix(u) = 0 if the component is already broken or if the exper
iment is terminated. We assume that the trajectories of I*(u) are left-continuous. 
As regards Nx(u), N1 (0) = 0 and N*(u) jumps to 1 at the load level Ub causing 
the observed break of the component (i.e. provided Il(ut>) = 1). Trajectories of 
7V1(n) are taken as right-continuous. The above description is actually the standard 
scheme of survival analysis, where the increasing load per component stands instead 
of time. As we assume a continuous distribution of U, we also consider a continuous 
scale of u. The difference in comparison with the standard survival analysis scheme 
consists in that we allow for abrupt jumps-up of the load affecting the component -
in these intervals we set Ix(u) = 0, too. 

2.1. The model of a parallel sys tem 

Let us now consider the system composed from ra components, let the breaking 
strengths of components be described by i.i.d. random variables Uj, j = 1 , . . . ,ra, 
with distribution given by f(u), F(u), h(u), H(u), respectively. The following 
example illustrates the structure of observed data. Let us imagine that the breaks 
of components occurred for K 'global' loads affecting the system, 0 < si < $2 < . . . < 
8K < -Smaxj t*13^ kj components broke on level Sj, with Yl^j ~ m- Therefore, just 
before the first break the load per each component was u\ = 8i/ra, while just before 
the moment of the second break it was U2 = S2/(m — ki) (naturally affecting only 
ra — k\ remaining components) and, finally, immediately before the moment of the 
last break the load per each of last kK components was UK = SK/kK- Hence, only K 
breaks were observed directly, namely these caused by known loads per component 
Uj. Other breaks (if kj > 1) were caused by unknown (unobserved) loads per 
component from intervals (u\, ui = Si/(m-ki + l), (1x2, U2 = 82/(ra-fci-&2 + I)), 
. . . , (UK, UK = SK), respectively for k\ — 1, A/2 — 1, •. •, kK — 1 components. Our first 
aim is to analyze the distribution of Uj on [0,5]. We assume that the maximal load 
per system 5max 1s sufficiently large (e. g. Smax > S • ra) in order not to terminate 
experiments too early. 

Remark 1. Taking into account the assumption that the probability distribution 
of Uj is continuous, then (theoretically) there cannot occur two breaks at the same 
load per component level u. In other words, components break one after another, 
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not simultaneously (though sometimes we are not able to distinguish their order). 
The intervals of breaking strengths can be specified even more precisely than (uk, Uk) 
above. However, as it has been said, our solution will not use the information about 
interval-censored strengths explicitly, but through a properly defined observability 
indicator process only. That is why we do not discuss the details of interval censoring 
here. 
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Fig. 1. Counting process N(u) and indicator process I(u). 

Thus, the data used for analysis consist of I(u) = YlT= l Ij(u)> ^ ( n ) = __^=i Nj(u), 
i. e. the sums of indicators and observed counting processes of the components. By 
u we again denote the load per (unbroken) component. For the better explanation 
of the structure of observed data, let us display one example graphically. A system 
composed from m = 10 components has been simulated. Distribution of Uj followed 
the exponential distribution with the mean one. K = 5 successive breaks has been 
observed. Figure 1 shows the indicator process I(u), the counting process N(u) of 
observed breaks (full line), and also the underlying counting process of actual breaks 
of components (dashed line), which, in the real data cases, is not observed. 
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3. ESTIMATOR OF C.H.F., ASYMPTOTIC PROPERTIES 

In the present part the estimator of the cumulative hazard function H(u) (of distri
bution of the breaking strength of one component) is recalled and the uniform con
sistency and asymptotic normality of this estimator on interval [0, S] are proven. Let 
us consider that n identical and independent systems are tested. Denote by Uij the 
random variables - breaking strengths, by N{j(u), Uj(u) related individual counting 
and indicator processes for the j t h component of the ith system (j = 1,2,..., ra, 
i = 1,2,..., n). Further, denote 

m m n n 

Ni{u) = Y,NvM> Ii(u) = ^2lij(u), JV(u) = ^ ^ ( t i ) , I(u) = J2li(u). 
j=\ j=l i=l z = l 

Let us first revoke some useful results of martingale theory connected with the 
counting processes (Andersen et al [2]). Individual counting processes Nij(u) are 
governed by their intensities, which, in our case, are Xij(u) = h(u) • Uj(u). Cu
mulative intensities are Lij (u) = J0 Xij (v) dv and corresponding counting processes 
can be decomposed to the compensator and martingale, Nij(u) = Lij(u) + Mij(u). 
Mij(u) are local square-integrable martingales, with zero mean, mutually orthogonal 
and with variance process (Mij)(u) = Lij(u). Here ( ) denotes actually the process 
of conditional variance conditioned by the nondecreasing sequence of cr-algebras -
the filtration - containing the observed history of the process. More precisely, a(u) 
is a cr-algebra constructed above the trajectories of Nij(v),Iij(v),v < u. For more 
details, see again Andersen et al [2], Fleming and Harrington [7]. The martingale-
compensator decomposition, together with the law of large numbers and the central 
limit theorem applied to martingales, are the basis for the derivation of large-sample 
(asymptotic) properties of the estimator. 

3.1. Nelson-Aalen estimator of C.H.F. 

The most common estimator of the cumulative hazard function is the Nelson-Aalen 
one 

- . . [ul[I(v)>0 J л r , ч 

Jo IW 

where we set 0/0 = 0. It is seen that the ability of the estimator to approximate 
well the 'true' H(u) depends on the indicator process, i.e. on the observability of 
the counting processes for all values of strength u in the interval of interest [0, S]. 

Let us assume that the number of tested systems, n, tends to infinity. Then 
it is also desirable that at each point u G [0,5] the number of observed unbroken 
components is of order n. Lemma 1 shows that such a property follows from the 
initial simple assumptions of identical, independent and continuous distribution of 
Uij together with the assumption that F(S) < 1. 

Lemma 1. There exists, with probability 1, a limit 

lim = r(u) 
n-*oo n 
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for u G [0,5]. Moreover, this limit is uniform w.r. t o u G [0,5] and r(u) > e for some 
e>0. 

P r o o f . 

1. For each fixed w, U(u) are i.i.d. random variables, with values from {0,1,2 . . . , m}. 
Hence, the law of large numbers yields the almost sure convergence 

ktm 
i= l 

r(u) = E{h(u)}. 

2. From assumptions that random variables Uij are i.i.d. and that F(S) < 1 it 
follows that for each u < S there is a positive probability [1 — F(u)]m that 
all components of the system survive u. Therefore, r(u) > m • [1 — F(u)]m > 
m • [1 — F(S)]m > 0. The last expression can be used as e in Lemma 1. 

3. It remains to prove the uniformity of convergence. Random functions U(u) are 
mutually independent, with the same distribution. They have maximally 2m 
finite jumps (m down and up). We shall use the results collected in Hoffmann-
J0rgensen [8] (Volume II, Parts 9.13 to 9.17). We can imagine that each tra
jectory of Ii(u) is given by a bounded, piecewise-constant nonrandom function 
&(v, k; u), where v, k = (v\, v2,..., vm, k\, k2,..., km) are the realizations of 
random vector V, K = (Vi, K\, V2} K2,..., VmyKm), Kj are levels of Ii(u) and 
Vj are its points of jumps down. Again, for different is these vectors are i.i.d., 
K is bounded, V has continuous distribution. Hence, the proof of Lemma 
1 follows from the boundedness in the mean and from a.s. piecewise conti
nuity of functions b(-\u) with respect to the distribution of V , K (cf. again 
Hoffmann-j0rgensen [8], Theorem 9.17 on uniform convergence). • 

From the uniform convergence and from the boundedness of jumps of I(u) it also 
follows that the limit function r(u) is continuous on [0,5]. 

Remark 2. The statement of Lemma 1 implies that for every 5 > 0, for sufficiently 
large n > ns, Pr{I(u) > 5 on the whole [0,5]} = 1. Hence, with probability one 
it also holds that l[I(u) = 0] = 0 on [0,5], and also y/n /<f l[I(u) = 0]dH(u) = 0. 
Such a property corresponds to one of conditions required in Andersen et al [2] 
(Theorems IV. 1.1 and IV. 1.2) for the consistency and asymptotic normality of the 
Nelson-Aalen estimator. 

3.2. Asymptotic properties 

1. Consistency. The uniform consistency of Hn has already been proved in 
Belyaev and Ryden [4]. We shall prove the same result with the aid of Lemma 
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1. Let us examine residuals Hn(u) - H(u) for u G [0,5]. Denote Mi = J^jLi Mii> 
M = YA=I Mi- From the martingale-compensator decomposition we obtain 

#„(«) - KM = r E £
J (^ ' ' ( " > ' ' f ( " ) > °i - H W 

- r E S ^ M w > o J + r s j ^M![ / ( , , >O]-H(U) 

Theorem 1. Hn(u) is an a.s.-consistent estimate of H(u) on [0,5]. Moreover, this 
consistency is uniform w.r.to u £ [0,5], i.e. supuG[05] |i-in(u) - H(u)\ -> 0 a.5. 

Proof. Processes ^ JQ
U dM(v) = ^YA=I Mi(u) have zero mean, Mi are mutually 

independent. Moreover, as Mi(u) = Ni(u) - f£ h(s)Ii(s)dsy they are uniformly 
bounded on [0,5]. Therefore, at fixed u, £ J^dM(s) -•> 0 a.s. (it follows from the 
law of large numbers). 

Uniform convergence supuG[0>s] £ JQ dM(s) -> 0 a.s. can be proved similarly as 
in the preceding Lemma 1. We can represent Ni(u) by a piecewise constant function 
c(v; u) which has maximally m steps +1 at points vi, v2,..., i>m, and JQ

U h(s)Ii(s) ds 
can be represented by a continuous and bounded function JQ

U h(s)b(v, k; s) ds, where 
6 is a function defined in the proof of Lemma 1, v, k are i.i.d. realizations of V, K 
( also the same as in the proof of Lemma 1). Then, Theorem 9.17 of Hoffmann-
J0rgensen [8] can again be applied to the proof of the a.s. uniform convergence 
IJ0

1'dM(s)->0.on[0)s]. 
From this and further from Lemma 1 and Remark 2 the statement of Theorem 1 

follows immediately. • 

2. Asymptotic distribution. Let us now analyze the behaviour of the process 
y/n(Hn(u) — H(u)) on [0,5], for n -* 00. Similarly as in (1), we obtain 

yfr(Hn(u) - H(U)) = yfc P 1 [ f ( ^ f Q] dM(v) -yftT l[I{v) = 0] dH(v). (2) 
Jo -*W Jo 

Taking into consideration the uniform convergence of I(v)/n given in Lemma 1, the 
statement of Remark 2, and the boundedness of jumps of dM(v) (jumps are less or 
equal to m), we immediately obtain the following theorem specifying the asymptotic 
distribution of residual process. 

Theorem 2. Random process y/ri(Hn(u) — H(u)) converges weakly on [0,5] to a 
Gauss random process with independent increments, zero mean and with variance 
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function 

w(u) = / 
Jo 

" dH(v) 

r(v) 

In other words, the process is asymptotically distributed as W(w(u)), where W(.) 
is a Wiener process. 

P r o o f . The proof follows directly either from the central limit theorem for mar
tingales (e.g. Andersen et al [2], part II.5.) or from Theorem 3.2. of Andersen 
and Borgan [1]. It remains to show the convergence of the variance process and to 
compute the exact form of its limit. The convergence follows from our Lemma 1 and 
from the boundedness of both H(u) and r(u) on [0,5], namely 

ru dM(v), _ fu (dM) (v) 
as var ~ var' '- ' v ' 1 ~ ' 

f n fu åM(v) л Г 
:{VГгL -iw)=nEL P(v) 

" åL(v) _ г f " h(v)áv % fu dH(v) 

r(v) 
- „ғ ľáL{v) -ғ ľh{v)dv ^ ľ 
- nEL ш~EL ЖҺ^L 

D 

4. GOODNESS-OF-FIT TEST 

Let a hypothetical model be given by a cumulative hazard function H°(u). We want 
to decide whether the data correspond to it. The data are represented by observed 
trajectories of Ni(u), U(u), i = 1,...,n. The tests are quite naturally based on the 
comparison of Hn(u) with expected H°(u). 

Graphical test. Let us order all observed strengths breaking the components into 
one nondecreasing sequence Uk, k = 1, . . . , K. For the graphical comparison, we plot 
the values 

L(uк) = / dЯ°(г;)/(г;) 
Jo 

against N(uk) = k on the abscissa. If the model holds the residual process L(u) — 
N(u) is a martingale. Then it is expected that the curve L(uk) will be close to the 
line y(k) = k. An opposite case (e.g. expanding distance of both curves) indicates 
that the model H°(u) does not correspond to the data. Approximate critical bounds 
for such a comparison can be derived e. g. from the following numerical procedure. 

Numerical test. Numerical test is based on asymptotic distribution. From the 
result of Theorem 2 it follows that the process 

Dn(u) = MHn(u) - H°(u)) /(I + w(u)) 

is (if the model holds) asymptotically distributed as a Brownian bridge process 
B(T(U)), where T(U) = w(u)/(l + w(u)), u G [0,5]. Hence, a test of Kolmogorov-
Smirnov type can be used. From the theory of Brownian bridge it follows, for 
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instance, that if d > 0, 

P (ma,xDn(u) > d) = P (minDn(u) < -d) « exp(-2d2) 

approximately. So that the value exp(—2d2), where d is observed maxjt \Dn(uk)\, 
is an approximate p-value for the test of hypothesis of the goodness-of-fit against a 
proper one-sided alternative. Simultaneously it holds that the critical value of the 
two-sided test, on level a, namely the value d(a) fulfilling 

P ^ s u p | o n ( u ) | >d( a) i = a, 

can be approximated by d(a) = y l n ( ^ ) | . It follows that the approximate (1 — a) 

confidence region for 'true' H(u) is the band H(u) ± d(a)(l + w(u))/y/n. A more 
precise critical values can be obtained from the relevant results on the Brownian 
bridge process and on its probability of crossing a given level. An example of the 
test is provided in Section 6, Example 2. 

5. DISTRIBUTION OF BREAKING STRENGTH OF SYSTEM 

Let us now assume that we know the characteristics of breaking strengths distribu
tion of individual components (e.g. the distribution function F(u)) and our aim is 
to compute the reliability for the whole system composed from m such components. 
Though such a problem has already been considered elsewhere, for instance in Suh 
et al [10], we think that it is useful to recall this approach in order to complete 
the set of methods presented in the paper. More precisely, let the probability that 
the system will not survive the (global) load s be given by the distribution function 
FR(s) = P(R < s), where R is the random variable describing the breaking strength 
of the system. If we denote by U^) < U(2) < . . . < £7(m) the order statistics 
created from the random strengths breaking individual components of the system, 
C/i, C/2, . . . , C/m, then evidently 

FR(s) = P(R<s) = P\ П^= 1 U(k) < ^ — г } > 
v ' m — k + 1J J 

which can be computed from the joint distribution of order statistics c/(i),..., U(my 
Though such a distribution is well-known (see e.g. Rao [9], Chapter 3.6.), the 
computation of the joint distribution function is not easy. In our case a sequential 
computation yields that 

FR(s) =m\ Am(s), 

where .An (8) = 1 and 

^(5) = E ^ ^ ^ - i ( 5 ) F i ( ^ ) - ( 3 ) 
j = 1 J' 

Another simple and universal approach to the evaluation of distribution of random 
variable R consists in the simulation. The following example illustrates and compares 
both methods. 
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6. EXAMPLES 

Example 1 

Let us consider a system composed from m = 10 components and assume that the 
breaking strength of each component (i.e. random variable Uij) has the standard 
exponential distribution (i.e. with EUij = 1). We simulated the breaks of n = 
200 such systems. The results observed for one of them are already in Figure 1. 
Naturally, the global load under which the system broke was observed, too. We thus 
obtained a sample of n = 200 independent realizations r* of random variable R -
the breaking strength of the system. The empirical distribution function FR(S) = 
^ l [ r i < s ] constructed from this sample is displayed in Figure 2a and compared 
with FR(S) computed from (3). Other empirical characteristics can be easily derived, 
too. For instance, the estimate of cumulative hazard function can be obtained either 
as HR(S) = — ln(l — FR(S)) (see Figure 2b) or directly from the ordered sample: Let 
(i) be the order of r-; in r i , r 2 , . . . , r n , then the standard Nelson-Aalen estimator is 

HH(S) = £IU -S^L. 
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Fig. 2. Estimated FR(S) and HR(S) of distribution of random variable R, 
compared with dotted FR(S) computed from (3). 
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Example 2 

In this example of the numerical goodness-of fit test we use the data simulated in 
Example 1. We intend to test the hypothesis H 0 that the data really correspond to 
the standard exponential distribution, on interval u G [0,5]. Therefore, we should 
compute Hn(u)j estimate w(u) by 

W, .(«) = [ 
J0 

un-dHn(v) 
I(v) • 

and find the maximum of |Z?n(u)|, assuming that the hypothetical C.H.F. of standard 
exponential distribution is H°(u) = u. 

The maximal and minimal observed values of Dn(u) on [0,5] were d+ = 0.0158, 
d~ = —0.0711. We then computed approximate critical value for the test level 
a = 5%, d(a) = 1.3581. As it was considerably greater than d = max(d",_, — d~) = 
0.0711, the hypothesis H 0 was not rejected (on approximately 5 % level of test signif
icance). Estimated Hn(u) together with hypothetical H°(u) = u and approximate 
95 % confidence bands are displayed in Figure 3. 

Fig. 3. Cumulative hazard function for individual components: 
estimated Hn(u) (full line), hypothetical H°(u) = u (dashed), 

and asymptotic 95 % confidence bands for H(u) (dotted). 

Example 3 — A system with non-identical units 

Let us now consider a simple case of components with different breaking strengths, 
namely the case of the proportional hazard model with only two types of components. 
Let a standard type have the hazard function ho(s), while the other type has the 
hazard function hi(s) = c-ho(s), c > 0. Equivalently, the situation can be described 
via the hazard functions of components h(s) = ho(s) exp(bX), where b = lnc and 
X is a random variable with p = P(X = 1), 1 - p = P(X = 0). In the follow up 
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we shall assume that the configuration of x's is known, i. e. we are able to match 
a certain value x to each observed broken or censored component. Then the case 
can be regarded as a simple version of Cox's regression model (with only two levels 
of regressor). The objective of statistical data analysis is to estimate parameter 
b and function /in(s), respectively its cumulative version Ho(u) = JQ ho(s) ds, on 
[0,S]. It is well known (cf. Andersen and Gill [3]) that such an estimation problem is 
solvable consistently, moreover with estimates possessing the property of asymptotic 
normality. 

Assumptions . We assume that Ho(S) < oo and that 1 > p > 0. These assump
tions actually suffice for the validity of conditions (given in Andersen and Gill [3]) 
ensuring the desirable large sample properties of estimates. 

Let us denote 

i j i j 

let iV1(s) and 1V°(s) be defined in a similar way. Then a variant of Lemma 1 (with 
a quite analogical proof) holds: 

L e m m a 2. There exist, with probability one, uniform limits 

rr(s) = hm ——, ro(s) = hm ——, 
n—>oo 71 n—>oo ft 

which are positive, bounded, and also bounded away from zero on [0,5]. 

Estimation . In the framework of the proportional hazard model, the estimation 
has two stages. First, the parameter b of proportionality is estimated from relevant 
partial likelihood (which actually can be derived from the full likelihood, because it 
is a 'profile' likelihood of 6). Its logarithm, after some simplification, reads 

InL p (6 )= / bdNl(s)- f ln{I°(s) + exp(b)I1(s)}dN(s). (4) 
Jo Jo 

Optimal 6 (the maximizer of (4)) is obtained from the solution of equation d In Lp/db = 
0, via the Newton-Raphson algorithm (or via another iterative procedure). In such a 
simple case considered here the solution is unique and, as the second derivative of (4) 
is negative, the maximum of In Lp(b) can be reached practically from arbitrary start
ing value of the iteration procedure. In practical examples, the Newton-Raphson 
algorithm converged as a rule in less than 10 steps. The next stage consists in the 
estimation of the cumulative baseline hazard function, by the Newton-Aalen type 
estimator (in the regression context called the Breslow-Crowley one): 

^'f^Tn* (5) 
Jo 1° (s) + exp(6) J1 (s) 

As we have already said, the large sample properties (consistency and asymptotic 
normality) follow from the results derived for a more general case of Cox's model. 
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Numerical example. We generated a sample of 200 'systems', each composed 
from 10 components with the breaking strengths given by exponential distributions: 
5 standard components had the mean 1, 5 stronger components had the mean 2. So 
that Ho(u) = u and the proportionality parameter c = exp(6) = 0.5. After a fast 
and short iteration we obtained the estimate of b = —0.7072, i. e. of c = 0.4930, with 
approximate 95 % confidence interval, based on the asymptotic normality of estimate 
of b, (0.4358, 0.5577). Estimated cumulative baseline hazard function in Figure 4 
shows a linear trend with the slope close to one. Approximate 95% confidence 
bands for Ho (u) computed in accordance with the results of Andersen and Gill [3] 
are displayed by dotted lines. 

Estimated cumulative baseline hazard function 

Strength u 

Fig. 4. Final estimate of cumulative baseline hazard function, 
with asymptotic confidence bands (dotted) and HQ(U) = u (dashed). 

7. CONCLUSION 

We presented a set of procedures for the probabilistic modelling and statistical analy
sis of breaking strengths in a system of parallel components. The data were treated 
as the lifetime data, with the increasing load per one component as the leading 
variable. We studied the asymptotic behaviour of the estimator of the cumulative 
hazard function describing the breaking strength distribution. In particular, asymp
totic normality of the estimator on the whole interval was proved and on this basis 
the goodness-of-fit test was proposed. Such a test can for instance be useful for 
the assessing the agreement of observed breaking strength data with the expected 
resistance of the system (e.g. with the resistance guaranteed by the producer). 

In the concluding example we also showed how the approach used in the present 
work could be generalized to a system of units with nonequal reliability. Another 
generalization can consist in models considering simultaneously the load, the time 
and/or the cumulated load, in the framework of the hazard regression model. 
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