
K Y B E R N E T I K A — VOLUME 36 (2000) , NUMBER 6, P A G E S 6 7 1 - 6 8 7

THE SIMILARITY OF TWO STRINGS OF FUZZY SETS

GABRIELA ANDREJKOVÁ

Let A, B be the strings of fuzzy sets over x> where x 1S a finite universe of discourse.
We present the algorithms for operations on fuzzy sets and the polynomial time algorithms
to find the string C over x which is a closest common subsequence of fuzzy sets of A and
B using different operations to measure a similarity of fuzzy sets.

1. INTRODUCTION

The problems of automatic (or partially automatic) corrections of texts are still
topical and very important. The mistakes in the text can have special properties
and those properties can be used in the construction of correcting algorithms. For
example, following mistakes can be made in typing some string on the keyboard: (1)
Typing a different character, usually from the neighbour area of the given character,
(2) inserting a single character into the source string, (3) omitting (skipping) any
single source character, (4) transposition of neighbour elements.

In the most frequent mistakes, a character from the area on the keyboard adjacent
to the required character was typed instead of the required character. For example,
the neighborhood of the character / i s the set f = {/, d, g, r, t, c, v}. The sequence of
sets A = f, r, e, s, c, o belongs to the word fresco. In this case (typing mistakes)
let us assign membership value (m.v.) to each element of the neighborhood in
such way that the character itself has m.v. 1 and the m.v.'s of "more erroneous"
character are smaller than those of the "better one". For example, for set f we have
M/) = 1, Md) = 0.4, fi(g) = 0.4, fi(r) = 0.2, fi(t) = 0.4, fi(c) = 0.3, fi(v) = 0.3.
We consider that in the text, it is necessary to find the words which are very close
to the word fresco. For example, it is possible to consider the sum of m.v.'s of a
given string as a measure of its similarity of the string to the given word fresco.
The measure of the similarity of the found words can be different to the length of
the given word fresco. For example, if the word fresco is found in the text then the
measure of the similarity to the given word fresco is the length of the word fresco
(6), if the word tresc is found then the measure of the similarity is 4.4 because the
symbol t is very close to the symbol /and symbol o is omitted. From the theoretical
point of view, we have one string of symbols with m.v.'s and one string of sets of
symbols with m.v.'s and a measure of a closest common subsequence is founded.

If we consider a very high uncertainty of the words then we can analyze the strings

672 G. ANDRÉJKOVÁ

of sets of symbols with membership values, for example fuzzy sets. It is possible to
consider the described problem as the closest common subsequence problem of the
two similar strings and its repetition for text of strings.

The simpler problem - the common subsequence problem of two strings of symbols
with the same m.v.'s 1, is to determine one of the subsequences that can be obtained
by deleting zero or more symbols from each of the given strings. Usually, it is
measured the length of the common subsequence, but we can consider some different
measures for the common subsequence. The longest common subsequence problem
(LCS Problem) of two strings is to determine the common subsequence with the
maximal length. For example, the strings AGJ is a common subsequence and the
string ALGI is the longest common subsequence of the strings ALGORITHM and
ALLEGATION.

D.S. Hirschberg and L.L. Larmore [6] have discussed a generalization of LCS
Problem, which is called Set LCS Problem (SLCS Problem) of two strings where
however the strings are not of the same type. The first string is a sequence of
symbols and the second string is a sequence of subsets of elements with the same
m.v's 1 over an alphabet Ct. The elements of each subset can be used as an arbitrary
permutation of elements in the subset. The longest common subsequence in this
case is a sequence of symbols with maxifnal length. D.S. Hirschberg and L.L.
Larmore have presented 0(m • n)-time.and 0(m 4- n)-space algorithm, ra,n are
lengths of strings. The Set-Set LCS Problem (SSLCS Problem) is discussed by D. S.
Hirschberg and L. L. Larmore [7]. In this case both strings are the strings of subsets
of elements with the same m.v.'s 1 over an alphabet ft. In the paper [7] is presented
the 0(m • n)-time algorithm for the general SSLCS Problem.

In this paper we present algorithms for more general case of the Common Subse
quence Problem, it means Closest Common Subsequence Problem of two strings of
fuzzy sets - SSCCS Problem.

2. BASIC DEFINITION IN FUZZY LOGIC CONNECTIVES THEORY

A fuzzy set A over some universe of discourse % (which itself is classical set) is
characterized by its membership function fiA : X ~^ [0,1] C 9?, 5ft the set of real
numbers and often called fuzzy subset of x- Fuzzy sets are generalized characteristic
functions. The membership values of elements in fuzzy sets can be considered as
generalized truth values, i. e, as truth degrees of suitable many-valued logic L. We
use definitions of connectives and quantifiers of the langauge L via truth functions
and truth functional conditions according to [3, 4, 9].

A binary operation t in the real interval [0,1] is a t-norm if and only if it is (i)
associative and commutative, (ii) non-decreasing in each argument, (iii) has 1 as
neutral element, i. e. t(x, 1) = x for all x G [0,1]. A binary operation s in the real
interval [0,1] is a t-conorm if and only if it is (i) associative and commutative, (ii)
non-decreasing in each argument, (iii) has 0 as neutral element, i. e. s(x, 0) = x for
all x £ [0,1]. The £-norms are suitable candidates for conjunctions in many-valued
logic and the £-conorms candidates for disjunctions. To given any £-norm t, by
st(#,y) =def 1 ~ t (l - x, 1 — y) a t-conorm can be defined.

The Similarity of Two Strings of Fuzzy Sets 673

A binary operation <p in real unit interval [0,1] is called ^-operator (connected
to a given it-norm t) iff for all x,y,z G [0,1] the following hold true ($i) x < z -=->
<p(y,x) < <p(y,z), ($2) t(x,ip(x,y)) < y, ($3) x < <p(y,t(y,x)).

If ip is ^-operator which is connected to the it-norm t, then for all x,y G [0,1] it
holds that (p(x,y) = sup{z\t(x,z) < y}.

For each £-norm t we denote by At the connective of many-valued logic that
has this f-norm t as its truth function, similarly for each it-norm t a disjunction
connective Vt with truth function s t . Let LCS(t) be the denotation for t that is
lower semicontinuous, it means that for each xo,yo G [0,1] and each e > 0 there is a
S > 0 such that t(x, yo) > t(xo,yo) — e for all x G (xo - S, xo\.

Using the ^-operators we can introduce a special kind of a negation function with
respect to each £-norm t with the property LSC(t) in the following way: nt(u) =def
cpt(u,0) for all u G [0,1].

The basic binary predicate symbol ue" will denote the membership relation of
elements of the universe of discourse x with respect to the fuzzy subset of x- Let be
[xeA] =def /J>A(X).

For any t-norm t which has the property LSC(t) let — t be that (unary) negation
connective which has n t as its truth function, that means always put [—tH] =
n t([H]) . For any it-norm t which fulfills LSC(t) by -> t we denote that implication
connective that has the ^-operator <pt as its truth function. Recall some classical
logic connectives:

1. The Godel intuitionistic connectives

Ac(x,y) =min(x,y), VG(x,y) = max(x,y), ->G(X,V) = y if x > y else 1.

2. The Lukasiewicz connectives

AL(X,V) =max(0,x + y- 1), WL(x,y) =min{l,x + y),
->L(X, y) = min(l, 1-x + y).

3. The product logic connectives

AP(x,y) = x.y, Vp(x, y) = x + y-xy, -*P(X, y) = min(l, ^) .

Whole above mentioned operators are called fuzzy logic connectives. Fuzzy logic
connectives play important role in comparisons of symbols of fuzzy set strings since
the different results are obtained by different kinds of fuzzy logic connectives. It is
difficult to determine the optimum operator since there are so many kinds of fuzzy
logic connectives.

For the quantifiers, we have considerations independent on the £-norms:

fJxH(x)} = inf {H(x/a)l {3xH(x)] = sup[#(x/a)] , (1)
aex aex

where H(x/a) is the obvious "substitution notation" and it means that the free
variable x of H has to be given the value a from the universe discourse x-

674 G. ANDREJKOVA

3. OPERATIONS ON FUZZY SETS

For each universe of discourse x a n d each formula H (x) of set theoretic language of
many-valued logic we denote by {x G xJ-H(x)} or simply by {x|/I(x)} that fuzzy
set A on x whose membership function \IA is characterized by: IIA(O) = \H(a)] for
each a e x'i l-e- {x € x\\H(x)} has the characteristic property \ae{x G xl-*-7^)}] =
[H(x/a)] for all a G X-

For any fuzzy sets A, B and any t-norm t, £-conorm s t and negation function n t

we define

1. intersection Tit": AC\t B =d e f {x| At (xeA,xeB)},

2. union "Ut": AUtB =d e f {x\\ Vt (xeA,xeB)},

3. complement "c£": C„ A =d e f {x\\ - n (xeA)}.

3.1. Compar i son of two fuzzy sets

Let C, D be fuzzy sets defined over the same universe of discourse x, i. e. C, D : x ->
[0,1]. We discuss the following approach to measure how distinct or how similar are
the fuzzy sets C,D.

The approach for the comparison of fuzzy sets uses set theoretically oriented tools,
especially the fuzzified identity = t .

For any fuzzy sets C, D and any £-norm t with property LCS(t) let

C Ct D =d e f \/x -r t (xeC,xeD),

C=tD =d e f A t(C C t D,D C t C).

The truth degree [C C t D] is a degree of containment of C in D and the truth
degree [C =t D] is a degree of equality for the fuzzy sets C, D.

For a readable formulation we use the following denotation for C, D G V(x)>

- supp(C) = {x G x|MC(x) > 0} = {x G x\[xeA] ± 0}

- { O D} = d e f {x-e x | [*eC] > [xeD]},

- {C^D} = d e f {x G x\[zeC] ¥> l*eD]},

- A(C,D) = d e f suP : c G { c > D }{[x£C] - [a:eZ?]}.

Straightforward calculations for above defined logic connectives give the following
results:

1. The Godel intuit ionistic connectives, t = to

[CCta D] = Mx£{c>D}[xeD]

[C = t G D] = Mxe{c±D}[xeC Cka D].

The Similarity of Two Strings of Fuzzy Sets 675

2. The Lukasiewicz connectives, t = ti

[CCtL DJ = 1-A(C,D),

[C =tL D] = max{0,1 - (A(C, D) + A(D, C))}.

3. The product logic connectives, t = tp

[C C t p D] = if {Cn t D) = 0 then 1 else mmxE{c>D} { | f i§[} ,

[C =tP D] = [C C t p D] AP {D C t p C\.

Modelling the involved connectives for implication and conjunction in our fuzzy
set theoretic setting via any residuation operator, i. e. any ^-operator (p for impli
cation and any (left) continuous t-novm t for conjunction, in addition to equality
degree \C =t D\ also some local degree to which two fuzzy sets C and D are equal
each other at a point o G v i s given as a number \C = D\(d) defined e.g. in
analogy with definition of = t , but deleting the universal quantifier V there, i.e. the
inf-operator. That means we take this local degree of equality as the value

\C = D\(a) =def t(<rOt(/IC(a),/xD(a)),(/?t(/xD(a),/ic(a)). (2)

The simple fact that always fJ>c(a) < /J>D(a) or fiD(a) < Hc(a) is the case, i.e. that
always (pt(iJic(a),fJ>D(a)) = 1 or <£t(/ID(a),^c(a)) = 1, allows to simplify (2) to

\C = D\(a) = At(^t(/iC(a),/iD(a)),(rOt(/iD(a),^c(a))). (3)

Thus one has, together with the ^-operator </?t, only to take the min-operator instead
of the *-norm t to finally find \C = D)\(a).

Nevertheless one usually also likes to have a number expressing a (unique) degree
to which C and D are equal to each other in a global sense. For this one has to
aggregate the partial evaluations 2 and 3 of equality over the whole space x-

On the base of (2) we have the following results for the above defined logic
connectives if a e C fit D:

1. The Godel intuitionistic connectives

\C = D\\G(a) = min{/iC(a),/iD(a)}. (4)

2. The Lukasiewicz connectives

1 - fiD(a) 4- //C(a), if nc(a) > /xD(a),

\C = D\L(a) = { 1 - fic(a) + fiD(a), if fj,D(a) > tic(a), (5)

1 otherwise.

3. The product logic connectives

lO = DMa) = m i n { ^ M) / ^ } . (6)
(Hc(a) nD(a)\

676 G. ANDREJKOVÁ

There is, however, no unique way to perform these tasks. Perhaps the most preferred
ways in the engineering community are to take either a so-called optimistic or a
pessimistic form of aggregation.

In the optimistic case one prefers to modelize the degree of the statement "C and
D are equal to each other" by the maximal value of \\C = D\\(x) over x, viz.

|C = D | = d e f S u p | C = Z)|(x). (7)
xЄx

On the opposite, i. e. pessimistic pole, one often uses the formula

\\C = D\\=áe{mî\\C = D\\(x). (8)
xЄx

This degree of equality (8) has a "pessimistic character" because obviously it indi-
cates the worsf case of all the local degrees (2).

The possibility to get an intermediate value of global equality not as likely to
cause overestimation or underestimation as (7) or (8) is to take for example the
average value of all the local equality degrees, i. e. to consider

\C = D\ = d e f 5 3 \C = D\(x)lcard(X) (9)
xЄx

in the case of a finite universe of discourse x o r °f a ^ least a finite support of the
fuzzy set CU D. It means, in the average case the sum of membership values is very
important and we will use the sum as the measure of the similarity of two fuzzy sets.

Straightforward computations give the following results:

1. The Gödel intuitionistic connectives

- optimistic case (pessimistic case)

\\C = D\G =def supæЄ x (infж Є x) {mm{џc(x)ђџD(x)}},

- average case

\C = D\G = d e f Y,xЄx{^n{џc(x),џD(x)}}lcard(x)'

2. The Łukasiewicz connectives

- optimistic case (pessimistic case)

\\C = D\L = d e f s u p ж Є x (infæ6x) {1 - џD(x) + џc(x)ђ 1 - џciľ) + џD(x)}.

3. The product logic connectives

- optimistic case (pessimistic case)

\C = D\P = d e f s u p i e x (infæex) {min { ^ { | } , ^ @ } } .

The Similarity of Two Strings of Fuzzy Sets 677

3.2. Algorithms for operations on fuzzy sets

The most important operations on sets and fuzzy sets are: (1) intersection, (2)
union and (3) comparison. We will study algorithms for (4) difference of sets. The
algorithms for computation of new sets by using of above operations on the sets
depend on representations and data structures applied to sets. Let x be the finite
set, |x| = s. We will consider two representations only: (a) ordered elements of the
set, (b) a set without an ordering of elements.

The algorithms for above operations on sets:

(a) The elements of the universe of discourse are ordered according some linear
order. Then any fuzzy set can be represented by 1-dimensional array of the
length |x|. It is necessary to have m.v.'s of all elements in the fuzzy set (0,
if element is not in the set). Let A, B be two fuzzy sets represented by two
arrays A and B. In the case both sets have the elements ordered in the same
order.

1. intersection - time complexity O(s):

for i := 1 to s do C[i] := {A[i] t B[i]}\

2. union - time complexity O(s):

for i := 1 to s do C[i] := {A[i] s t B[i]}\

3. comparison - time complexity O(s):

c := 0; for i := 1 to s do c := c -F \\A[i] = B[i]\\; c := c/8;

4. difference A-B - time complexity O(s):

for i := 1 to s do
if (A[i] > 0) and (B[i] > 0) then C[i] := 0 else
if (A[i] > 0) and (B[{] = 0) then C[i] := A[i] else C[i] := 0;

(b) It is possible to represent any element of the universe of discourse by record (if
it is necessary to remember the names of elements): (e,/j(e)). The fuzzy sets
can be represented by the arrays of records. The representation is better than
the first one if the universe of discourse has many elements and the numbers
of elements in fuzzy sets are small. Let A, B be two fuzzy sets represented by
two arrays A and B of records, \A\ = a, |i?| = b.

1. intersection - time complexity 0(a-b):

for i := 1 to a do for j := 1 to b do if A[i] • e = B[j] • e then
begin C[i] • e := A[i] • e; C[i] := A[i] • /i^(e) t B[j] • /ijg(e) end;

2. union - time complexity 0(a • b):

k := 0; for i := 1 to a do

for j := 1 to b do begin C[i] • e := A[i] • e; C[i] := A[i] • AM(e) s t B[j] • //B(e)
end;

3. comparison - time complexity 0(a • b):

c := 0; for i := 1 to a do for j := 1 to b do c := c+ \A[i] = B[j]\\; c := c/s;

678 G. ANDREJKOVA

4. difference A-B - time complexity 0(a • b):

k := 0; for i := 1 to a do begin inc(k)\C[k) := A[i)\

for j := 1 to b do if B[j) • e = A[i) • e then dec(k)\ end;

4. BASIC DEFINITIONS IN STRINGOLOGY

In this section, some basic definitions and results concerning to CCS Problem, SCCS
and SSCCS Problem are presented.

Let fi be a finite alphabet, |fi| = s,1 < 5. In the connection to the fuzzy sets
fi = X .

Let A = a\a2.. .am,ai G fi, 1 < i < m be a string over an alphabet fl, where
|.A| = m is the length of the string A.

The string C = c\...cp is a subsequence of the string A = o i . . . a m , if a
monotonous increasing sequence of natural numbers i\ < ... < ip exists such that
Cj = a\j, 1 < j < p. The string C is a common subsequence of two strings A, B if
C is a subsequence of A and C is a subsequence of _B. \C\ is the length of the com
mon subsequence. The classical problem to find the longest common subsequence is
defined and solved in Hirschberg [5]. In the classical problem, each element in the
string is in his position as full member. But sometimes we are not sure about it in
texts. The element should be in his position with 70%, it means, the element is in
his position with some membership value. It means, we can suppose that in some
position should be one element of some set of elements with membership values.

Let HA(a>i) G (0,1), 1 < z < m, be some membership values of elements in the
string A. The pair (A, PA) is the string A with the membership function PA, m-string
pA for short. Val(pA) is a measure of fiA defined by the (10).

Val(nA) = E^/x^a.). (10)

The string pC = (C,pc) is a subsequence with the membership function pc,
shortly m-subsequence of the m-string \iA if C is a subsequence of the string A
and 0 < pc(ct) < AM^/J* for 1 < t < p. The m-subsequence pC is a closest
m-subsequence if Val(p,C) = S^=1/ir;(cJ) = S ^ x / M ^ .) .

The string pC is a common m-subsequence of two m-strings JJ,A and pB if pC is
a m-subsequence of pA and pC is a m-subsequence of pB.

The string pC is a closest common m-subsequence of the m-strings pA and pB if
pC is a common m-subsequence with the maximal value Val(pC). It means, if pD
is a common m-subsequence of the strings /aA and p,B then Val(pD) < Val(pC).

If pC is a closest common m-subsequence of the m-strings, pA and \iB then
pc(ct) = mm{pA(akt),PB(bit)}, for 1 < t < p.

The CCS Problem: Let pA and pB be m-strings. To find a closest common
m-subsequence of the m-strings pA and /LB, CCS(ptA,pB) for short.

The Similarity of Two Strings of Fuzzy Sets 679

The MCCS Prob lem is to find the measure of CCS (pA,pB), MCCS for short.
It means, MCCS(pA,pB) = Val(CCS(pA,pB)).

Algorithms for CCS and MCCS Problem Andrejkova are described in [2],

0.9 0.9 0.6 0.5 0.2 0.8 0.4 0.6 0.5

A= © © © © © © © © ©

B= © © © © © © &
0.6 0.6 0.3 0.4 0.9 0.5 0.6

Fig. 1. The closest common m-subsequence of two m-strings A and B.

Example 1. ft = {a, b, c}, A = abaabacab, m = 9, PA = (.9, .9, .6, .5, .2, .8, .4, .6, .5),
B = abcdbcb,n = 1,PB = (.6, .6, .3, .4, .9, .5, .6). The string C = abcb is a sub
sequence, D = abbcb is the longest common subsequence of the strings A and B,
and pE, E = abcb,pE = (-6, .9, .4, .5) is the closest common m-subsequence of the
m-strings pA and /LB, Val(pE) = MCCS(pA, pB) = 2.4 as it is shown in Figure 1.

Let P(ft) be the set of all subsets of ft. A string of sets B over an alphabet
ft, set-string for short, is any finite sequence of subsets from P(ft). Formally, B =
B1B2.. .Bn,Bi G P(ft) , l < i < n, n is the number of sets in B. The length
of the symbol string described by B is N = Ef=1|i?i|. A string of symbols C =
C1C2 . . . cp, Ci G ft, 1 < i < p, is a subsequence of symbols (subsequence, for short) of
the set-string B if there is a nondecreasing mapping F : {1,2, . . .,p} —> {1 ,2 , . . . , n} ,
such that

1. if F(i) = k then Ci G Bk, for i = 1,2,... ,p

2. if F(i) = k and F(j) = k and i ^ j then Ci 7- Cj.

Let A = A\... Am,B = Bi... Bn, 1 < m < n, be two set-strings of sets over
an alphabet ft. The string of symbols C is a common subsequence of symbols of A
and B is C a subsequence of symbols of A and C is a subsequence of symbols of the
set-string B.

As similar as for strings, let define f-set as a set with membership function defined
on its elements. More exactly, if ft is universe of discourse, f-set A over ft is fuzzy
subset of ft which is characterised by its membership function \LA : ft -> [0,1].

Let fiBi ? i = 1,2,.. . , n be the membership functions of the sets Bi, i = 1,2,.. . , n
in the string B. It means, fiB = \iB\[iB2 .. ./LBn- pB is the /-set-string B of /-sets
Bi,i = 1,2,... ,n with the membership functions ps{, /-set-stringpB for short. The
weight of the f-set B with membership function /i£ is

W{B) = Y,^{x). (11)
xeB

A string pC is an m-subsequence of the /-set-string pB if (1) pC is the subse
quence of symbols of the set-string B and (2) if c = Ci, Ci G Bk then pc(c) < pBh (

c*)-

680 G. ANDREJKOVA

The m-string \iC is a common m-subsequence of the /-set-strings \iA and \xB if
fiC is m-subsequence of [iA and \iC is m-subsequence of jiB.

The string fiC is a closest common m-subsequence of the /-set-strings /i^4 and
\xB if /xC is a common subsequence with maximal value Val(fiC). Note that fiC is
not in general unique.

The SSCCS Problem: Let [iA^B be two /-set-strings. The Set-Set Closest
Common Subsequence problem of the /-set-strings \LA and /LB, SSCCS(fiA^fiB) for
short, consists of finding a closest common m-subsequence fiC with the maximal
value Val(fiC).

The MSSCCS Problem consists of finding the measure of SSCCS /-set-string,
MSSCCS(fiA,fiB) for short.

It means, MSSCCS(M,A»B) = Val(SSCCS(fiA,fiB)),

0.7 0.3 0.6 0.4 0.5 0.6 0.3 0.8

x-{© ®}{® ® ®}{®®®\

B={® ® ©K® © ®M® ® ©K© ©}
0.4 0.3 0.5 0.7 0.6 0.8 0.9 0.5 0.7 0.5 0.3

Fig. 2. The closest common subsequence of two /-set-strings A and B.
Example 2. Let A = {a,d}{c,a,d}{e,6,a},m = 3, \IAX = (.7, .3),IM2 = (-6, .4,
.5), / M 3 = (.6,.3,.8),£ = {d,e ,c}{a,d,e}{M,c}{M},n = 4. \kBx = (.4, .3, .5),/XB2

= (.7, .6, . 8) , / / B 3 = (-9, .5, .7),/ij34 = (.5, .3). The membership values are described
according to the named order in the set. For example, / ^ (a) = 0 .7 , /^ (d) = 0.3.
Then MSSCCS(/x.4),/i/3) = 2.4 as it is shown in Figure 2.

5. ALGORITHM FOR MSSCCS PROBLEM WITH GODEL CONNECTIVES

The basic idea of the algorithm starts from the definition of MSSCCS Problem.

MSSCCS(/JLA,IJLB) = max/zc{Val(fiC) : fiC is the common m-subsequence

of /z.4and fiB}. (12)

In the following part of the paper we will use the /-sets only and for simpler
description we will omit the symbol \i in the names of sets.

A flattening of a sequence of sets is defined as a concatenation, in order of
the sequence, of strings formed by some permutation of individual elements of
the sets in the sequence. For example, the flattening of the /-set-string A in
Example 2 is A/n = ddbaceba,HAfn = (.3, .7, .5, .4, .6, .6, .3, .8) and so is Afi2 =
daacbbae, /J>Afi2

 = (*3> -7, .4, .6, .5, .3 , .8, .6).

The Similarity of Two Strings of Fuzzy Sets 681

If we have some flattenings of both set-strings then it is possible to apply the
MCCS algorithm, Andrejkova [2]. It is necessary to compute MCCS values of all
pairs of all flattenings both set-strings but it is too much time consuming.

If we have the flattening of one set-string and the second is as set-string then it is
possible to use the MSCCS algorithms. But it is necessary to compute MSCCS value
for all flattenings of one string. It is to much time consuming too. Both algorithms
have the exponential time complexity.

It is possible to use the following algorithm of polynomial time complexity. The
algorithm works in two steps:

1. to create the string of symbols for each of set-string; each set can be encoded
as the string of all permutations of its elements (the length of such string is
k2 - 2 • k + 4, k is the number of elements in set [10]); for example, the shortest
m -string of elements in the /-set-string A in example 2 is dadcabcdbcbeabeab
and so is adacabcabcebaebae.

2. to apply the MCCRS algorithm, Andrejkova [1] for the two in the previous step
constructed m-strings (each element of the /-set can be used once at most).

The algorithm works in polynomial time: 0(M2 • IV2 • K), where M = E^LJA*!,
IV = £?_.-_ |J?J'|, and K is the number of elements in closest common restricted
subsequence.

We formulate the following algorithm with the better time complexity according
to Hirschberg idea [7]. The algorithm uses the intersection, union, equivalence and
difference of fuzzy sets and checks subsets of used and free elements.

5.1. Description of the simple algorithm

The algorithm extends the strings of fuzzy sets one by one set and finds the closest
common subsequence for the partial substrings. For each substring it memorizes free
elements and used elements with their membership values of the current fuzzy sets
in the strings. If we analyze the /-sets A{ and Bj from the common elements point
of view then we can consider three parts as shown in Figure 3. Part I contains free
elements of the /-set A{ and from the part I we can choose elements for prolongation
of the closest common subsequence. Analogously for part III of the /-set Bj. Part
II contains common elements but the /-subset actually used has a new membership
function and it is /-subset of the /-set represented by part II. Since Godel logic
connectives will be used throughout the subscripts indicating this will be omitted.

We will now present a rigorous formulation of the above description.
For convenience, we define .An = -3n = 0-
We define Ent(i,j) to be the set of quintuples (k,Ff,Fu,Gf,Gu) such that:

(1) k is the measure of 7, a common m-subsequence of some flattening of Ai... A{
and some flattening of B\... Bj, defined by (10).

(2) free f-set Ff C A{ is the /-set of elements of Ai which are not used by 7,

(3) free f-set Gf C Bj, is the /-set of elements of Bj not used by 7,

6 8 2 G. ANDREJKOVÁ

Fig. 3. Common and free elements of /-sets Ai and Bj.

(4) f-set of used elements Fu C Ai is the /-set of elements of At used by 7, and

(5) f-set of used elements Gu C Bj is the /-set of elements of Bj used by 7.

Example 3. (0.8, {(a, 0.4), (b, 0.5)}, {(c, 0.5)}, {(e, 0.3)}{(d, 0.3), (c, 0.5)}) is in
Ent(l,2), (1,0, {(a,0.7), (d,0.3)}, {(d,0.6), (e,0.8)}, {(a,0.7)}) is in Ent(2,l) and
(1.2, {(&,0.5)}, {(c,0.5), (a,0.4)},{(d,0.6), (e,0.8)}, {(a,0.4)}) is in Ent(2,2) for / -
set-strings in Example 2.

We refer to such quintuple as an entry. The measure of the CCS of some flattening
of Ai... Am and some flattening of B\... Bn is then, by definition, the largest k such
that (k,Ff,Fu,Gf,Gu) G Ent(m,n) for some /-sets Ff,Fu,Gf and Gu. Ent(0,0)
contains just one entry, namely (0,0,0,0,0), while Ent(i,j) can be computed dy
namically from Ent(i — l,j) and Ent(i,j — 1). The problem is that the cardinality
of Ent(i,j) could become very large, making such an algorithm exponential in the
worst case.

Let e = (k,Ff,Fu,Gf,Gu) G Ent(i - l,j) and FS,FU C Fs be the /-set with
the following property: xeFs 4-> xeFu and ^FU(X) < fiFa(x) = /i^.(x). It means,
the /-set F s is the maximal /-set that has the same elements as the /-set F u , but
membership values of elements in Fs are the same as in the /-set Ai.

Let S be any subset of Ai f) Gf. We say, e vertically generates e' G Ent(i,j) iff

1. e' = (k + W(S) - W(AinGu) + W(S'), A{ -S,Fu,Gf- S,Gu) for any subset
S' of Ai fl Gs, W(S') > W(Ai n Gu), or

2. e' = (k + W(S), Ai -S,Fu,Gf - S,Gu) and for each subset S' of A{ fl Gs is
W (S ') < W (- 4 i n G u) .

The element e' G Ent(i,j) and it is shown by the following: If a is common m-
subsequence with a measure k = Val(a) of the flattening of A\.. .-4;_i and some
flattening of Bi...Bj, where F / C A{-i and G/ C t _?j are free /-sets, and /?
is a m-sequence consisting of the elements of S C Ai D Gf written in any order,
then a/3 (having measure k + Val(S)) is common subsequence of a flattening of
Ai ...Ai and a flattening of f ? i . . . Bj, with free /-sets Ai — S and Gf — S. The
used elements from /-set Gu can be used with some better membership values and
it is evaluated by the comparison of the weights of the sets Ai n Gs and Ai D Gu. If
W(Ai fl Gu) < W(Ai fl Gs) then there exists some better using of elements in Ai.

The Similarity of Two Strings of Fuzzy Sets 6 8 3

Similarly, if (kJFf,FUiGflGu) G Ent(iJ - 1) and S C Ff f) Bj and S' is any
subset of Bj n F8,W(S') > W(Bj n Fu), we say (k,FfrFu, Gf,Gu) horizontally
generates (k + W(S) - W(Bj f) Fu) + W(S'), Ff - 5, F u , Bj - 5, Gu) G Fn£(i, j) or
(fc-l-IV(S'), Ff - 5 , Fw, Bj - S , Gn) G Ent(iJ) according to the relation W(Bj HFU) <
I __ W(S'). It means, the following lemma is fulfilled:

Lemma 1. If e G Ent(i,j) for i + j > 0 then e is generated by some element of
either Ent(i - 1, j) or Ent(i,j - 1).

P roof , e = (k,FfjFu,Gf,Gu) G Ent(iJ), it means e = a/5, /3 is the part of
elements in AiDBj. According to above construction, the part (3 is the prolongation
of some element e' G Ent(i - 1, j) or Ent(iJ - 1). In the part a should be elements
with higher membership values. •

The element e G Ent(iJ) is generated from elements in E(i - 1 , j) or Ent(i,j - 1)
using of two sets: the free subset and the used subset of J3j, respectively A{. The
following algorithm is a dynamic programming algorithm in which the boundary
conditions are set and then the interval entries are determined:

Algorithm A.

for all i do Ent(i, 0) := {(0, Au 0,0,0)}

for all j doEnt(0J) := {(0,0,0,2^,0)}

for i :—l torn do

for j := 1 ton do

Ent(i,j) := {all entries vertically generated from Ent(i — l , j)}

(J {ail entries horizontally generated from Ent(i,j — 1)}

max_fc := the largest k such that (k,Ff,Fu,Gf,Gu) G Ent(m}n) for some

Ff,Fu,Gf,Gu.

5.2. Description of the better algorithm

The above algorithm may be very time-consuming because of too many quintuples
is necessary to analyze. We will speed the algorithm by eliminating consideration of
many quintuples.

If (k,Ff,Fu,Gf,Gu),(k',F'fyF'u,G'f,G'u) £ Ent(i,J), we say that (k,Ff,Fu,Gf,
Gu) dominates (k\F'f,F'u,G'f,G'u) ((k'^F^FiG^G'j < (k,F,,Fu,Gf,Gu)) if the
following conditions hold:

1. d = k - k' > 0,

2. (w(F'f -Ff)<d and Fu C Fn) or (w(F'u -Fu)<d and Ff C F ;) ,

3. (w(G'f -Gf)<d and G'u C G U) or (w(Gu -Gu)<d and G'f C Gf).

684 G.ANDREJKOVÁ

The relation "•<" is a transitive, antisymmetric and reflexive relation. The el
ements of Ent(i,j) can be ordered according to relation "^", it means they are
ordered in chains. The last element of the chain has maximal measure and that is
very important as can be seen according to the following lemma:

Lemma 2. Any element of Ent(i,j) which is not maximal with respect to the
relation "•<" can be discarded during execution of the algorithm without affecting
the final value of max .k.

P r o o f . It will be proved by downward induction on both indices i and j . The
value of max J; is obtained from Ent(m,n) in the last step and all other elements
may be discarded with no effect.

Suppose i + j < m + n and e' G Ent(i,j),e' is not maximal. Let e G Ent(i,j)
be maximal. It means, e' •< e. It is necessary to prove that maximal element of
Ent(i + 1, j) or Ent(i,j + 1) which is generated by e' can be generated by e too.
And the element e' can be discarded.

Let e = (k,Ff,Fu,Gf,Gu),e' = (k',Ff,Fu,G'f,Gu) and e' vertically generates

/ ' . / ' should have two forms for some ra-set P C Ai+\ D Gf

(a) / ' = (.V + W (P) - W (^

if W(Ai+1 n G'u) < W(Ai+\ n G's), or

(b) / ' = (k'^W(P),Ai+\-mP,P,G,
f-mP,Gu),iiW(Ai+\nG,

u) > W(Ai+1nG's).

Let S = P n Gf, and / is vertically generated by e. f should have two forms:
(1) / = (k + W(S) - W(A{+\ n Gu) + W(Ai+\ n Gs), A{+\ -m S, S, Gf -m S, Gu)
or (2)/ = (k + W(S),Ai+1 -m S,S,Gf -m S,GU). It is necessary to analyze four
cases to prove the Lemma (a)-(l), (a)-(2), (b)-(l), (b)-(2). We start with the first
one, it means (a)-(l), and W(A{+\ 0 GJ < W(Ai+1 n G'8) and W(Ai+l n Gu) <
W(Ai+\r\Gs).

Since e' •< e,d = k — k',

d>0, ((w(F'f -m Ff) < d and Fu C Fu) or (w(F'u -m Fu) < d and F'} QFf)),

and ((w(G'f -m Gf) < d and Gu C GU) or (w(Gu -m Gu) < d and G) C G /)) .
Then W(P -m S) = W(P - m P f l Gf) = W(P -m Gf) < W(F'f -m Ff) < d and
W(P-mS) < W(P)-W(S). Letd' = (W(P)-W(S))-(W(Ai+1nGa)-W(Ai+1n
G'*)) - (W(Ai+1 nGu) - W(Ai+1 nG'u)<d We prove that / ' < f, it means / ' is
not maximal or / = / ' . According to definition of "-<" it is necessary to check three
conditions 1-3.

1. z = k + W(S) - W(Ai+1 n Gu) + W(Ai+1 n Gs) - (k' + W(P) - W(Ai+1 n
Gu) + W(Ai+1 nG'»)) = k-k'- (W(P) - W(S)) + W(Ai+1 nGa)- W(Ai+1 n
G s) + W(Ai+1nGu) -W(Ai+1nG'u>d-d' > o

2. W(P -mS)<d and Ai+1 -m P Cm Ai+1 - m S

3. W(G'f -m P -m (Ff -m S)) = W(G'f -m Gf) < d a i ld G'u Cm Gu.

The Similarity of Two Strings of Fuzzy Sets 685

The rest three cases can be proved by a very similar method. And the vertical case
is very similar. •

If e = (A;,F/,FU,G/,GU) G Ent(iyj), we define the horizontal child of e to be
hor(e) = k+W(FfnBj+1)-W(AinGu) + W(AinGs),Ff-Bj+uFu,Bj+1-Ff1Gu)
or hor(e) =k + W(Ff nBj+i), F/ - J3 i + 1 , F u , 5 i + 1 - F / , Gu) and define the vertical
child of e to be ver(e) = k + W(Ai+inGf)-W(Bj+lnGu) + W(Bj+1nG8),Bj+l-
Gf,Fu,Gf-Bj+uGu)oiver(e) = k + W(Ai+1nGf),Bj+l~GfiFu,Gf-Bj+uGu).
We define MaxEnt(iJ) to be the set of maximal elements of Ent(i,j) under the
dominance relation "-<".

Lemma 3. Any entry horizontally generates at most one maximal entry and ver
tically generates at most one maximal entry.

P roo f . Let e = (fc,F/,Fu ,G/,Gu) G Ent(i,j). The only elements vertically
generated by e which can be maximal are in the ver(e), since they dominates any
others vertically generated by e. Similarly, hor(e) dominates any entries horizontally
generated by e. •

We say that (k, F / , F u , G/, Gu) strongly dominates (&', F / , F u , G/, Gu) if k > k'.
If S C Ent(i,j), defines Dom(S) C S to be the set obtained by deleting every ele
ment of S which is strongly dominated by another element of S. We now inductively
define sets Chain(i,j) C Ent(i,j) by:

1. Chain(i,0) = {(0,Au0,0,0)},

2. G/iam(0,j) = { (0 ,0 ,0 , ^ ,0)} ,

3. Chain(i,j) = L)om({ver(e)|e G Chain(i - 1, j)} U {/ior(e)|e G
G Chain(i,j — 1)}).

We refer to entries Chain(i,j) as wee.Wy maximal. We observe the following
theorem.

Theorem 1. MaxEnt(i,j) C Chain(i,j).

P r o o f . By induction. For i = 0 or j = 0 the two sets MaxEnt(i,j) and
Chain(i,j) are identical. For i , j > 0, and e G MaxEnt(i,j) must be vertical or
horizontal child of some maximal element, which is weakly maximal by induction.
It means, e must be weakly maximal, since it is maximal and thus cannot be deleted
by operator Dom. 0

Using the results of the Lemmas 2 and 3 and Theorem 1 we have the following
algorithm:

686 G. ANDREJKOVA

Algorithm B.

{Using weakly maximal entries.}

for all i do Chain(i, 0) := {(0, A{, 0,0,0)};

for all j do Chain(0,j) := {(0,0,0, Bj, 0)};

for i:=l to m do

for j:=l to n do

begin

Chain(i,j) := 0;

for all (k,Ff,Fu,Gf,Gu) G Chain(i,j - 1) do begin

Fs := Fu;p,F* := p,Ai;

help := W(Bj D F8) - W(Bj n Fu);

if help < 0 then

insert (k -F W(F C\ Bj),Ff - Bj, Fu, Bj - Ff, Gu) into Chain(i,j) else

insert (k + W(Ff n Bj) -F help, Ff - Bj,Fu, Bj - Ff,Gu) into Chain(i,j)

end;

for all (k,Ff,Fu,Gf,Gu) G Chain(i - 1, j) do begin

Gs := Gu;p>Ga •= A*H,;

help := W(Ai n Gs) - W(A{ n Gu);

if help < 0 then

insert (k + W(Ai n G),Ai - Gf,Fu,Gf - Aiy Gu) into Chain(i,j) else

insert (k + W(Gf n A{) + help, Ai-Gf,Fu,Gf - Ai,Gu) into Chain(i,j)

end;

delete all nonweakly maximal elements from Chain(i,j)

end

max _fc := the maximum value ofk such that (k,Ff,Fu,Gf,Gu) G Chain(m,n) for

some Ff,Fu, Gf and Gu.

The algorithm works in 0(m • n • K • £)-time, where K is the maximal number
of elements in Chain(i,j) and t is the maximal time spent for computing of the
intersection of two sets. The algorithm works in 0(m • n • A:)-space, where k is the
maximal number of elements in the /-sets Ai, Bj.

6. CONCLUDING REMARKS

The polynomial algorithms for the operations on fuzzy sets can be used to find
the closest common subsequence (according to Godel connectives) of two fuzzy sets
strings (MSSCCS Problem) in polynomial time. The algorithms should be modified
for using of Lukasiewicz and product logic connectives.

The Similarity of Two Strings of Fuzzy Sets 687

ACKNOWLEDGEMENT

This research was supported by the Slovak Grant Agency through Grant 1/7557/20.

(Received June 13, 2000.)

REFERENCES

[1] G. Andrejkova: The longest restricted common subsequence problem. In: Proc. Prague
Stringology Club Workshop'98, Prague 1998, pp. 14-25.

[2] G. Andrejkova: The set closest common subsequence problem. In: Proceedings of 4th
International Conference on Applied Informatics'99, Eger-Noszvaj 1999, p. 8.

[3] S. Gottwald: Fuzzy Sets and Fuzzy Logic. Vieweg, Wiesbaden 1993, p. 216.
[4] P. Hajek: Mathematics of Fuzzy Logic. Kluwer, Dordrecht 1998.
[5] D. S. Hirschberg: Algorithms for longest common subsequence problem. J . Assoc

Comput. Mach. 24 (1977), 664-675.
[6] D.S. Hirschberg and L. L. Larmore: The set LCS problem. Algorithmica 2 (1987),

91-95.
[7] D.S. Hirschberg and L.L. Larmore: The set-set LCS problem. Algorithmica 4 (1989),

503-510.
[8] A. Kaufmann: Introduction to Theory of Fuzzy Subsets. Vol. 1: Fundamental Theo

retical Elements. Academic Press, New York 1975.
[9] E. P. Klement, R. Mesiar, and E. Pap: Triangular Norms. Kluwer, Dordrecht 2000.

[10] S.P. Mohanty: Shortest string containing all permutations. Discrete Math. 31 (1980),
91-95.

[11] N. Nakatsu, Y. Kombayashi, and S. Yajima: A longest common subsequence algorithm
suitable for similar text strings. Acta Inform. 18 (1982), 171-179.

[12] L. Zadeh: Fuzzy sets as a basis for a theory of possibility. Fuzzy Sets and Systems 1
(1978), 3-28.

RNDr. Gabriela Andrejkova, CSc, Department of Computer Science, Faculty of Science,
P. J. Safdrik University, 041 54 Kosice. Slovak Republic,
e-mail: andrejk@kosice.upjs.sk

