
K Y B E R N E T I K A — VOLUME 36 (2000) , NUMBER 6, P A G E S 6 3 5 - 6 5 5

FUZZY XML QUERIES VIA CONTEXT-BASED CHOICE
OF AGGREGATIONS

ERNESTO DAMIANI, LETIZIA TANCA AND FRANCESCA ARCELLI FONTANA

A flexible query model is presented for semi-structured information stored in well-formed
XML documents, modeled as XML fuzzy graphs by computing estimates of the importance
of the information associated to XML elements and attributes. The notion of fuzzy graph
closure with threshold is then used to obtain a fuzzy extension of the XML fuzzy graphs'
topological structure. Weights associated to closure arcs are computed as a conjunction
of the importance values of the underlying arcs in the original graph, via a context-based
choice of conjunctions. Query results are subgraphs of the resulting fuzzy closure graph,
presented as a ranked list according to their degree of matching to the user query.

1. INTRODUCTION AND MOTIVATIONS

XML (extensible Markup Language) is a markup metalanguage designed to enable
semantics-aware tagging of World Wide Web information [32]. Generally speaking,
an XML document is composed of a sequence of nested elements, each delimited by a
pair of start and end tags (e. g., <tag> and </tag>). XML documents can be broadly
classified into two categories: well-formed and valid. An XML document is well-
formed if it obeys the basic syntax of XML (e. g., non-empty tags must be properly
nested, each non-empty start tag must have the corresponding end tag). Well-formed
documents are also valid if they conform to a proper Document Type Definition
(DTD). A DTD is a file (external, included directly in the XML document, or both)
which contains a formal definition of a particular type of XML documents. Using a
database-borrowed notiqn, XML DTDs are often described as schemata, while XML
documents referencing DTDs are instances of those schemata. Indeed, DTDs include
declarations for elements (i.e. tags), attributes, entities, and notations that will
appear in XML documents. DTDs state what names can be used for element types,
where they may occur, how each element relates to the others, and what attributes
and sub-elements each element may have. Attribute declarations in DTDs specify
the attributes of each element, indicating their name, type, and, possibly, default
value. Due to the semi-structured nature of XML data, it is possible (and, indeed,
frequent) two instances of the same DTD to have a different structure. In fact, some
elements in the DTD can be optional and other elements can be included in an XML

636 E. DAMIANI L. TANÇA AND F. ARCELLI FONTANA

document zero, one, or multiple times. The validation or syntax-checking procedure
involves a well-formed XML document and a DTD: if the XML document is valid
with respect to the DTD, validation usually produces a memory representation of the
document according to a data model, such as the Document Object Model (DOM)
standard. However, not all XML documents comply to a DTD. Currently, a large
amount of XML information is being made available on the WWW in unvalidated
form; therefore, there is an increasing need for Web-enabled applications to access,
process and query well-formed XML documents.

<?xml v e r s i o n = " 1 . 0 " encoding--"UTF-8"?>
< c a r >

<maker> Mercury </maker >
<model s e r i a l code = "12303B">

<modelname> Topaz </modelname>
<year> 1998 < / y e a r >
<d e s c r i p t i o n >

A comfortable family car
< / d e s c r i p t i o n >

</model>
< p l a n t >

<address> 13 Cherry Blossom Ave, 22030 Fairfax,VA < /addres s>
< / p l a n t >

< / c a r >

Fig. 1. A well-formed XML document.

A sample well-formed XML document is shown in Figure 1. In this paper we
elaborate on the graph-based technique for posing blind queries to unvalidated XML
information introduced in [13]. In this setting, a query expresses the user's inter­
ests more than the expected structure of the target document. Therefore, we shall
dynamically adapt the target document, tailoring the query answer to the user inter­
ests and intended query semantics by means of a context-based choice of aggregation
operators. The remainder of the paper is organized as follows: in Section 2 we in­
troduce some basic notation and give an outline of our approach. Section 4 deals
with weighting techniques for well-formed XML documents. Section 5 describes
how XML documents' structure can be augmented by computing the (fuzzy) clo­
sure of the containment relation between elements and attributes. Then, Section 7
provides a logical formulation for our weighting and loosening procedure. Finally,
Section 8 formalizes the classification of similarity matchings and Section 9 deals
with context-based choice of conjunctions.

2. NOTATION

Following [13], we shall represent well-formed XML documents and queries as labeled
graphs G = (V, E, L, / , ff), whose node set V comprises both nodes representing tags

Fuzzy XML Queries via Context-based Choice of Aggregations 637

and nodes representing text/multimedia content and attributes. Arcs belonging to
E C V x V may represent, according to their labeling (given as usual by a function
/ : E -» L, where L = {e - contains, a - contains, link, id - idref} is a set of
relation labels) XML tag and attribute inclusion, hypertext links, and ID-IDREF re­
lationships. Another function g : V -» I* (where I* is the set of strings built over a
suitable alphabet I) represents the information content associated to a terminal ele­
ment or attribute. The sub-graph representing (element and attribute) containment
alone is in most cases a tree, where leaf nodes represent content and values, while
non-leaf nodes correspond to tags. As we shall see, in this setting a query can be,
without loss of generality, represented as a graph pattern: query execution involves
finding a match of the pattern inside document graphs representing XML documents.
Graph-based representations have been widely used in the framework of DTD-based
XML query languages [5, 12] as well as for a variety of XML-related environments
and tools. In order to enhance flexibility, however, we shall provide a different query
execution model for blind queries, which does not rely on the straightforward compu­
tation of pattern matching between the document and the query graphs; rather, we
introduce two preliminary steps, with the aim of narrowing the gap between query
and document structures. The rationale for this approach is that even without a
DTD, target XML documents can be used to estimate the intended importance of
XML elements as perceived by the document designer. Moreover, query structure
identifies the importance of XML elements as perceived by the user. Our approach
relies on three basic steps:

1. Assignment of weights to the target document content on the basis of the doc­
ument's topological structure, and tag repertoire. This step is carried out at
document design time and highlights information considered important by the
document designer at the granularity of XML tags and attributes. We dis­
tinguish between structure-related and tag-related weighting techniques: the
former attach importance to the containment relationships that specify spa­
tial structure of the documents (not unlike weighting in image databases [15]),
while the latter express the importance of XML elements and attributes con­
tent per se. Combining these techniques, we shall obtain a fuzzy labeled graph
[8], where each edge (x, y) e E has weight or strength w(x,y) € [0,1].

2. Extension of the fuzzy labeled graph. In this step, which is also carried out
at document design time, the closure of weighed documents is computed.. At
query execution time, the result is then tailored performing an a-cut operation
on the basis of a threshold parameter provided by the user, or computed by
the system on the basis of the user's profile. The output of this step is a new,
tailored target graph.

3. Computation of a similarity matching between the subgraphs of the tailored
document and the query graph, according to the type of matching expressing
the query semantics selected by the user. Again, this step is carried out at
query execution time.

638 E. DAMIANI L. TANÇA AND F. ARCELLI FONTANA

Fig. 2. A Sample XML graph.

It should be noted that our technique provides two useful tools to increase flexi­
bility: first of all, it offers the choice between different notions of graded similarity
matchings between the query graph and document subgraphs. Such matchings can
be classified on a scale, going from looser to stricter correspondence in the topologi­
cal structure [21]. Secondly, matchings can be carried out between fuzzy rather than
crisp graphs, providing a degree of matching that will be used to rank results. We
shall describe our matching procedure in some detail in Section 8. From the system
designer point of view, combining information filtering with the matching techniques
introduced offers a rich palette of techniques allowing for high flexibility in query
execution while ensuring full control on the query semantics. Figure 2 shows the
graph corresponding to the document of Figure 1. For the sake of generality, here
we do not adopt the notation of a specific language or environment; rather, we re­
produce the graphical interface of a popular XML editor. Since document nodes are
unique, we shall assume a numerical Object ID, (OID) to be specified for each node.
This causes no loss of generality, since such a OID can be easily computed based on
the unique path reaching the element on the containment tree. Note also that, since
our sample document only features containment links, the resulting graph is a tree,
and labels on arcs have been omitted in Figure 2.

Fuzzy XML Queries via Context-based Choice of Aggregations 639

3. QUERIES TO XML DATA

We are now ready to define a general concept of query to XML information sources.
To begin with, we remark that standard text retrieval techniques could be used to
search for tags (such as, in our example, <model> and <address>) as well as for their
desired content. Standard Boolean techniques for text retrieval search rely on a lex­
icon, i. e. a set of terms r\, T2,... , r*. and model each document as a Boolean vector
of length fc, whose ith entry is t r u e if r\ belongs to the document. In this setting,
a query is simply a Boolean expression (e.g., a conjunction) whose operands are
terms or stems (possibly including wildcards), and its result is the set of documents
where the Boolean expression evaluates to t rue . In other words, document ranking
is not supported in a pure Boolean setting. A variety of fuzzy techniques have been
proposed to overcome this problem [4, 27]. On the other hand, probabilistic text
retrieval techniques model documents as multisets of terms, and queries as standard
sets of terms, aiming at computing P(R/Q, d), i. e. the probability that a document
d is relevant with respect to query Q, based on the frequency distribution of terms
inside d. The result is usually a ranked list of documents according to values of
P(R/Q,d). Variations of these techniques are currently in use for search engines
dealing with HTML documents, and could of course be employed for XML data as
well, though at the price of loosing all the information conveyed by the document's
structure. This loss is indeed very important when the XML elements' content
is made of typed values rather than of text blobs, as it is nearly always the case
when XML documents are dynamically extracted from relational databases. More
sophisticated approaches (e. g. algebraic ones, [6]) have been proposed for searching
and structuring documents, leading to XML processing languages such as XQL [28],
which also provides search capabilities. In the last few years, the database commu­
nity has proposed several fully-fledged query languages for XML, some of them as a
development of previous languages for querying semi-structured data; two detailed
comparisons (both involving four languages) can be found in [7] and [12], while many
preliminary contributions and position papers about XML querying are collected in
[26]. Here, we shall not attempt to describe such languages in detail; rather, we
only refer to the common features of XML-QL [14], YaTL [11], XML-GL [5] and
the recent Quilt proposal [29]. Specifically, two features shared by these languages
[12, 29] are relevant to our discussion:

- User-provided patterns, based on the assumption that the user is aware enough
of the target document structure to be able to formulate a pattern that can be
matched against the target XML documents for locating the desired informa­
tion. Syntactically, patterns are often given in the standard form of XPaths.
XPaths have been adopted as a W3C Recommendation and are used in several
XML-related applications such as XPointer and XSLT. We regard XPaths as
a special case of general graph patterns whose application to a target docu­
ment returns a forest of nodes, preserving hierarchy and sequence. Flexibility
support is obtained by means of wildcards [12]. This feature is also shared by
the XQL document processing language [28].

640 E. DAMIANI L. TANÇA AND F. ARCELLI FONTANA

- Set-oriented query result: all query languages retrieve portions of XML doc­
uments, namely the ones matching the user-provided pattern. Although dif­
ferent binding techniques are used [29], all retrieved portions equally belong
to the query result set, even when the query exploits the facilities provided by
the language for partial or flexible pattern matching.

With respect to the first feature, we observe that when querying well-formed XML
information, the assumption that the user is aware of the target document structure
is indeed debatable, because users cannot exploit a DTD or a Schema as a basis for
the query graph's structure. Often, all users can rely on is a sample document, or at
most a tag repertoire, i. e. the XML vocabulary used throughout the XML document
base. In this situation, trying to find a match of the query pattern to a part of the
target document is likely to result in silence, as the query topology, however similar,
will probably not match the document's structure. Figure 3 shows a simple blind
query composed on the basis of the vocabulary of the document in Figure 1. The
user is interested in finding a car whose manufacturing plant is located in Virginia,
but has no clue on the target document structure, and searching for a match of
the query pattern inside the document would result in a failure. It should also be
observed that no wildcard-based path expression involving the tags car, maker and
address could result in a match, as maker and address belong to different sub-trees
in the document of Figure 2. Regarding the second feature, we remark that in our
opinion queries like the one in Figure 3 do not intend to dictate the exact structure
of the query result; rather, they provide a loose example of the information the user
is interested in. Therefore several degrees of matching should be possible. This
situation has been dealt with in the field of multimedia databases [20] where query
results are typically ranked lists according to some similarity measure.

Q~[l> maker
B [I > address

1 m %VA

Fig. 3. A blind query.

4. WEIGHTING XML INFORMATION

Intuitively, we need to match the query graph against the document after extending
the document's graph in order to by-pass links and intermediate elements which are
not relevant from the user's point of view. In order to perform the extension in a
sensible way, we shall first evaluate the importance of well-formed XML informa­
tion at the granularity of XML elements. To achieve this result, we rely on fuzzy

Fuzzy XML Queries via Context-based Choice of Aggregations 641

weights to express the relative importance [2] of information at the granularity of
XML elements and attributes. Low values will correspond to a negligible amount of
information, while a value of 1 means that the information provided by the element
(including its position in the document graph) is extremely important according to
the document author. Other than that, the semantics of weights is only defined in
relation to other weights in the same document/query. Again, we would like the
computation of such weights to be carried out automatically, or at least to require
limited manual effort.

4.1. Weighting strategies

Two main approaches can be used to compute automatically an estimate of elements'
importance: tag-related and structure-related document weighting.

- Tag-related weights This technique labels the nodes of an XML graph
with their relative importance, by means of a function wn0de : V -* [0,1]. This
function associates in a natural way a fuzzy value to the node's label, though
the resulting graph is not a fuzzy graph in the classical sense [24]. Tag-related
weights can be obtained by polling the document designer; alternatively, they
can be computed using a linear combination of two notions of frequency, each
having a different scope. The first notion associates tag importance with the
frequency of XSL-like XPath expressions [31] ending with that tag, through­
out the document base. A path expression uniquely identifies a tag in a given
position inside an XML document; for instance, car : p l a n t : address [Cherry
Ave] uniquely identifies the <address> tag in Figure 1. A path's frequency
w.r.t. a sample set of XML documents extracted from a document base mea­
sures how many times a given tag is found in a certain position, as an estimate
of the probability of finding it there in a randomly-selected document. Intu­
ition suggests that this frequency relates inversely to importance. The second
notion of frequency is the usual term frequency used in Information Retrieval
Systems; it is document-centered, as it takes into account the frequency profile
of the set of terms composing the elements' content in the target document.
In this case, one can assume that elements containing high frequency terms
convey less inf6rmation than those containing low frequency ones, and their
importance is comparatively low.

- Structure-related weights The structure-related technique weighs the
arcs of an XML graph using topological parameters related to the position
of XML elements and attributes. This is obtained by computing a function
Ware - E -> [0,1] estimating the importance of the arc. This function associates
importance degrees (fuzzy values) to the arcs, and its application gives a fuzzy
graph in a natural way. Topological parameters to be considered include nest­
ing, i. e. the length of the path to the terminal element of the arc from the doc­
ument root node, and fan-out, i. e. the number of elements/attributes directly
contained in the terminal element of the arc under consideration. Structure-
related weighting can readily be applied to both documents and queries; how­
ever, a basic distinction should be drawn. When weighting a query, topological

642 E. DAMIANI L. TANÇA AND F. ARCELLI FONTANA

Table 1. Sample tag-related weights
for the document in Figure 1.

tag weight
maker 0.5
model 0.8

serialcode 0.8
plant 0.8

parameters estimate the importance of a generic XML element as perceived
by the user; for instance, an element being closer than another element to the
query tree root suggests that the user considers that type of information to
be more important. When weighting a document, weights are estimates of the
importance of individual tags, as perceived by the document designer. Though
in this paper we shall deal with document weighting only, our techniques are
readily extendable to take into account weighted queries as well.

Note that in both the above models, weights are constant and do not depend
upon the content/value of the XML element or attribute involved; this is indeed
a drawback which limits the semantics-of weights. For instance, an XML element
such as <PRICE> could be considered important only when its content lies inside a
given range of values (for a detailed discussion on this subject see [19]). In principle
[18], this problem could be solved introducing an additional dependency between
weights and the content/value of the corresponding element/attribute. Checking
this additional dependency is however bound to be computationally very expensive;
therefore in the remainder of the paper we shall only deal with content-independent
weights.

4.2. Weight computation

We are now ready to outline the actual computation of the fuzzy weights. We rely
on a semi-automatic approach, using tag-related weights provided by the document
designer for a small number of key tags, and then propagating them to the document
graph.

In the tag-related model, the weight wnode of each node in the XML document
tree expresses either the relative importance of a tag as estimated by the document
designer, or the probability (estimated via the corresponding sample frequency)
associated to the (unique) path expression ending in that node.

Using the structure-related technique, weighting is performed as follows:

- Use a function Ware - E ->• [0,1] to weigh each arc (ni,nj) £ V of the target
document graph G.

- A simple function is, for instance, the normalized distance from root, defined

Fuzzy XML Queries via Context-based Choice of Aggregations 643

as follows: *

W* :(щ,Пj) =
й т я х '

(l)

where d m a x is the length of the longest path starting from a root node and /
is the distance from nj to the root. This function establishes a simple inverse
relation between arcs importance and their nesting level.

Another suitable function associates to each arc (ni,nj) in G the normalized
cardinality of the sub-tree G' (obtained taking inclusion arcs only into account)
whose root is nj, namely

w* z(щ,Пj)
I O'K) I

IGI
(2)

Note that in this case w(ni,nj) does not depend on n*. Also, arcs from element
to attribute nodes enjoy no special status and are weighted as the others. This
weighting function is non-monotonic w.r.t distance from root and estimates
each arc's importance via the size of the subtree rooted in its final node.

Applying the above weighting procedure to the well-formed document in Figure
1, and using the function of Eq. (1), we obtain Table 2.

Table 2. Structure-related weights
for the sample document in Figure 1.

Щ Пj w
car maker 2/3
car model 2/3

model serialcode i/з
model modelname 1/3
model year 1/3
model description 1/3

car plant 2/3
plant address 1/3

The two weighting techniques can be then combined as follows:

w^TC(ni,nr) = T(wnode(nr),warc(ni,nr)) (3)

where T is a standard triangular norm or £-norm [25], i. e. a binary function [0, l] 2 —r
[0,1] satisfying the following properties:

Monotonicity: x\ < x[A x2 < x2 -» T(x\,X2) < T(x[,x2) (4)

Commutativity : T(x\,x2) = T(x2,x\) (5)

644
E. DAMIANI L. TANÇA AND F. ARCELLI FONTANA

Table 3 . t-norms.

1 í-norms
2 min(x, y)
3 xy
4 max(ж + y — 1,0)
5 xy 5

x+y-xy
6 x(y = ï),y(x = 1), 0 o / w

Table 4. The final weights.

m Пj w
car maker 0.58
car model 0.73

model serialcode 0.52
model modelname 0.33
model year 0.33
model description 0.33

car plant 0.73
plant address 0.33

Associativity : T(T(xi,x2),xz) = T(xi,T(x2,xs)). (6)

T-operators also enjoy A-Conservation, namely T(0,0) = 0;T(x, 1) = T(l ,x) = x.
Several well-known triangular norms are shown in Table 3; for more t-norms, see
[22].

Note that, when the norm T = min, Wnode(^r) = 0 means that the arc (m,nr)
must be ignored in the computation whatever the value of i0arc(fti, nr) for all nodes
m connected to it. Of course, other aggregation operators that are not £-norms can
be used as well; for instance, the final weighting of the document in Figure 1 when
T is the arithmetic average is reported in Table 4.

5. FUZZY CLOSURE COMPUTATION

Once the weighting is completed, the fuzzy closure C of the fuzzy labeled graph is
computed. Intuitively, computing graph-theoretical closure entails inserting a new
arc between two nodes if they are connected via a path of any length in the original
graph. Computing the closure is well-known to be polynomial w.r.t. the number
of nodes of the graph. In our model, the weight of each closure arc in C — G is
computed aggregating via a t-norm T the weights of the arcs belonging to the path
it corresponds to in the original graph. Namely, for each arc (m,nj) in the closure
graph C we write:

Wzrc(ni,nj) = T(whrc(m,nr),w&rc(nr,ns),... ,warc(n*>nj)) (7)

Fuzzy XML Queries via Context-based Choice of Aggregations 645

where {(n^, nr)(nr,ns),... ,(nt,nj)} is the set of arcs comprising the shortest paths
from n; to nj in G and, again, T is a standard f-norm [25]. Intuitively, the closure
computation step gives an extended structure to the document, providing a looser
view of the containment and reachability relations. Selecting the type of f-norm
to be used for combining weights means deciding if and how a low weight on an
intermediate element should affect the importance of a nested high-weight element.
This can be a very difficult problem, as the right choice may depend on the dataset or
even on the single data instance at hand. There are some cases in which the £-norm
of the minimum best fits the context, other cases in which it is more reasonable to
use the product or the Lukasiewicz £-norm. Often, it is convenient to use a family
of t-norms indexed by a tunable parameter. In general, however, it is guessing the
right context, or better the knowledge associated to it from some background of
preliminary knowledge, that leads to the right £-norm for a given application. For
instance, suppose a node nj is connected to the root via a single path of length 2,
namely (nr00t,ni)(ni,nj). If ^arc^root,^) < < w^rc(ni,nj) the weight of the closure
arc (nroot,nj) will depend on how the £-norrri T combines the two weights. In other
words, how much should the high weight of (ni,nj) be depreciated by the fact that
the arc is preceded by (comparatively) low-weight one (nroot,ni)? It is easy to see
that we have a conservative choice, namely T = min. However, this conservative
choice does not always agree with humans' intuition, because the min operator gives
a value that depends only on one of the operands without considering the other [17]
(for instance, we have the absorption property: T(x,0) = 0). Moreover, it does not
provide the strict-monotonicity property (Vy,xf > x -•> T(x',y) > T(x,y)). In other
words, an increase in one of the operands does not ensure the result to increase if
the other operand does not increase as well. To understand the effect of the min's
single operand dependency in our case, consider the two arc pairs shown below:

1. (<car><model>0.2)(<model><serialcode>0.9)

2. (<car><model>0.3)(<modelXserialcode>0.4)

when the min operation is used for conjunction, arc pair (2) is Tanked above arc (1),
while most people would probably decide that arc pair (1), whose second element
has much higher importance, should be ranked first. The other ^-operators have the
following common properties [25]:

x = lVa; = OV2/ = lV2/ = 0-> T(x,y) = x V T(x,y) = y (8)

T(x,y)<mm(x,y). (9)

Property (9) warns us that, while the other £-norms somewhat alleviate the single
operand dependency problem of the min for arc pairs (using the product, for instance,
the outcome of the previous example would be reversed), they may introduce other
problems for longer paths. Let's consider the following example, where we add a
modelnamecode attribute to the <modelname> element:

1. (<car><model>0.1)(<model><modelname>0.9)(<modelname><modelnamecode>0.1)

646 E. DAMIANI L. TANÇA AND F. ARCELLI FONTANA

2. (<car><model>0,2)(<model><modelname>0.5)(<modelname><modelnamecode>0.2)

In this case using the product we get T(x, y, z) = T(x, T(j/, z)) = 0.009 for the first
path, while the second gets 0.02; again this estimate of importance that ranks path
(2) above path (1) may not fully agree with users' intuition. The graph corresponding
to our sample document, computed using the arithmetic mean as an aggregation
operator is depicted in Figure 4. For the sake of clarity, only internal element nodes
are shown.

Fig. 4 . The closure of the XML graph.

6. QUERY EXECUTION

We are now ready to outline our query execution technique for well-formed XML
documents, which relies on the following procedure:

1. Weight the target document graph G and the query graph Q according to
structure-related or tag-related techniques described in Section 4. Weights on
target documents can be computed once for all (in most cases, at the cost of
a visit to the document tree). Though weighting the queries must be done on­
line, their limited cardinality is likely to keep the computational load negligible
in most cases.

2. Compute the closure graph C of G using a T-norm or a suitable fuzzy aggre­
gation of the weights. This operation is dominated by matrix multiplication,
and its complexity lies in between 0(n2) and 0(n3) where n is the cardinality
of the node-set V of the target document graph. Again, graph closure can be
pre-computed once for all and cached for future requests.

3. Perform a cut operation on C using a threshold (this operation gives a new,
tailored target graph TG). The cut operation simply deletes the closure arcs
whose weight is below a user-provided threshold a, and is linear in the cardi­
nality of the edge-set of C - G.

Fuzzy XML Queries via Context-based Choice of Aggregations 647

4. Compute a fuzzy similarity matching between the subgraphs TG of the tailored
document and the query graph Q, according to selected type of matching. This
operation coincides with the usual query execution procedure of pattern-based
query languages, and its complexity can be exponential or polynomial w.r.t the
cardinality of the node-set V of the target document graph [10], depending on
the allowed topology for queries and documents [9].

The first steps of the above procedure are reasonably fast (as document weights
and closure can be pre-computed, required on-line operation consists in a sequence
of one-step lookups) and does not depend on the formal definition of weights. The
last step coincides with standard pattern matching in the query execution of XML
query languages [5], and its complexity clearly dominates the other steps.

7. A LOGICAL FORMULATION

All graph-theoretical notions given in previous subsections can be readily translated
in a simple logical formulation to obtain an extensional fuzzy database. First of all,
we express the document graph as a conjunction of ground facts, e. g. instances of
1-ary and binary predicates contains, value and content with constant values. Typed
predicates like e-contains and a-contains will be used to distinguish between element
and attribute containment. For example, for the document in Figure 1 we have the
following conjunction of facts:

e-contains(OIDl-car,OID2-maker)A content(0ID2-maker,"Mercury")
A e-contains(OIDl-car,OID3-model) A

a-contains(OID3-model,OID4-serialcode)A value(OID4-serialcode, "1230B")

e-contains(OID8-plant,OID9-address)Acontent(OID9-address, "Cherry Blossom Ave")

Then, we use the weighting procedure of Section 4 to establish importance, to
be used as truth-value for the facts in the extensional database. For instance, using
the fuzzy weighting model of Section 4, we have e-contains(car, maker) -= 0.58. Now
we are ready to perform a closure procedure to augment the facts, according to the
following transitivity rule:

e-contains(x,y) =-> le-contains(x,y) (10)

le-contains(x,y) A e-contains(y,z) =£• le-contains(x,z) (11)

Formula (11) gives the truth-value of the new predicate le-contains(x,z) in terms
of the truth-values of predicates le-contains(x,y) and e-contains(y,z). Indeed, graph-
based queries are inherently compound, raising the issue of finding the appropriate
aggregation operator for combining the elementary truth-values; this is exactly the
same problem of the choice of the £-norm to aggregate weights discussed in Section
5. Selecting a conjunction means deciding if and how a lightweight intermediate ele­
ment should affect the importance of a heavier element nested inside it. As we have

648 E. DAMIANI L. TANÇA AND F. ARCELLI FONTÁNA

seen, the straightforward approach to this problem is to use triangular norms, but
the aggregation provided by £-norms may not coincide with users' intuition. How­
ever, our logical formulation allows us to see more clearly the association between
conjunction and query execution semantics. Indeed, the conjunction to be employed
can be a logical, compensatory or product-based one, depending on the user-selected
semantics that was used to compute truth values of the initial predicates. In the
following, we shall briefly discuss how the choice of a conjunction may affect query
execution in our setting.

- Logical conjunctions are modeled by t-norms and express a conservative
view in which the total degree of importance of a XML fragment is linked to
the importance of its least important element. The most natural choice for
conjunction; pure min, is the largest associative aggregation operator which
extends ordinary conjunction. It is also the only idempotent one and, thanks
to these properties, it well preserves query optimization properties [20]. Once
again, we note that using the min conjunction, we adopt the most conservative
attitude: for instance, in our example we get e-contains(department, group)
with a truth value of 3/5. Unfortunately, as shown in Section 5, its behavior
does not always coincide with users' intuition. An intermediate behavior is
obtained by using Lukasiewicz norm T = max(a + b — 1,0). Product-based
conjunctions introduce a probabilistic view which also may create problems
with user intuition (Section 5). They also pose other problems, as they are
unfit for query optimization.

- Weighted averages (WA) promote a more utilitaristic view where the
higher value of importance of an element can often compensate for a lower value
of another one. In other words, it may happen that PVi4(x, y) > min(rr, y). Ta­
ble 5 shows some classical average-based choices for the aggregation operation.
The degree of compensation for these operators depends on a tunable param­
eter 7 G [0,1]. We shall require this positive compensation to occur for all
values of 7; therefore we rule out operator A\, which coincides with the min
when 7 = 0, and operator A%, which coincides with the product. On the other
hand, operator A2 from Table 5 presents the single operand dependency prob­
lem, as it exhibits the absorption property (it always gives 0 when one of the
operands is 0). Operator A4 aggregates a conservative view with a utilitaristic
one. When 7 = 0, it coincides with simple arithmetic mean (operator A$),
which has been shown in previous examples and will be used in the sequel.

The logical counterpart of the a-cut operation we performed on the weighed
closure graph is thresholding truth values. Thresholding involves all predicates in
the extensional database; intuitively, it will eliminate predicates having a low truth-
value, providing a set of facts tailored to the user interests. Then, we can express
the query as a logical formula, e. g.

Q = e-contains(x-plant,x-address)Avalue(x-address, "Cherry Blossom Ave")

Note that x-plant and x-address are typed logical variables, where types are ele­
ment or attribute names such as car, maker, model, plant. We shall write x — t

Fuzzy XML Queries via Context-based Choice of Aggregations 649

to denote variable x belonging to type t. Matching the query formula to the trans­
formed facts means to compute its truth-value, which is obtained taking the con­
junction of the truth-values of the atomic predicates. Consistently with our previous
choice, the conjunction to be used is the same one that was used to compute the clo­
sure. Namely, we compute fi(Q) = fi(e-contains(x-plant,x-address))An(content(x-
address, "Cherry Blossom Ave"))

Table 5. Average-based fuzzy conjunctions.

norm T(x,y)

-4i 7 max(x, y) + (1 - 7)) min(x, y)

A2
(x + y - xyУ (xy)1-1

A3 7(x -F y - xy) + (1 - i)(xy)

A4
7min(æ,î/)+(l-7)(-c+2/)

2

Aъ

(x+y)
2

Once again we remark that the choice of the aggregation will affect query re­
sult; for instance, in the compensatory vision, there is no absorption property
and /x(Q) may well be above zero even if either /i(e-contains(x-plant, x-address)) or
n(content(x-address, "Cherry Blossom Ave") are zero (but not both). More impor­
tantly, whatever the conjunction we use, the query result is a ranked list of couples
(x-plant, x-address), ordered according to their truth values.

8. FUZZY GRAPH MATCHINGS

In this section we shall outline the fuzzy matching algorithm used for locating the
fuzzy subgraphs of the extended document graph and computing their degree of
matching with respect to the user query. To allow for maximum flexibility, several
notions of matching can be employed. Here, we only outline their classification:

Lexical Distance Matching between document subgraphs and the query graph
depends on the number of nodes they have in common, regardless of their
position in the graphs. Different distance measures can be defined taking into
account the fact that nodes may belong to different XML lexical categories,
e. g. elements in the query graph may correspond to attributes in the document
and vice versa.

Graph Simulation Matching between document subgraphs and the query
graph depends on the number of paths spanning the same nodes they have
in common. Again, different distance measures can be defined taking into
account the fact that nodes represent different types of XML lexical terms.

650 E. DAMIANI L. TANÇA AND F. ARCELLI FONTANA

- Graph Embedding Matching between document subgraphs and the query
graph is defined as a function ip associating query nodes to document nodes in
such a way that edges and labels are preserved.

- Graph Isomorphism Matching between document subgraphs is a function <p
as above, which in this case is required to be a one-to-one mapping.

The procedure consists of three steps:

1. Given the query Q = (V,E,f), without taking membership values into ac­
count, locate a matching subgraph G' = (V, E', / ') in the extended document
graph (using, for instance, crisp depth first search), such that that there is a
mapping (p:V -+V preserving arcs and arc labels.1 A procedure FindMatch
is used, according to the desired type of matching; in the case of graph em­
bedding, its complexity is polynomial in | V \ for simple queries [10].

2. Compute the ranking function J(Q,G') as follows:

J = A(„.fni)6^ii;arc(^(ni),v(ni)) = T(wSLTC((p(ni),ip(nj),...). (12)

In the second part of Eq. (12), we straightforwardly use t-norm associativity to
compute the conjunction T over all edges ^p(ni),^p(nj) in the document graph
corresponding to edges ni,nj in the query graph. This is the same procedure
that was used for computing the truth-value of the sample query in Section 7.
When T is the arithmetic average, we cannot rely on associativity and we get

j -gj Yl *>aic(<p(ni)Mnj))- (13)

Function (12) plays the same role as the objective function in standard fuzzy
graph matching algorithms [21], expressing the degree of membership of a
candidate subgraph in the result set as a conjunction of the weights on corre­
sponding arcs.

3. Output the matching subgraph and its rank J .

As a very simple example, let's now execute the blind query of Figure 3 on
the graph of Figure 4 (after applying the a-cut with a = 0.45). The tailored graph
contains the requested path <carXmakerXaddress>, and since the cardinality | E \
of the edge set of the match is 2, the rank function value for this match (when T is
the average) is given by J = |r(uvarc(car, maker) = 0.58, iuarc (mater, address) =
0.49) = 0.53. Note that Wa,TC(car, maker) was simply looked up from Table 4), while
wATC(maker, address) was computed in the closure step as

T(w&TC(maker, plant), waTC(plant, address)).

1 Moreover, this matching ensures that if values are specified on terminal nodes in the query
graph, they also must appear as content labels of the corresponding nodes in the input document
graph

Fuzzy XML Queries via Context-based Choice of Aggregations 651

9. CONTEXT BASED CHOICE OF T-NORMS

We have presented what we consider to be a novel fuzzy technique to execute blind
XML queries, suitable for integration in current XML query languages. However,
as we have seen, the query engine's behavior depends on the choice of a £-norm or
an aggregation operator, and the discussion of the previous Sections has shown how
difficulty may be to decide a priori which aggregation will match the user's intuition.
Indeed, the choice of t-norms is a moot point: in recent years a variety of fuzzy
operators have been developed, potentially providing high flexibility but sometimes
making it difficult to choose the one best suited to a particular application. In this
section, we deal with similarity as a way to approximate knowledge in a given context
[3], leading the choice of a suitable t-norm. Specifically, we describe the application
of a similarity-based method to the choice of a conjunction in relation to its effects
on query execution semantics.

Fuzzy conjunctions are deeply depending on the context. For example, the as­
sertion IF Citys i s c lose t o City^ AND City^ i s close to City\ THEN City\
i s not so c lose t o Citys contains an important information about the context.
Implicitly, the statement pictures a context where the three cities lie on a straight
line on a map. Intuition suggests that in such a context, the conjunction of the
two predicates expressing closeness must be somewhat less true than each of the
conjuncts. We intend to sketch a formal notion of contextual knowledge [1], de­
rived from some sample features of a certain environment (i. e. some samples of
distances in spatial structures of the XML document). Then, we shall discuss how
such knowledge can be applied to the choice of a conjunction.

9.1. Contextual knowledge

The main aspects that should be fulfilled by a model aiming at representing a context
are related to the possibility to predict some actions, or more generally to derive new
information and to be scalable, i. e. to contain elements that can assume different
scales of values. These specifications seem to be grasped by the mathematical notion
of similarity, since similarity can be determined by a small set of initial values and
then extended to whole values of the set in which it is defined and moreover similarity,
depending on a t-norm, can be easily parametrized.

Given a set S and a £-norm T, a T-similarity, or simply a similarity on S, is a
map H : S x S -> [0,1] such that:

U(x, x) = 1, TZ(x, y) = TZ(y, x) (14)

Tl(x,y) > T(K(x,z),1l(z,y)),Vx,y,z G S. (15)

An extended pseudometric on 5 is a mapping d : S x S -> [0, co] such that,
for any x,y,z G S, d(x,x) = 0, d(x,y) = d(y,x), and d(x,z) < d(x,y) +d(y,z).
Given a £-norm T and x G [0,1], we denote by Tn(x)) the number T(x,x... ,x)
n-times. Finally, we recall that a t-norm T is called Archimedean provided that, for
any x G [0,1] there exists an integer n such that Tn(x) < x [25].

652 E. DAMIANI L. TANÇA AND F. ARCELLI FONTANA

We now consider a noteworthy result on similarity, established by Valverde in
[30], which outlines a kind of duality between similarities and metric notions. In
particular, Valverde has pointed out that, given a t-norm T and a pseudometric, a
class of similarities with respect to T is uniquely defined. Moreover, given a similarity
with respect to a t-norm T, a class of pseudometrics is wholly determined.

Let d : S x S -» [0, +oo] be an extended pseudometrics, and let T be a continuous
and Archimedean t-norm. Then, there exists a continuous and strictly decreasing
map / : [0,1] - r [0, +oo] such that / (l) = 0 and

Kd(x,y) = r1(d(x,y)) (16)

is a T-similarity on S.
Moreover, for any x,y in [0,1], x * y = / ' " ^ (/ (x) + /(*/)), where / I " 1 ' is the

pseudoinverse of / .
Let 1Z be a similarity with respect to a continuous and Archimedean t-norm T.

Then there exists a mapping / : [0,1] -> [0, +oo] continuous and strictly decreasing
such that / (l) = 0 and

dn(x,y) = f(1Z(x,y)) (17)

is an extended pseudometrics.
This results provide a mathematical foundation to the discussion in Section 7:

since in our application the notion of distance depends on the context (i.e., the
concepts of "closeness" between elements and attributes may well change according
to the dataset), distance is dual to the notion of similarity and similarity depends on
t-norms, we need to employ different t-norms in order to model several context-based
notions of distance.

To model a context by similarity, given a set S representing the whole context
(in our case, an XML document base), and a finite set N = {-Pi,-P2>--- >-fn} of
elements of 5, we consider the case where a similarity TZ is described by "examples"
i.e. the values 1Z(x,y) are defined for any x,y € N. Our goal is to determine the
t-norm T that best fits the behavior of 1Z as a T-similarity. More precisely, we seek
a function T : [0,1] x [0,1] -» [0,1] such that T is a continuous t-norm and, for any
x,y,z€ 5,1Z(x,y) > T(1Z(x,z),1Z(z,y)).

We observe that the set of t-norms is a partially ordered set with respect to
the relation •<, defined by setting T •< T1 whenever T(x,y) < T'(x,y) for any
x,y G S. If T and T' are t-norms, then the function TAT' defined by setting
T A T'(x,y) = min(T(a:,y),T'(x,y)) is a t-norm, too. Moreover, if 1Z is T-transitive
and T' is a t-norm such that T ; •< T, then 1Z is a T'-transitive, too. As a consequence,
given a fuzzy relation 1Z, we can consider the t-norm TR defined by setting, for any
x,y e S:

Tn(x,y) = Inf{T\1Z(x,y) > T(1Z(x, z),1Z(z,y))}. (18)

Observe that, by denoting the t-norm of the minimum as TM, if TZ is not transitive
with respect to TM then Tn cannot be defined.

For example, consider the case where S = {a, 6, c} and 1Z is defined by setting
1Z(a, b) = 0.2,1Z(b, c) = 0.2 and 1Z(a, c) = 0.04. In this case it is not difficult to show

Fuzzy XML Queries via Context-based Choice of Aggregations 653

that Tn coincides with the usual product in [0,1]. However, in general it is not easy
to determine the minimum ż-norm such that a certain fuzzy relation is transitive.

So, either we give a comprehensive set of í-norms and try to pick out the one
that best fits a given fuzzy relation, or we give a parametric t-norm and try to fit
the fuzzy relation with the choice of a suitable parameter. In this case, one could
rely on a set of some basic t-norms such as the minimum, the usual product and
the Lukasiewicz ż-norm. Such ŕ-norms can be parametrized to constitute a bundle
of contexts. Parametrization of average-based norms was discussed in Section 7; the
above discussion shows that this technique has a sound basis and can be applied to
any parameter-based t-norm. For example, we can consider T\ = (x • y)л, where • is
the usual product in [0,1] and Л Є [0,1]. According to Eq. (16) and Eq. (17), the
function / that generates T\ is, up to a constant, f(y) = — Wogy. This suggests a
method to derive a fine tuned context where the í-norm is represented by the product.
For example, if S = {ађЪђc\ and Ща,Ъ) = 0.1,7г(a,c) = 0.2, ЩЪ,c) = 0.3, then we
can set Л = mina Єя{(0.2 . o.З)a > 0.1} = . 2 ; ^ f l ,

10. CONCLUSЮN

While we are well aware that the approach to XML querying described in this paper
needs further development and experimentation, we believe some important notions
were established, while others have been highlighted for future research. As XML
is the language of choice for Web-based knowledge representation applications, it is
particularly interesting to observe that once we have reconstructed a ż-norm suitable
for a given document base, a dataset-dependent definition of similarity easily follows
through. In fact, given 1Z and a continuous ř-norm T, the Г-similarity П generated
by 1Z}is given by n Є N ҠУ, where 7?A is the usual power of a fuzzy relation with
respect to Г. Therefore, given a set 5 of documents and a subset N of elements of £,
we can define a contextual knowledge on the set 5 by first defining a fuzzy relation
1Z over N and then establishing which of the three main kind of ż-norms best fits the
values of 1Z over N. Then, we can use a parametrized í-norm in order to fine tune
the context to the chosen environment. Once we get a suitable parameter and hence
a suitable í-norm Г, we can generate the similarity 1Z , representing the contextual
knowledge we were looking for, by applying some classical meťhods. We intend to
explore this subject in a future paper.

(Received June 13, 2000.)

REFERENCES

[1] F. Arcelli Fontana and F. Formato: User adaptive models based on similarity. In:
Proc. ACM Symp. on Applied Computing (SAC 2000), Como.

[2] P. Bosc: On the pгimitivity of the division of fuzzy гelations. Soft Computing 2 (1998),
2.

[3] P. Bгezillon, C. Gentile, I. Saker, and M. Secron: SART: A system for supporting
operators with contextual knowledge. In: Proc. Internat. Conference on Modelling
and Using Context (Context 97), Rio de Janeiro.

6 5 4 E. DAMIANI L. TANÇA AND F. ARCELLI FONTANA

D. A. Buell: A general model of query processing in information retrieval systems.
Inform. Process. Management 47(1981), 5. Soft Computing 2 (1998), 2.
S. Ceri, S. Comai, E. Damiani, P. Fraternali, S. Paraboschi, and L. Tanca: XML-
GL: A graphical language for querying and restructuring XML documents. Computer
Networks 31 (1999), 2.
C. L. A. Clarke, G. V. Cormack, and F. J. Burkowski: An algebra for structured text
search and a framework for its implementation. The Computer Journal 38 (1995), 1.
S. Ceri and A. Bonifati: Comparison of XML query languages. SIGMOD Record 29
(2000), 1.
K. P. Chan, Y. S. Cheung: Fuzzy attribute graph with applications to character recog­
nition. IEEE Trans. Systems Man Cybernet. 22 (1992), 1.
R. Cohen, G. Di Battista, A. Kanevsky, and R. Tamassia: Reinventing the wheel: An
optimal data structure for connectivity queries. In: Proc. ACM-TOC Symp. on the
Theory of Computing, S. Diego 1993.
S. Comai, E. Damiani, R. Posenato, and L. Tanca: A schema-based approach to
modeling and querying WWW data. In: Proceedings of Flexible Query Answering
Systems (FQAS'98) (H. Cristiansen, ed., Lecture Notes in Artificial Intelligence 1495),
Springer, Roskilde 1998.
S. Cluet, C. Delobel, J. Simeon, and K. Smaga: Your mediators need data conversion.
In: Proc. ACM-SIGMOD Intl. Conf. on Management of Data, Seattle 1998.
S. Cluet, A. Deutsch, D. Florescu, A. Levy, D. Maier, J. McHugh, J. Robie, D. Suciu,
and J. Widom: XML Query Languages: Experiences and Exemplars.
http://www-db.research.bell-labs.com/user/simeon/xquery.html
E. Damiani and L. Tanca: Blind queries to XML data. In: Proc. 11th Database and
Expert Systems Applications Conference (DEXA 2000) (M. Ibrahim, J. Kung, N.
Revell, and eds., Lecture Notes in Computer Science 1873), Springer, London 2000.
A. Deutsch, M. Fernandez, D. Florescu, A. Levy, and D. Suciu: A query language for
XML. Computer Networks 31 (1999), 2.
A. Del Bimbo and E. Vicario: Using weighted spatial relatioship in retrieval by visual
content. In: Proc. IEEE Workshop on Content Based Access of Images, Santa Barbara
1998.
D. Dubois, R. Martin Clouaire, and H. Prade: Practical computing in fuzzy logic. In:
Fuzzy Computing (M. M. Gupta and T. Yamakawa, eds.), North Holland, Amsterdam
1988.
D. Dubois, H. Fargier, and H. Prade: Refinements of the maximum approach to
decision making in fuzzy environments. Fuzzy Sets and Systems 81 (1996), 3.
D. Dubois, F . Esteva, P. Garcia, L. Godo, R. Lopez de Mantaras, and H. Prade: Fuzzy
set modelling in case-based reasoning. Internat. J. Intelligent Systems 13 (1998), 1.
D. Dubois, H. Prade, and F. Sedes: Fuzzy logic techniques in multimedia database
querying: A preliminary investigations of the potentials. In: Database Semantics:
Semantic Issues in Multimedia Systems (R. Meersman, Z. Taxi, and S. Stevens, eds.),
Kluwer, Dordrecht 1999.
R. Fagin: Combining fuzzy information from multiple systems. In: Proc. Fifteenth
ACM Symposium on Principles of Database Systems, Montreal 1996.
S. Gold and A. Rangarajan: A graduated assignment algorithm for graph matching.
IEEE Trans, on Pattern Analysis and Machine Intelligence 18 (1996), 2.
M. M. Gupta and J. Oi: Theory of T-norms and fuzzy inference methods. Fuzzy Sets
and Systems 40 (1991), 3.
Microsoft Corporation White Paper: XML-Data Specification.
msdn.microsoft.com/xml/articles/xmldata.html.

Fuzzy XML Queries via Context-based Choice of Aggregations 655

[24] J. Mordeson and P. Nair: Fuzzy Graphs and Hypergraphs. Studies in Fuzziness and
Soft Computing. Physica Verlag, Heidelberg 2000.

[25] J. Klir and T. Folger: Fuzzy Sets, Uncertainty and Information. Prentice-Hall, Engle-
wood Cliffs, N.J. 1988.

[26] The Query Language Workshop, www.w3.org/xml/xql98.
[27] T . Radecki: A fuzzy set theoretical approach to document retrieval. Information Pro­

cessing and & Management 15 (1979), 5.
[28] J . Robie: The Design of XQL, www.texcel.no/whitepapers/xql-design.html.
[29] J. Robie, D. Chamberlin, and D. Florescu: Quilt: An XML Query Language,

h t t p : //www. almaden. ibm. com/cs/people/chamberlin/usecases. html.
[30] L. Valverde: On the structure of F-indistinguishability operators. Fuzzy Sets and

Systems I 7 (1995), 3.
[31] World Wide Web Council. XSL Transformations, Version 1.0. W3C Recommendation,

www.w3.org/TR/1999/REC-xslt-19991116.
[32] World Wide Web Council. Extensible Markup Language, Version 1.0. W3C Recom­

mendation, www.w3.org/TR/1998/REC-xml-19980210.

Prof. Dr. Ernesto Damiani, Pólo di Crema - Universita di Milano, Via Bramante 65,
Crema. Italy.

Prof. Dr. Letizia Tanca, Dipartimento di Elettronica e Informazione - Politecnico di
Milano, Via Ponzio 121, Milano. Italy.

Prof. Dr. Francesca Arcelli Fontána, Dipartimento di Informatica - Universita di
Milano-Bicocca, Via Bicocca degli Arcimboldi, Milano. Italy.

e-mails: edamiani@crema.unimi.it, tanca@elet.polimi.it, arcelli@disco.unimib.it

