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GOODNESS OF FIT TESTS WITH WEIGHTS 
IN THE CLASSES BASED ON (h, ^-DIVERGENCES1 

ELENA LANDABURU AND LEANDRO PARDO 

The aim of the paper is to present a test of goodness of fit with weigths in the classes 
based on weighted (h, ^-divergences. This family of divergences generalizes in some sense 
the previous weighted divergences studied by Frank et al [5] and Kapur [11]. The weighted 
(h, (^)-divergence between an empirical distribution and a fixed distribution is here inves
tigated for large simple random samples, and the asymptotic distributions are shown to 
be either normal or equal to the distribution of a linear combination of independent chi-
square variables. Some approximations to the linear combination of independent chi-square 
variables are presented. 

1. INTRODUCTION 

Several coefficients have been suggested in the statistical literature to reflect the 
fact that some probability distributions are "closer together" than others and, con
sequently, that it may be easier to distinguish between the distributions of one pair 
than between those of another. While these coefficients, called divergence measures, 
have not been introduced for exactly the some purpose, they have the common 
property of increasing as the two distributions involved "more apart". 

Let {X)px,P)p£&M be a statistical space, where X = {-Ci,... , £ M } , A M = 

< P = (p i , . . . >PM) • Pi > 0 and ^ t = 1 Pi = 1 f and fix is the <r-field of all the sub
sets of X. For any P , Q G A A/ the most important family of divergences was given 
by Csiszar [1] and defined by the following expression 

M , v 

^(*.Q) = E«*(gJ (1) 

where <f> is a continuous convex function, <j> : [0,oo) —> R+ U {oo}, 00(0/0) = 0 
and 0<t>(p/0) = limu_^oo ^ p . For the properties of (^-divergences we refer Liese and 
Vajda [13] or Vajda [21]. 

However, there are some important measures of divergence that cannot be ob
tained as particular cases of (^-divergence. For this reason Menendez et al [15] 
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introduced an extended expression, called (/i, (^-divergence, which is defined by 

Dht (P, Q) = J2 r,aha fa qi<j>a ( ^ J (2) 

where h = (ha)a=i A, <t> = (0a)o = i ^i anc* for a = 1 , . . . ,.A, ^ a satisfy the 
condition of the Csiszar's divergence definition, ha are nondecreasing and continuous 
functions on 0, <j)a (0) -f limu-^oo ^a\u) , i. e., on the range of the function D<f,a (P, Q) 

(cf. Theorem 9.1 in Vajda [21]) with ha (0) = 0, a = 1 , . . . ,A and r]a are positive 
numbers. 

The expressions (1) and (2) depend only on the probabilities of the events and 
do not take into account the effectiveness of the events under consideration. But 
there exist many fields dealing with random events where it is necessary to take into 
account both these probabilities and some qualitative characteristics of events. A 
criterion for a qualitative differentiation of the possible events of a given experiment 
is represented by the relevance, the significance, or the utility of the information 
they carry, with respect to a qualitative characteristic. The occurrence of an event 
thus removes a double uncertainly: the quantitative one, related to the probability 
with it occurs, and the qualitative one, related to a given qualitative characteristic. 
An interesting motivation about the necessity of introducing weights is given, for 
instance in Guia§u [7] and Longo [14]. In this paper, these considerations are taken 
into account, so that we shall suppose that this is done by means of some qualitative 
weights which are nonnegative, finite, real numbers, as the usual weights in physics 
or as the utilities in decision theory. 

If in the expression (1) we consider <j> (x) = x logx or <j)* (x) = x logx — x + 1 we 
obtain the Kullback-Leibler divergence. This divergence measure was generalized 
by Taneja [20] who introduced a weighted version by the formula 

Du(P)Q) = Y^uipi\ogi^-j (3) 

where the numbers Ui are positive weights or utilities reflecting some consequences 
attached to the element X{ <G X) i = 1 , . . . , M. Taneja also investigated an estimator 
of the weighted Kullback-Leibler divergence obtained by replacing p,-, i = 1 , . . . , M, 
by the relative frequencies p2-, i = 1 , . . . , M, in a simple random sample. 

The expression (3) has two problems: the first one appears when Ui = u -̂  1, i = 
1 , . . . , M, because in that case the expression (3) does not reduce to the Kullback-
Leibler divergence. The second one is more serious: It would be important to solve 
the problem of goodness of fit with weights that Du(P,Q) > 0 and the equality 
holds when P = Q, but it is possible in (3) that Du(P,Q) < 0. For instance, if we 
consider the probability distributions P = (p, 1 - p)* and Q = (1 - p)Py we have 

Du(P, Q) = log ( l ^ j (u2 (1 - p) - ulP). 

It is clear if 1 - p > p and u2/tii < vl (1 - P) or 1 - p < p and u2/ux > p / (1 - p) 
then DU(P)Q)<Q-
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\ - l The first problem can be solved multiplying the expression (3) by Ep (U) = 

(X3t=iw»P») o r ty EQ(U)~
 = \Jli=iui(li) - The s e c o n d problem can be 

solved considering the function 

(/)* (x) = x log X — X + 1 

instead of </> (x) = xlogar. Then to solve both the previous problems we can define 
the weighted Kullback-Leibler divergence by 

WD^^=E7UJ)^Ui{PilogPi + q i ) - L (4) 

It is important that for <f> (x) = x log x used instead of <j)* (x) = x logx — x + 1 we do 
not get the weighted Kullback-Leibler divergence given in (4). 

It is clear that WD (P, Q) coincides with the Kullback-Leibler divergence if U{ = 
uy i = 1,... , M, and WD (P, Q) > 0 with equality when P = Q. The expression (2) 
was generalized for the (^-divergences, solving the first problem, by Frank et al [5]. 
The second problem was considered by Kapur [11] in relation with the Kullback-
Leibler divergence. 

In this paper we present a unified expression for solving the two problems simul
taneously. Instead of considering the unified expression for (1) we shall consider the 
weighted version of the expression (2) in the following way 

^W«)=I :*»- (E-^ . ( | ) ) («) 
where h = (ha)a=1 A, <j> = (<j>a)a-l A) </>a and ha are real valued C2 functions, 
and for a = 1 , . . . , A, <j)a satisfies the condition of the Csiszar's divergence defini
tion with <f>a (1) = <j>a (1) = 0, a = 1 , . . . ,A, ha are nondecreasing and continuous 
functions with ha (0) = 0, a = 1 , . . . , A, r]a, a = 1 , . . . , A} are positive numbers and 
Ui, f = l , . . . ,M, positive weights. The nonnegativity of the measure (5) as well 
as the equality to zero when P = Q hold because <f)a) a = 1 , . . . ,.A, are assume to 
be convex twice differentiable functions, vanishing at x = 1 together with their first 
derivatives <j>a , a = 1 , . . . , A. 

In Section 2 we consider the nonparametric estimator P = (p i , . . . JPM)*, based 
on a random sample of size n, X\}... , X M , and defined by relative frequencies 
Pj = Nj/n, with Nj = Yli=i h*j} C »̂') an(^ the asymptotic distribution of the 
statistic WD^ LP, P0J is obtained under the null hypothesis P = P0. On the basis 
of this asymptotic distribution a test of goodness of fit with weights is introduced. 
In Section 3 we assume M = 2, binomial case, and we present a ramification of the 
results obtained in Section 2. 

2. TEST FOR GOODNESS OF FIT WITH WEIGHTS 

Suppose we are sampling from a distribution Fx (x). Divide the range of the distri
bution into M mutually exclusive and exhaustive classes, say Jli,..- , -4M- Each 
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class has a probability of containing the random variable X, P (X G .A,-) = _?,-, 
i = 1,... , M , and a nonnegative weights uv,, i = 1 , . . . ,M, directly proportional 
to their importance, and each sample value x falls into exactly one of the intervals. 
Let X\,... ,Xn be a size n random sample from Fx (x) and let (1V_,... , NM) be 
the respective observed number of sample values falling in the classes A_, . . . ,AM-
Then the vector (N i , . . . }NM) has a multinomial distribution with parameters 
(n ;p i , . . . ,PM)• Now, we want to test the hypothesis # 0 : Fx (x) = P0 (x). Firstly, 
we compute pio = P (X G A;), i = 1 , . . . , M, under # 0 . If # 0 is true, then P -- P0 

and intuitively it is expected npi « np l0 in which case WD1^ (P, P0 J is small. Thus 

larger PV-O^ (P ,P 0 J indicates data less compatible with the claimed null distribu

tion and we must reject the null hypothesis iff 

WDl(P,Po)>c 

where c must be chosen for getting a level a test. In some situations it will be possible 

to get the exact distribution of the statistic WD\ (P , P0 j and then the value c. 

But in general this is not possible and we must use the asymptotic distribution of 

the statistic WD^ f P , P 0 J . In the following theorem we present this asymptotic 

distribution. 

Theorem 1. Consider the weighted (/i, <£)-divergence WD^ (P, P0) and its estima

tor WD\ (P, Po). Under the null hypothesis H0 : P = P0 and assuming <j>" (1) > 0, 

K (0) > 0, a = 1 , . . . , A, we have 

2nWDh(P,P0) ^ JZfiiZi, 
1 = 1 

where Z,, i = 1 , . . . , r, are iid normal variables with mean zero and variance 1, /?,-, i = 
1 , . . . , r,are the non null eigenvalues of the matrix AEp0,and r = rank (Ep0A~Zp0), 
being 

S P o = cJiag(P0)-P0P0
t 

and 

where 

A_(d>WDh(P,Po)\ 

i j r : ! , . . . , ^ 

_ / 0 if i -- j aij~\lft i f i = ; 
d / ~ E a = 1 VaK (0) ft (1) ( E £ l UiP*) _ 1-

P r o o f . The second-order expansion of VVL^ (P, P0) about P0 gives 

WDJ (P, Po) = \ (P - To)1 A (P - Po) + o (\\P - Po||2) . 
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P-Po Op{n and But y/n (P- P0) ---> JV(0,EP o), then 

o ( i ^ " p ° r ) = o p ( n ~ i ) ' 
Therefore the random variables 2nWD^ (P,Po) and 

y/Z (P - Po)* Ay/Z (P - Po) 

have the same asymptotic distribution. Now by Corollary 2,1 in Dik and Gunst [2] 
the result follows. • 

Corollary 1. If we consider the weighted ^-divergences, A = {1}, 771 = 1, h (x) = 
x, 0i (x) = <j> (x)) then under the null hypothesis Ho : P = PQ and assuming <j)n (1) > 
0, 

2nD<i> (P, P0) . ___ 

1 = 1 *"(-) 
L 

n—>-oo 

where /?* are the eigenvalues of the matrix _4*_Cp0, with _4* = (a* ;). , and 

, _ / 0 if i? j 

Corollary 2. If we consider the (/i, ^-divergences satisfying the assumptions of 
Theorem 1 and ui = u) i = 1,.. . , M, then under the null hypothesis Ho : P = Po, 

_ _ , ( » , * ) ^ ± 

Y.v*K (0)^.(1) •=! 
a=l 

where /?** are the eigenvalues of the matrix _4**£p0, A** = diag ( P 0
_ 1 ) . Since 

r 
£p0_4**£p0_4**_Cp0 = Ep0_4**_Cp0 the random variable Yl PV%} ls a chi-square 

1 = 1 

distribution with M — 1 = trace(_4**__-p0) degrees of freedom. This result was 
obtained in Menendez et al [15]. 

If we consider the ^-divergences, i_t- = u, i = 1,... , M, A = {1}, rj\ = 1, 
/i (x) = ar, 0i (a:) = <j) (x), we have 

2n -Ą-Dh
ф(p,Po) -^ *&_... 

0"(1) 

This result was obtined for the first time in Zografos et al [22]. 
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Using Theorem 2.1 we can test 

H0:P = P0 against Hi : P ?- P0 

as follows 
| 1 ifTjthtw > ta 

<P(PU-- ,PM) = < 
[ 0 otherwise 

where 
Ttth,w = 2nWD$(P,Po), 

ta is the critical value of T^^.w verifying 

P\J20iZ?>ta\=a, (6) 

and the /?,• 's are given in Theorem 1. 

Remark 1. In order to apply the theorem above, we have to calculate a probability 
of a linear combination of chi-squared distributions and one can feel a little worried, 
but after reading the papers of Rao and Scott [18] and Modarres et al [17] that feeling 
disappears. They give some ideas to overcome this situation. In fact, a variety of 
problems in statistical inference and applied probability requires either percentiles 
or probabilities from the distribution of a combination of chi-squared distributed 
random variables (cf. Jensen and Solomon [9]). 

Corollary 1 of Rao and Scott [18] proposes to consider the statistic 

2 n „ _ * / A . \ ^ v 2 

S\,K,w = fwi%(P>n)<Y.ŽÍ 
1 = 1 

where /?* = max{/?i , . . . , /? r}. We know that the asymptotic distribution of the 
random variable Y^i=i %i ls a chi-square distribution with r degrees of freedom. 
Then if we assume that the statistic S\hW is asymptotically distributed as a chi-
square distribution with r degrees of freedom, we must reject the null hypothesis 
Ho • P = PQ, with a significance level a, if 

We can observe that this test is a more conservative than the previous one given by 
Tjthtw-

Another approach to the asymptotic distribution of the statistic is the modified 
statistic 

Slh>W = 2iwDl(p,P0)<±Zf 
P t = l 

where & = \ ]Ci=i Pi- This test is more conservative too. In this case we can observe 
that 

E[SlhtW\=r = E[X?} 
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and 
r 

2EA' r (a._Q\2 

** (-W) = -75- = - '+£ i ^ r L > yar W) • 
If we denote by A = diag (/?i,... , /?r), we get 

E £/%# 
L*=i 

Then /? is given by 

= ] Г ßi = trace(Л) = trace (AĽPo) = / ] P щ (1 - p i 0 ) 
•=i ť=i 

0 = ; ( Í > . ( - - P . O ) J ; 

where / is given in Theorem 1. 
Finally, we can also consider the statistic 

2n 
S^-ЩTT)WD*(P

:

P') 

with A = ]T) ^ x *J . This statistic verifies 
í = i 

ÏT 
E \S%Xw\ = ^ and Var (S£AVV) = j-fj. 

Then the approximate asymptotic distribution of the statistic S^hW is a chi-square 
distribution with v = ~-r degrees of freedom. 

Apart from the above approximations it is possible to consider tables of the 
cumulartive distribution YA=I

 ai^i m ^ e c a s e of small r (see Solomon [19], Johnson 
and Kotz [10], Eckler [3] and Gupta [8]). 

Theorem 2. The test of goodness of fit considered in Theorem 1 is consistent in 
the Fraser sense, i.e. for every alternative hypothesis P* / Pb, 

lim Pnjxw (p*) = !• 
n—>oo '^' ' 

P r o o f . Since 

WD$ (P, To) ^ WDh (P*,P0) > 0 

under the alternative hypothesis P = P*, it follows that 

P (2nWDh (P, P0) > ta) = P (wDh (P, P0) > ±) - 1 

as n —> co. 
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Then the power function, Pn^ihtW (P*), verifies 

0n,*,h,w (PI = P (lnWDh (P, P0) >tQ)=P (wDh ( P P0) >±) - ^ 1. 

D 

Now we will present a theorem providing an approximation for the power function 
of the test based on the statistic T<f,th,w- * 

Theorem 3. If A, <j> satisfy the assumptions of Theorem 1 then, under the alter
native hypothesis P* ^ P0, 

n^fwDh[P,Po)-WDh(P*,P0)) ±^ N(0,*P.iPo), 

where 

м M 
oj,.tPo = Г ť Ľ P .Г = £ť?p? - £ > * > o, 

Í = 1 u = l 

and Ep . = diag(P*) - P* (P*)*. The vector T is defined by T = (tx,... ,tM)*, 
with 

* = £ 
a = l 

M 

ПаK 
Ľ«.rf \ 
•=1 ± I Pi 

Җ—.ФЛP1 
v E чPi 
\ . = i 

м 
£ HІPІ 

L \ ť = l 

^(4|)E^-E».^(|)) 

P roof. A first order Taylor expansion of WD^ (P, P0) gives 

n 1 ! 2 (WDh (P, Po) - WDh (P*,Po)) = «1/2T* (P - P*)f + n^o (\\P - P*\\) , 

where 1* = VWDh (Po,P*) with V = (•£-,..., jfc) and the result follows in 

view of the relation nll2o (IIP - P* J = op (1) and applying the fact that 

y/n~(p-P*) ---> ÍV(0,EP.) 
\ / n—•oo 

D 
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R e m a r k 2. On the basis of Theorem 3, the power function at P* ^ P0 when 
testing HQ : P = PQ with weights, is given by the formula 

(ta - 2nWDh
A | 

fintil*) = l-*n[ 2 n l / 2 g ; 
ta-2nWDh,(P;Po)\ 

,-Po / 

for a sequence of distribution functions <$n (x) tending uniformly to the standard 
normal distribution function $ ( # ) , ta is the critical value of T^/^iy, given in (6) 
and (Tp*tp0 is given in Theorem 2. 

It is clear in (7) that 
\imJni<PihiW(P*) = l 

and we get the result given in Theorem 2.4. 

Under fixed alternatives the power function of the family T^^.w converges to 1 
as n —• oo, Theorem 2. However, it is possible to get another approximation if we 
consider alternative hypotheses that converge to the null vector as n —> oo. We 
consider the contiguous alternatives hypotheses 

Hhn:PW = Po + n-ll2C 

where C = (c i , . . . , CM) with Y2i=i c,- = 0, which converge to the null hypothesis 
Ho : P = Po. In this case the power function of the family of statistics T</,thtw 1s 

given by 

Pn,+,K,W ( E ( n ) ) = P(T+,h,W > ta/Hhn) . 

Now the problem is to obtain the asymptotic distribution of the statistic T^^.w 
under the hypothesis Hi>n. This asymptotic distribution is given in the following 
theorem: 

T h e o r e m 4. If ft, <f) satisfy the assumptions of Theorem 1 then, under the alter
native hypotheses 

Hhn:P^ = Po + n'l'2C 

t • M 

where C = (c i , . . . , CM) with ^ c2- = 0, we have 
z=i 

TM.W-É ---> Ý.&iZi+Uiý 
n—+oo -t—---ř 

i = l 

where r = ranlr (Sp 0ASp 0),/?i,... , /3r are the nonnegative eigenvalues of the matrix 
Allp0, A is the matrix given in Theorem 1, Z», i = 1,... , r, are independent random 
variables with standard normal distribution, u = A"1RiStAC} £ = CXAC — U/ACJ 

where A = diag (/3\,... ,/?r), 5 is an arbitrarily chosen root of Sp0and R is the 
matrix of eigenvalues of StAS. 
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P r o o f . Since, 

V~(P - p0) = V~(P- P{n)) +c, 

then under Hi.n, 

V~(P-Po) - ^ N(C-Po). 
\ / n—• oo 

But the statistic T^^.w has the same asymptotic distribution as the quadratic 
form 

V ^ ( P - P o ) ' A^(P-P0). 

Therefore the result follows by Corollary 2.2 in Dik and Gunst [2]. D 

Remark 3. On the basis of Theorem 2 the power function at p(n) when testing 
HQ : P =- PQ with weights is given by the formula 

0n,<j,,h,w (E ( n ) ) = 1 - Gn (tQ); 

for a sequence of distribution functions Gn (x) tending to the distribution function 
associated to the random variable ]T)i=i Pi (%i + w 0 + f a n d *« is the critical value 
of T^^w given in (6). 

If we consider the (^-divergences, U{ = u) i = 1 , . . . ,M, A = {1}, 771 = 1, 
h (x) = x, <j>i (x) = <j> (x)) we have on the basis of Theorem 4 that, under contiguous 
alternatives Hi.n, the statistic T^thtw converges in law to the non-central chi-squared 
variable with with M — 1 degrees of freedom and non-centrality parameter 6 given 
by 

M 2 

6 = y± 
This result was obtained for the first time in Menendez et al [16]. The same result 
is obtained if we consider (/i, 0)-divergences. 

If instead of considering the statistic T^^jy we consider the statistics 

a) Slxw = (Z?*)"1 2nWDh (P, P0) where /?* = max { A , . . . . /? r}, 

b) Slxw = (p)-1 2nWDh (P, Po) where ~ = I £ /?,-, 
« = 1 

and 

<0 %,h,w = (/5)"1 (1 + A) 2nWD\ (P, Po) where A = £ - & # - . , 
X 1 = 1 

that are asymptotically distributed as a chi-square distribution with r degrees of 
freedom, then we have 

0n,*.h,w(P™)=l-Fn{Xlol-i) 

for a sequence of distribution functions Fn (x) tending uniformly to the distribution 
function, F, of a non-central random variable chi-squared with s degrees of freedom 
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(s = r if we consider the statistics S^hW or S^ h w and s = r/ (l -f A2) for the statis

tic S^hW) and non-centrality parameter 6 = XlLi w?- This result follows from the 

fact that the random variable ___ =̂1 (Z{ + W{) is a non-central chi-squared random 

variable with r degrees of freedom and non-centrality parameter 6 = ]T^= 1 w?. 

3. TESTS FROM BINOMIAL DATA WITH WEIGHTS 

In this section we consider the particularization of the results obtained in Section 2 
to binomial data. In this case the null hypothesis is 

H0 • P = Po 

where p is the probability of having outcome 1 for the binary observation and q = 
1 — p is the probability of having outcome 0. We denote by u\ and u2 the weights 
of outcome 1 and 0 respectively. 

T h e o r e m 5. If/i, 0 satisfy the assumptions of Theorem 1 then, under the hypoth
esis of Theorem 1 and with binomial data, we have 

Tl<hiW = 2-^WDh(P,P0) ^ X f 

where L = / l (u\ (1 — po) + U2P0) and / is given in Theorem 1. 

P r o o f . In this case we have 

Tl,h,w = ^(P~PO)B(P- PO) + op (1) 

with 

Then 

where 

B = {ul{l-Po) + u2PoГ(Uf U 2 ( 1 _° p o ) -0-

T ^ ^ X ^ X + OPІÍ) 

X = ^ ß 1 ! 2 (P - P0) . 

It is clear that the asymptotic distribution of the random vector X is normal with 
vector mean 0 and variance-covariance matrix given by 

-.* = ( tii ( 1 - p o ) - \ A 1 u 2 P o ( l - P o ) \ 
\ - v ^ i ^ P o C 1 -Po ) u2po ) ' 

(8) 

It is easy to establish that _* is a projection of ranlcl, i.e., E*E* = E* and 
ranJc(E*) = l. Then 

T 1 - _ _ V- D 

J*'h'W ^ * - ' 
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In relation with the power function for P* = (p*} 1 — p*) / Pn = (Po, 1 — Po)* 
we have the same result obtained in Remark 2 but now with M = 2. 

If we consider non local alternatives, that is to say, alternative hypotheses of the 
form 

Bi,„ : P<"> = Po + ^= (9) 

where Fb = (Po, 1 — Po) and C* = (c, — c) , we have the following result. 

Theorem 6. If h, <j) satisfy the assumptions of Theorem 1 then, under the local 
alternatives Hi>n given in (9), and with binomial data, 

T*>h>W n~=^> Xl ^ 

where X2 (8) is the non-central chi-square distribution with 1 degree of freedom and 
non-centrality parameter 

Po (1 - Po) 

P r o o f . Under the alternative hypotheses Hi>n, given in (9), we have 

V^(P-Po) ---> N(C*,ZPo) 
\ I n—»oo 

where 
v - ( Po (- - Po) -Po (1 - Po) \ 
^ - V - P o ( l - P o ) P o ( l - P o ) J 

because 

.jn(p-Po) = \ft (P ~ P(n)) + \^ (P{n) ~ Po) 

= v ^ ( P - P ( n ) ) + G * . 

On the other hand we know that 

Ti,h,w = XtX + oP(l) 

and 
X --U J V ( V / 2 O * , i r ) 

n —»-oo \ / 

where E* is given in given in (8). 
We know that E* is a projection of rant 1 if we establish that Yi*Bll2C* = 

Bll2C*. Thus we can apply Lemma of pp. 63 in Ferguson [4] to obtain 

^>,h,W * %i {$) 
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w i t h « = ( C * B 1 / 3 ) ' ( C * B 1 / 2 ) . 
It is clear that 

B^iC*? = (c^ulp;1(ul(l-po) + u2po)-\ 

-c\Ju2 (1 - po)" 1 (tii (1 - Po) + u2p)~l J 

and also E * 5 1 / 2 C * = 5 1 / 2 C * . Thus we have established the desired result with 

ć = я 1 / 2 (c*) ť c*в 1 ! 2 = °2 

P o ( l - P o ) ' 
D 
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