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SELF-TUNING CONTROLLERS 
BASED ON ORTHONORMAL FUNCTIONS 

JOZEF HEJDIS, STEFAN KOZAK AND LUBICA JURACKOVA 

Problems of the system identification using orthonormal functions are discussed and 
algorithms of computing parameters of the discrete time state-space model of the plant 
based on the generalized orthonormal functions and the Laguerre functions are derived. 
The adaptive LQ regulator and the predictive controller based on the Laguerre function 
model are also presented. The stability and the robustness of the closed loop using the 
predictive controller are investigated. 

1. INTRODUCTION 

During the past decades several adaptive control systems have been developed. Most 
of the systems are model based. In particular, in the input-output case, ARMA or 
FIR models have been widely used. Recently, the search for robust adaptive control 
systems which require a minimal a priori information has led to the development 
of unstructured adaptive control. Using this approach, the conventional ARMA or 
FIR model is replaced by an orthonormal series representation of the plant dynam­
ics. The main advantage of this approach is that any stable plant can be modeled 
without knowledge of the structure, for example without assumption about the true 
plant order or time delay. The Laguerre functions are usually used to model plant dy­
namics because of their simplicity and their similarity to transient signals, however, 
the other orthonormal functions may be used, such as the Laning-Battin functions. 
Compared with ARMA or FIR model, using of the model based on orthonormal 
series representation has several advantages: good approximation of a system with a 
delay; tolerance to unmodeled dynamics and a reduced sensitivity of the estimated 
parameters; convenient filter network realization; good low frequency match between 
the estimated model and the true plant model, etc 

One of the main problem when currently identifying plants using orthonormal 
series representation is to express the model in the discrete time domain. In this 
paper, memory saving algorithms for computing the discrete state-space orthonormal 
models are presented. 

One of the regulators, the parameters of which can be computed using the linear 
state-space model, is an LQ regulator. Using receding horizon LQ regulator several 
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iterations of the Riccati difference equation have to be made. In this article, fast 
and memory saving algorithm of the adaptive LQ regulator, which is based on the 
orthonormal Laguerre model, is proposed. 

Predictive controllers are based on predicting the process behavior, and result 
from the minimization of a cost function over a future time horizon and under 
certain process constraints. The cost function is defined in terms of tracking error, 
i.e. the difference between the predicted output and the desired set-point. In the 
past decade, several predictive control laws based on the Laguerre model have been 
proposed, see e. g. [3, 4, 5, 6, 7, 8, 11, 13]. Their major advantage is simplicity of use, 
intuitive appeal, and easy handling of non-minimum phase behavior. In this paper, 
we also present a simple predictive controller based on the Laguerre orthonormal 
discrete state-space mo<lel. In addition, the analysis of the stability and robustness 
of the closed loop using this predictive controller are discussed. 

2. PROBLEM FORMULATION FOR MODELING 

The Laguerre functions, a complete orthonormal set in £2(0,00), have been often 
used because of their convenient network realization and their similarity to transient 
signals. They may be expressed by 

U(t) = x/2F( • ̂  ^."-i I-'"1 «P(--I*)] . »' = 1. • • •,» 

where i is the function order and p is the time scale. A convenient representation of 
the Laguerre function in the frequency domain is given by 

Li(8) = ^ 8 ~ ^ ~ \ i = l n. (2.1) 

For a given real continuous function q(t), there exist a real number c and an integer 
N such that -oo 

/ \q(t)~S(t)\2dt<e 
Jo 

where N 

s(0 =-.$>'. (0-
t = l 

The coefficients ct- are called the Laguerre spectra gains and for the deterministic 
signals they can be computed by 

./0 
dť. 

In practice the Laguerre spectra gains c,- are estimated using the least-squares pa­
rameter estimation. 

The Laning-Battin functions can be described in the continuous time domain by 

-"•'(0 = z3 9 , ' i exP(~*iÐť)> * = li •. • 1 n 
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where 

Яij = 1 ЏІÆ п Łżl 
,+'kJ-åфi'-k 

The Laplace transform of these functions is 

1 ^ 1 -

WЛs) = JЋÏ> - TT — 

s — кp 
кp' 

(2.2) 

Comparing Laplace transforms of the Laguerre (2.1) and the Laning-Battin func­
tions (2.2) a new set of generalized orthonormal functions can be found [9]. In the 
frequency domain they can be given by 

ZІ(S) = y/2[l + (i-l)m]p-
1 

»- i n s- [l + (k- l)m]p 

o -T- L* -r v . - v -.j r k z z l s + [1 + (k - 1) m] p 

where m G (0,oo). In the continuous time domain they can be expressed by 

i 

Zi(t) = exp(-p*) ^T Qik exp(mkpt) 
k=i 

where м - 2 
/ohM(. u , 1 S;Bo[2 + (*+i)m] 

Qik = V2[l + (. - 1) m] p •_1 —. 
m Ej=o,^ik-J 

To estimate parameters of the discrete state-space model it is necessary to express 
the generalized orthonormal functions in the discrete time domain. The continuous 
state-space model based on generalized orthonormal functions can be written as 

- - ^ - = Ax(t) + bu(t) 

z(t) = Fx(t) 

y(t) = cz(t) 

where A is a lower triangular n x n matrix of the form 

-p 0 0 
-2p - ( l + m)p 0 

Ã = - 2 p - 2 ( l + m)p - ( l + 2m)p 

-2p -2 (1 + m)p -2(1 + 2m)p 

аx 0 0 . . . 
2ai a2 0 . . . 
2ai 2a2 a 

0 " 
0 
0 

2ai 2a2 2aз ûf l 

0 
0 
0 

. - ( l + ( n - l ) m ) p 
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6 is the n-dimensional vector in the form 

6 = [ 1 1 1 

F is the diagonal n x n matrix in the form 

- Ґ (2.3) 

F = 

0 
0 * / 2 ( l + m)p 

0 0 y/2(l + (n-l)m)p 

(2.4) 

and c is the estimated n-dimensional row vector. The discrete state-space model 
based on the generalized orthonormal functions can be expressed by 

x(k + l) = Ex(k) + gu(k) 

z(k) = Fx(k) 

y(k) = cz(k). 

Using the matrix A and the vector 6, the matrix E and the vector g can be written 
as 

E = exp(ЛГ) 

g = ( -ђÄ-Ч (2.5) 

where T is the sample period, I is the n x n identity matrix and exp(AT) is the 
exponential matrix function 

(Äтy e*p(Är)=x;^; (2.6) 
1 = 0 

Because of the limited precision of the computer arithmetic only the first k elements 
of the exponential matrix function (2.6) can be used to compute the matrix E. It is 
easy to show that the matrix E is a lower triangular matrix in the form 

= 

cц 0 0 0 

Є21 Є22 0 0 

eзi Є32 eзз • 0 

Єnl Єn2 ЄnЗ • • • e n ) 

The exponential series can be rewritten as 

exp(AT)=x; тг (2.7) 
i = 0 
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where Sl = (AT)1 are lower triangular matrices in the form 

5* = 

The elements of the matrices 5 ' , which are not equal to zero, can be computed using 
the recursive formula 

«*11 0 0 0 

5 21 s 2 2 0 0 

S31 s 3 2 
5 зз • 0 

*І.i Ł 4з • • • »L 

4 + 1 = -(l + (j-l)m)pTÍ5? i+2 ^ «Í , 

i = n , . . . , 1, j = 1,. . . , i, Aľ = 1,. . . , oo, 5 1 = ÃT. 

(2.8) 

To compute the elements of the matrix E we introduce auxiliary matrices Hk, ele­
ments of which are given by 

w, 
* «... 

?І = - + 2 тf-> ť = i,..., n, І = i,..., *. (2.9) 
/=1 

Using the matrices Hfc elements of the matrix E can be expressed by 

e{j = lim /if-. 
K — • O O 

Thus, the recurrent relations have been derived to compute the elements of the 
matrix E. As stated above, in practical realization it is necessary to carry out 
only a finite number of iterations using equations (2.8) and (2.9). The number of 
iterations depends on the time-scale size. An appropriate condition to terminate the 
iterative process can be 

l*«l < e > i = l-.-.-n, j = l .-.-,i 

where e is an appropriately chosen small real number. 
Multiplying matrices, it can be proved that the inverse matrix corresponding to the 
matrix .A is a lower triangular matrix in the form 

A~* = 

- 1 0 0 0 1 
2 

1+m 
1 

1+m 0 0 

2 2 - i 0 1 
l+2m l+2m 

-
l+2m 

0 
P 

2(-П л 

V)nГ 
l + ( n - l ) m 

2<; 
- l ) я + a 

n—l)m 
1 

l + ( n - l ) m V)nГ 
l + ( n - l ) m 

2<; 
- l ) я + a 

n—l)m l+(n-l)m J 

(2.10) 
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Using (2.3), (2.5) and (2.10) the following expression can be obtained 

(_1У _І 1 + "Гf_iy _І 
^ L> (l + (i-l)m)^fтC (1 + 0- l )m) 

- , i = l , . . . . n . (2.11) 
P 

Thus, all the relations necessary for computing the elements of the matrix E and 
the vector g of the discrete state-space model based on generalized orthonormal 
functions have been derived. The algorithm consists of the equations (2.8), (2.9) 
and (2.11). 

An algorithm, which is similar to that described above; can be derived for com­
puting matrices of the model based on Laguerre functions. The continuous time 
state-space Laguerre model can be written as 

dï(t) 
= Äï(t) + bu(t) 

dt 
y(t) = cl(t) 

where A is a lower triangular matrix in the form 

Ä = 

-p 0 0 . . . 0 
- 2 p - p 0 . . . 0 
- 2 p - 2 p - p . . . 0 

0 an u 0 
Яn-l On 0 

an-2 an-i an 

ax 
—2p —2p —2p . . . —p 

and b is an n-dimensional vector expressed by 

b = ( 1 1 1 . . . 1 )Tv/2p". 

0.2 O3 

(2.12) 

/ is the vector of the Laguerre functions and c is the estimated vector of the Laguerre 
spectra gains. 

A discrete time state-space Lagurerre model can be expressed by 

ï(k + l) = ËЏ) + gu(k) 

y(k) = čï(k) 

(2.13) 

(2.14) 

where g is an n-dimensional vector and E is a lower triangular n x n matrix. It is 
easy to prove that the matrix E has the form 

Ë = 

e„ 0 0 
Єn-l e„ 0 

Є„-2 e n - l e n 

Єl Є2 Є 3 

= exp(ÆГ) = ] Г (Äтy OO ç,-

(2.15) 
i =0 i=0 
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where T is the sampling period and the matrices S% are lower triangular matrices in 
the form 

& = 

"П 0 
sn-ì sn 

Sn-2 Sn-l 

sl s2 s3 

The equations (2.8), (2.9) for computing the elements of the matrices Sl and H, 
which are not equal to zero, can be rewritten as 

S.*+1 -pT(S? + 2 £ 4 , 
j=-+i / 

i = 1 , . . . , n, k = 1 , . . . , co, sj = a{T) 

(2.16) 

K 
k i 

1 + Ľ | 
/=! 

i = 1,... ,n, fc = 1,... ,oo. 

The inverse matrix A can be expressed for the Laguerre model by 

- 1 0 0 
2 - 1 0 

- 2 2 - ] A~l = 

(-1)"2 ( - 1 ) " + 1 2 ( - l ) n + 2 2 

Using (2.12), (2.15) and (2.18) it can be proved easily that 

ra-l 

0 
0 
0 

- 1 

9i - (-i)ҷe„-i)+ £ (-г/̂ -Ч-
J=П+1—i 

i = l,. ,П. 

(2.17) 

(2.18) 

(2.19) 

Thus, we have described all the relations necessary to compute the elements of 
the matrix E and vector g of the Laguerre function model. The algorithm consists 
of equations (2.16), (2.17) and (2.19) 

3. RECEDING HORIZON LQ REGULATOR BASED ON LAGUERRE MODEL 

As orthonormal models of controlled plant are expressed in the state-space form, the 
state-space control design techniques may be used. One of the controllers, param­
eters of which can be computed using the state-space model, is a receding horizon 
LQ regulator [2]. LQ regulators are studied in many books and they are well under­
stood. In this part of the article, we describe a simple memory saving algorithm of 
the LQ regulator based on Laguerre orthonormal functions. 
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Let us assume that the model of the plant to be controlled is given by (2.13), (2.14). 
The quadratic cost criterion, which is to be minimized by the controller, is expressed 
by 

/V- l 

J(N,k) = F(k + N)cTqNcl(k + N)+^2(F(k + j)cTqcl(k+j) + ru2(k + j)) 
i=o 

IV-l 

= F(k + N)QNI(k + N)+J2 (F(k + J)QKk + i) + ru2(k + j)) 
j=o 

where N is the control horizon and qN) q and r are weighting coefficients. The 
receding horizon LQ controller, which minimizes the criteria, is given by 

<k) = -jLi(o)i(k) 

where 

P(J) = srPu+i)E+Q-^^Fu+im+^ 
*(i + l) = fP(j + l)E 
d(j + l) = fp(j + l)g + r 

PN = ON. 

To save computer memory and make an evaluation of the control variable faster only 
the lower triangular part of the symmetric matrices P(j) should be computed and 
stored in a computer memory. Using matrix multiplication the following relations 
for computing values of the scalars d(j), and the elements of the matrices P(j) and 
vectors t(j) can be proved easily 

,-\ v* v* /-...ví. n(j + i)tj(j + i) 

/=» k=j \J ~l~ ) 

i=l,...,n, j = l,...,i 

tj(j + -0 = ^ 91 ^ en+i~A;Pmax(/>ib)>min(/,fc)(i + 1 ) , i = 1, . . . ,n 
/=1 k=j 

n n 

d(j + 1) = r + ^2 9k ^2 0'Pmax(*,.),min(J.,.)(i + 1) 
k=l 1=1 

where n is the model order. 

4. PREDICTIVE CONTROLLERS BASED ON LAGUERRE MODEL 

To develop the control law, let the model of the controlled plant be expressed by 

l(k + l) = El(k) + g(u(k-l) + Au(k)) (4.1) 

y(k) = cl(k) (4.2) 
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where E and g are the matrices of the Laguerre state-space model, l(k) is the La-
guerre model state vector, c is the estimated vector of the Laguerre spectra gains, 
u(k — 1) is the control action in the previous sample period, Au(k) is the actual 
increment of the control action and y(k) is the estimated output of the system. The 
predictive control approach is based on the minimization of a cost function, that pe­
nalizes the error between the predicted output and the set-point. Let the minimized 
cost function be given by 

J(k) = \ [q(Vr - y(k + d))2 + r A u(k)2] 

where d is the prediction horizon of output, y(k + d) is the d-step ahead output 
prediction and yr is the set point. If we assume that 

u(k) = u(k + 1) = • • • = u(k + d - 1) 

the following expression can be proved easily 

l(k + d) = Edl(k) + 0du(k) (4.3) 
where _ _ J < _ J n _ _ 

fa = (Ed~l + Ed'2 + ... + E + I)g. (4.4) 

Substituting (4.4) and (4.3) into the expression for the cf-step ahead output 

y(k + d) = y(k) + c [J(k + d)- l(k)] 

we finally obtain 

y(k + d) = c [(Ed - I)l(k) + pd(u(k - 1) + Au(k))] + y(k). (4.5) 

Using (4.5) the quadratic cost function can be formulated as follows 

J(k) = \{q [yr-y(k)-c [(Ed-I)l(k) + pd(u(k - l)+Au(k))]]2+r A u(k)2} . 

(4-6) 
To minimize this cost function the control law has to satisfy the condition 

i J = 0 . 
dAu(k) 

Then Au(k) is given by 

_ qch [Vr - y(k)\ gch [c(Ed - /)/"(fc) + cpdu(k - 1)] 

r + q [c/?_] r + q [c(3d] 

It is easy to prove that 

A w W = TTT2 TTŤ2 • v4*7/ 

d 2 j = r + ç.[č^]2>0. 
A«(ib)2 

Thus, the control law (4.7) always minimizes the cost function ( 4.6). 
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Stability 

Theorem 1. Let the system described by (2.13), (2.14) be controlled by (4.7), 
and assume y(0) and u(0) are bounded. Let D be the time delay of the system 
and T be the sample period. Then, for any q £ (0, oo) there are r £ (0, oo) and 
deN+}Td> D, such that 

lim y(k) = yT 
Ar—•oo 

lim Au(Jb) = 0 
Ar—>oo 

lim u(k) = u 
k-*oo 

where u £ R is a constant. 

P r o o f . Using (4.7) and (4.1) the closed-loop system can be expressed by 

/(* + 1) = tl(k) + q~Cfd g(yr - y(k)) + ^ ^ ( A r - 1 ) 
r + q [cPd\ r + q [c/?dJ 

where . 
- _ qcpdgcEd qc/3dgc Г = 

r + q [cßd] r + q [cßd] 
(4-8) 

As long as the eigenvalues of the matrix f, for some values of d, q and r, are 
inside the unit disk in the Z-plane then the closed loop system is stable. The matrix 
E is lower triangular and the eigenvalues of E appear along its main diagonal. Then 
it is straightforward to show that the powers Ed approach to zero because all the 
eigenvalues of E are less than one in modulus (|A(F/)| < 1). Thus, the eigenvalues of 
the second term approach to zero. For sufficiently large r and d £ JV+, Td> D the 
eigenvalues of the third term in the expression (4.8) also approach to zero for any 
q £ (0,oo). The first term in expression (4.8) is always a stable matrix E and the 
closed-loop system is thus stable. From (4.7) is then obvious that the steady-state 
is such that y(k) = yr. 

Robustness 

Because the identification based on the orthonormal functions does not rely on a 
predefined model structure and does not separate the delay from the dynamics, we 
expect the controller to be more robust than the schemes based on the transfer 
function models. The simple analysis that follows seems to indicate that this is the 
case. 

Let the true deterministic plant be represented by 

x(k + 1) = Ax(k) + b(u(k - 1) + Au(k)) (4.9) 

y(k) = c8x(k) (4.10) 

and be identified by the model based on the Laguerre functions (4.1), (4.2). Let the 
system be under self-tuning control using predictive control law (4.7). Substituting 
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for (4.7) in (4.1) and (4.9) we obtain the following set of equations 

x(k + l) = Ax(k) - bqC^,C[f!3~Pl(k) + +b 

+ b 

r + q(č/3d)
2 

qčfid 

r + q(õßd)2 
u(к - 1) 

Џ + i) = -д 

r + q(č/3d)
2 

qčPdč(Ěd - I) 

+ 9 

r + q(č/3d)
2 

qčPd_ 
r + q(čh)2 

(Уr - У(к)) 

Џ) + 9 

(4.11) 

r + q(čßd)2 
u(k - 1) 

(Уr ~ У(к)). (4.12) 

Let further assume that the output model mismatch between the true plant and the 
identified one can be described by the function C(&)> that is always bounded for any 
VJfc eR, i.e. 

\C(k)\<Z} ZER+. 

Then we can write 

y(k) = y(k) + C(k), or \y(k) - y(k)\ = \C(k)\. (4.13) 

Substituting for (4.13) and (4.2) in (4.11) resp. (4.12) we obtain an extended state 
equation 

x(Jk + l) 

Џ + l) 

Л ° r+qtøiУ x(Jk) 
Џ) 

r+q(čPd)2 J 

qčfid 
r + q(čßd)

2 (Уr~C(к)) + 
9 \r + q(č/3d)

2 

(4.14) 

u(k - 1) 

where 0 is an all-zero matrix of the appropriate dimensions. 
It is obvious that the robustness of the controller (4.7) against the disturbance 

C(Ar) at the output of the controlled plant can be evaluated by the stability of the 
system (4.15) that is determined by the placement of the eigenvalues of the upper 
block-triangular matrix 

Äe = 
r+q(cpdy 

U ^ S r+q{č(5dy 

Ac\\ Ac\2 
AC2\ AC22 

in the .3-plane. Since the true plant under study was assumed to be stable then 
the eigenvalues of the matrix A are inside the unit disk in the Z-plane. Thus, the 
stability of the system (4.15) is given by the placement of the eigenvalues of the 
matrix __ 

- - _ qcPdcEd qcfac 
-4c22 = -& - 9 ; TT -̂TTT + ; ,-a xo 

r + q{cpdy r + q{cPd)
2 
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Besides the standard arguments from the proof of Theorem 1 indicate that the 
matrix AC22 is also stable. As a result the closed-loop is always stable. The facts 
mentioned above prove the following theorem. 

Theorem 2. Let a true deterministic plant be represented by the equations (4.9), 
(4.10) and be identified by the model (4.1), (4.2) based on Laguerre functions. Let 
it be under predictive control law (4.7). Let D be a time delay and T is a sample 
period. Assume that the output model mismatch between the true plant and the 
identified model can be expressed by any bounded deterministic or stochastic signal 
((k) such that ((k) < Z < oo. Then, for any q 6 (0,oo), there are r G (0,oo) and 
d G -V+, Td > D, such that the closed loop adaptive system remains stable. 

5. SIMULATION RESULTS 

5.1. LQ controller 

Let the true plant model be given by the transfer function 

3s2 + s + 1 
ад = s3 + 3s2 + 2s + 0.1 

and be controlled by the LQ regulator based on the Laguerre orthonormal functions 
described in Section 3. The simulated true plant model is identified by the 3rd order 
model based on the Laguerre function (4.1), (4.2), with the time scale p = 0.1, the 
sample period T = 0.5, the forgetting factor <f> = 0.985 and the initial values of the 
estimated parameters 

ci = 1.496422, c2 =-0.504039, c 3 = 0.2212. 

The LDFIL version of the least-squares parameter estimation is used to estimate the 
elements of the vector c of the model [12]. 
The values of the regulator parameters are 

N = 50, ? = 10f r = 5. 

The true plant output time response and the output of the LQ regulator are shown 
in Figure 5.1. 

5.2. Predictive controller 

Consider the non-minimum phase plant described by 

3s2 + s + l 1.„ 
^ S J ~ S 3 + 3 s 2 + L 5 s + 2

e • 

The simulated plant is identified using the 15th order Laguerre model (4.1), (4.2) 
set with the time scale p = 1, the sample period T = 0.1 and the forgetting factor 
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Fig. 5.1. Plant output time response and LQ controller output. 

500 

$ = 0.985. The initial values of the estimated parameters are 

c i = 0.131, c2 = - 0 . 4 1 4 , c3 = -0.173, c4 = 0.430, c5 = 0.441, 
c6 = -0.410, c7 = -0.693, c8 = - 0 . 2 6 8 , c9 = -0 .142 , c10 = -0.181, 
en = -0.055, en = 0.183, ci3 = 0.038, c14 = -0.083, c i 5 = -0.023. 

The plant is controlled by the predictive regulator (4.7) and the values of controller 
parameters are 

r = 0.7,g = 0 .1 ,d=19. 

Figure 5.2 shows the output of the plant and the setpoint. 

6. CONCLUSION 

We have presented a novel unstructured adaptive control approach, which uses the 
orthonormal functions to model the plant dynamics. A new algorithm of computing 
the elements of the controlled plant model based on the generalized orthonormal 
functions is proposed. The version of this algorithm, which uses the Laguerre func­
tions to model the plant dynamics, is also described. 

The result of the identification based on Laguerre function is the discrete state-
space model of the plant, the matrices of which have a special structure. This model 
has been used to develop a new algorithm of the receding horizon LQ controller, 
which is memory saving and simple from the numerical point of view. 

We have also presented a new predictive controller based on the Laguerre filter 
model, which is robust, simple to use and require minimal a priori information. 
Compared to other robust predictive control strategies, the proposed algorithm has 
some advantages. First, the analysis of the closed-loop stability can be accom­
plished." Second, the robustness issues of the proposed algorithms can be presented. 
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Fig. 5.2. Output response of the plant and controller output. 

Finally, compared with the other predictive control laws the suggested controller is 

considerably simpler from the numerical point of view. 

(Received July 30, 1999.) 
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