AN INTERPOLATION PROBLEM FOR MULTIVARIATE STATIONARY SEQUENCES

Lutz Klotz

Let \boldsymbol{X} and \boldsymbol{Y} be stationarily cross-correlated multivariate stationary sequences. Assume that all values of \boldsymbol{Y} and all but one values of \boldsymbol{X} are known. We determine the best linear interpolation of the unknown value on the basis of the known values and derive a formula for the interpolation error matrix. Our assertions generalize a result of Budinský [1].

1. INTRODUCTION

In [1] Budinský studied the following problem. Let \boldsymbol{X} and \boldsymbol{Y} be two univariate stationarily cross-correlated stationary sequences. Assume that all values of \boldsymbol{Y} and all but one values of \boldsymbol{X} are known. Find the linear interpolation error of the unknown value of \boldsymbol{X} on the basis of all known values. In the present paper we generalize Budinsky's result to multivariate sequences \boldsymbol{X} and \boldsymbol{Y}. The main tool of our investigations is the Hellinger-spectral domain of a stationary sequence. H. Salehi first used Hellinger integrals in the interpolation of multivariate stationary sequences, see [6] and [7]. His method was developed and completed by Makagon and Weron, cf. [2,3$]$, and [8]. Some results of these authors, on which we heavily lean, are summarized in Section 2. Section 3 is devoted to the solution of the interpolation problem mentioned above. We obtain a formula for the interpolation error matrix as well as a recipe for determining the best linear interpolation of the unknown value. Since our formulas are rather difficult to apply in the general situation, in Section 4 we study some special cases and, using some facts on the Moore-Penrose inverse of a non-negative Hermitian block matrix, derive more tractable formulas for the interpolation error matrix.

2. PRELIMINARIES AND NOTATIONS

Let $\mathbb{N}, \boldsymbol{Z}$, and \boldsymbol{C} be the sets of positive integers, integers, and complex numbers, resp. For $r \in \mathbb{N}$, the symbol \mathcal{M}_{r}, stands for the space of $r \times r$-matrices with complex entries. If $A \in \mathcal{M}_{r}$, then $A^{*}, \mathcal{R}(A), \operatorname{Ker} A$, and $\rho(A)$ denote its adjoint, range, kernel, and rank, resp. Furthermore, A^{+}is the Moore-Penrose inverse of A, cf. formulas (1.2) in [4]. If A is regular, its inverse A^{-1} coincides with A^{+}.

The symbol I stands for a unit matrix, where its size should become clear from the context.

Let \mathcal{H} be a Hilbert space over \boldsymbol{C} and \mathcal{H}^{r} the Cartesian product of r copies of \mathcal{H}. We will consider \mathcal{H}^{r} as a left \mathcal{M}_{r}-module, i. e., the generic element \boldsymbol{u} of \mathcal{H}^{r} is written as a column vector so that for each $A \in \mathcal{M}_{r}$ the product $A \boldsymbol{u}$ is defined in a natural way and belongs to \mathcal{H}^{r}. The zero element of \mathcal{H}^{r} is denoted by \boldsymbol{O}_{r}, whereas the symbol 0 stands for \boldsymbol{O}_{1} as well as for several zero matrices. For two vectors $\boldsymbol{u}, \boldsymbol{v}$ of \mathcal{H}^{r} let $\langle\boldsymbol{u}, \boldsymbol{v}\rangle$ be their Grammian matrix. Finally, \boldsymbol{e}_{k} denotes the k th unit vector of \boldsymbol{C}^{r}, i.e. the vector whose k th entry is 1 and all its other elements are $0, k \in\{1, \ldots, r\}$.

An r-variate stationary sequence is a map $\boldsymbol{S}: \boldsymbol{Z} \ni n \rightarrow \boldsymbol{s}_{n} \in \mathcal{H}^{r}$ such that $\left\langle s_{m}, s_{n}\right\rangle$ depends orly on $m-n, m, n \in \boldsymbol{Z}$. By $\widetilde{\mathcal{M}}$ we denote the time domain of \boldsymbol{S}, i. e. the closed subspace of \mathcal{H}^{r} spanned by all $\boldsymbol{s}_{n}, n \in \boldsymbol{Z}$, with coefficients from \mathcal{M}_{r}. Recall that $\widetilde{\mathcal{M}}=\mathcal{M}^{r}$, where \mathcal{M} is the closed linear subspace of \mathcal{H}, spanned by the entries of all $s_{n}, n \in Z$.

Let us assume that the spectral measure F of \boldsymbol{S} is absolutely continuous with respect to the Lebesgue measure σ on the σ-algebra \mathcal{B} of Borel sets of $[-\pi, \pi)$. Let f be the spectral density and $L^{2}(F)$ the spectral domain of \boldsymbol{S}, i. e. the left Hilbert \mathcal{M}_{r}-module of (equivalence classes of) \mathcal{B}-measurable \mathcal{M}_{r}-valued functions Φ such that $\int_{-\pi}^{\pi} \Phi(\lambda) f(\lambda) \Phi(\lambda)^{*} \sigma(\mathrm{~d} \lambda)=\int \Phi f \Phi^{*} \mathrm{~d} \sigma$ exists.

In the following we will omit the integration variable and the domain of integration $[-\pi, \pi)$ in the notation. Furthermore, relations between \mathcal{B}-measurable functions are to be understood as relations that hold σ-a.e., although we will not emphasize this each time.

Let U be Kolmogorov's isomorphism between the time domain and the spectral domain of \boldsymbol{S}, i. e., U is an isometric \mathcal{M}_{r}-linear isomorphism of $\widetilde{\mathcal{M}}$ onto $L^{2}(F)$ such that

$$
U \boldsymbol{s}_{n}=e^{i n \cdot} I, \quad n \in Z
$$

Let us consider the Hilbert- \mathcal{M}_{r}-module $H^{2}(F)$ of (equivalence classes of) \mathcal{B}-measurable \mathcal{M}_{r}-valued functions M such that $\operatorname{Ker} M \supseteq \operatorname{Ker} f$ and $\int M f^{+} M^{*} \mathrm{~d} \sigma$ exists. The mapping

$$
V: \Phi \rightarrow \Phi f
$$

establishes an isometric \mathcal{M}_{r}-linear isomorphism of $L^{2}(F)$ onto $H^{2}(F)$, cf. [6, Theorem 1] and [3, Theorem 3.3 (b)].

It is not hard to see that

$$
\begin{equation*}
V^{-1} M=M f^{+}, \quad M \in H^{2}(F) \tag{1}
\end{equation*}
$$

In [3, Theorem 3.4 and Lemma 3.7] and [8, Lemma 4.5 (b)] it was proved the following result.

Lemma 1. A vector \boldsymbol{u} of $\widetilde{\mathcal{M}}$ is orthogonal to all $s_{n}, n \in \boldsymbol{Z} \backslash\{0\}$, if and only if $V U \boldsymbol{u}$ is equal to a constant \mathcal{M}_{r}-valued function, where its value A has the following properties:

$$
\begin{equation*}
\mathcal{R}(A) \subseteq \mathcal{R}(f) \tag{2}
\end{equation*}
$$

and

$$
\begin{equation*}
\int A f^{+} A^{*} \mathrm{~d} \sigma \tag{3}
\end{equation*}
$$

exists. The matrix A can be computed by

$$
\begin{equation*}
A=\left\langle\boldsymbol{u}, \boldsymbol{s}_{0}\right\rangle \tag{4}
\end{equation*}
$$

Conversely, if $A \in \mathcal{M}_{r}$ has properties (2) and (3), then there exists a vector $\boldsymbol{u} \in \widetilde{\mathcal{M}}$, which is orthogonal to all $s_{n}, n \in Z \backslash\{0\}$, such that $V U \boldsymbol{u}=A \sigma$-a. e.

3. AN INTERPOLATION PROBLEM

Let $p, q \in \mathbb{N}$ and let \boldsymbol{X} be a p-variate and \boldsymbol{Y} a q-variate stationary sequence such that $S: s_{n}:=\binom{x_{n}}{y_{n}}, n \in \boldsymbol{Z}$, is a $(p+q)$-variate stationary sequence. Let $\widetilde{\mathcal{M}}_{0}$ be the closed \mathcal{M}_{p+q}-linear hull of all $s_{n}, n \in \boldsymbol{Z} \backslash\{0\}$, and $\binom{\boldsymbol{O}_{\boldsymbol{p}}}{\boldsymbol{y}_{0}}$. Denote the vector $\binom{\boldsymbol{x}_{0}}{\boldsymbol{O}_{q}}$ by $\boldsymbol{x}_{0}^{\prime}$. Motivated by a paper of Budinský [1] we study the following interpolation problem:
Find the orthogonal projection $\widehat{\boldsymbol{x}}_{0}$ of $\boldsymbol{x}_{0}^{\prime}$ onto $\widetilde{\mathcal{M}}_{0}$ and the interpolation error matrix

$$
\Delta:=\left\langle\boldsymbol{x}_{0}^{\prime}-\widehat{x}_{0}, x_{0}^{\prime}-\widehat{x}_{0}\right\rangle .
$$

Since $\widetilde{\mathcal{M}}_{0}$ is of the form $\widetilde{\mathcal{M}}_{0}=\mathcal{M}_{0}^{p+q}$, where \mathcal{M}_{0} is the closed subspace of \mathcal{H} spanned by the entries of all $s_{n}, n \in \boldsymbol{Z} \backslash\{0\}$, and the entries of \boldsymbol{y}_{0}, the problem is equivalent to determining the orthogonal projections of the entries of \boldsymbol{x}_{0} onto \mathcal{M}_{0}. However, we find it convenient to study the larger space $\widetilde{\mathcal{M}}_{0}$ since this allows us to use the isomorphisms U and V.

First note that the singular part of the spectral measure F of S does not affect on the interpolation error. So we assume that S has a spectral density f. Let

$$
\widetilde{\boldsymbol{x}}_{0}:=\boldsymbol{x}_{0}^{\prime}-\widehat{\boldsymbol{x}}_{0}
$$

In the following we have to consider block partitions $A:=\left(\begin{array}{ll}A_{11} & A_{12} \\ A_{21} & A_{22}\end{array}\right)$ of matrices A from \mathcal{M}_{p+q}. In all these cases the left upper block A_{11} is assumed to belong to \mathcal{M}_{p}. In particular, the block partition $f=\left(\begin{array}{ll}f_{11} & f_{12} \\ f_{12}^{*} & f_{22}\end{array}\right)$ of f corresponds to the partition of \boldsymbol{S} into \boldsymbol{X} and \boldsymbol{Y} and the interpolation error matrix Δ has the form

$$
\Delta=\left(\begin{array}{cc}
\Delta_{11} & 0 \tag{5}\\
0 & 0
\end{array}\right)
$$

where Δ_{11} is non-negative Hermitian and belongs to \mathcal{M}_{p}.
Consider the subset
$L:=\left\{\binom{c}{\boldsymbol{O}_{q}} \in \boldsymbol{C}^{p+q}:\binom{\boldsymbol{c}}{\boldsymbol{O}_{q}} \in \mathcal{R}(f)\right.$ and $\int\binom{\boldsymbol{c}}{\boldsymbol{O}_{q}}^{*} f^{+}\binom{\boldsymbol{c}}{\boldsymbol{O}_{q}} \mathrm{~d} \sigma$ exists $\}$ of \boldsymbol{C}^{p+q}. Since $\binom{c}{\boldsymbol{O}_{q}} \in L$ if and only if $\binom{\boldsymbol{c}}{\boldsymbol{o}_{q}} \in \mathcal{R}(f)$ and the \boldsymbol{C}^{p}-valued function $\left(\left(f^{+}\right)_{11}\right)^{\frac{1}{2}} \boldsymbol{c}$ is square-integrable, the set L is a subspace of \boldsymbol{C}^{p+q}. Denote by P the orthogonal projection in \boldsymbol{C}^{p+q} onto L.

Let E be the \mathcal{M}_{p+q}-valued function

$$
E(\lambda):=\left(\begin{array}{ll}
I & 0 \\
0 & 0
\end{array}\right), \quad \lambda \in[-\pi, \pi) .
$$

Theorem 2. The interpolation error matrix Δ can be calculated by

$$
\begin{equation*}
\Delta=\left(\int P f^{+} P \mathrm{~d} \sigma\right)^{+} \tag{6}
\end{equation*}
$$

The orthogonal projection of $\boldsymbol{x}_{0}^{\prime}$ onto $\widetilde{\mathcal{M}}_{0}$ is equal to

$$
\begin{equation*}
\widehat{x}_{0}=U^{-1}\left(E-\Delta f^{+}\right) \tag{7}
\end{equation*}
$$

Proof. Note that $\tilde{\boldsymbol{x}}_{0}$ is of the form $\binom{u}{\boldsymbol{o}_{q}}$ for some $\boldsymbol{u} \in \mathcal{M}_{0}^{p}$, which implies

$$
\begin{equation*}
\left\langle\tilde{\boldsymbol{x}}_{0}, \boldsymbol{s}_{0}\right\rangle=\left\langle\widetilde{\boldsymbol{x}}_{0}, \widetilde{\boldsymbol{x}}_{0}\right\rangle=\Delta . \tag{8}
\end{equation*}
$$

Since $\widetilde{\boldsymbol{x}}_{0}$ is orthogonal to all $s_{n}, n \in Z \backslash\{0\}$, from Lemma 1 and (8) we obtain that $V U \widetilde{x}_{0}$ is a constant function whose value is equal to \triangle. Since $V U$ is an isometry of $\widehat{\mathcal{M}}$ onto $H^{2}(\boldsymbol{F})$, it follows

$$
\begin{equation*}
\Delta=\left\langle\tilde{x}_{0}, \tilde{x}_{0}\right\rangle=\int \Delta f^{+} \Delta \mathrm{d} \sigma \tag{9}
\end{equation*}
$$

Relations (2) and (5) yield $\mathcal{R}(\triangle) \subseteq \mathcal{R}(f)$. Thus $\int \Delta f^{+} \Delta \mathrm{d} \sigma=\int \Delta P f^{+} P \Delta \mathrm{~d} \sigma=$ $\Delta \int P f^{+} P \mathrm{~d} \sigma \Delta$. Comparing this with (9), we get

$$
\begin{equation*}
\Delta=\Delta \int P f^{+} P \mathrm{~d} \sigma \Delta \tag{10}
\end{equation*}
$$

If we can show that the range of the matrix $B:=\int P f^{+} P \mathrm{~d} \sigma$ is included in $\mathcal{R}(\triangle)$, the result immediately follows from (10). But $\mathcal{R}(B) \subseteq \mathcal{R}(P) \subseteq \mathcal{R}(f)$ and the integral $\int B f^{+} B \mathrm{~d} \sigma=B \int P f^{+} P \mathrm{~d} \sigma B$ exists. According to Lemma 1 there exists a vector u of $\overline{\mathcal{M}}$, which is orthogonal to all $\boldsymbol{s}_{n}, n \in Z \backslash\{0\}$, such that $V U \boldsymbol{u}=B=\left\langle\boldsymbol{u}, \boldsymbol{s}_{0}\right\rangle \sigma$-a.e. Moreover, since $\int V U u f^{+} V U\binom{O_{p}}{y_{0}} d \sigma=\int B f^{+} f\left(\begin{array}{cc}0 & 0 \\ 0 & I\end{array}\right) \mathrm{d} \sigma=\int B\left(\begin{array}{cc}0 & 0 \\ 0 & I\end{array}\right) \mathrm{d} \sigma=0$, the vector \boldsymbol{u} even belongs to the orthogonal complement of $\widetilde{\mathcal{M}}_{0}$. This means that it has the form $\boldsymbol{u}=D \widetilde{\boldsymbol{x}}_{0}$, for some $D \in \mathcal{M}_{p+q}$. Then $B=\left\langle\boldsymbol{u}, \boldsymbol{s}_{0}\right\rangle=\left\langle D \widetilde{\boldsymbol{x}}_{0}, \boldsymbol{s}_{0}\right\rangle=$ $D\left\langle\widetilde{x}_{0}, \widetilde{\boldsymbol{x}}_{0}\right\rangle=D \triangle$, which implies Ker $\triangle \subseteq \operatorname{Ker} B$ and, hence, $\mathcal{R}(B) \subseteq \mathcal{R}(\Delta)$.
To prove (7) note that $U \widehat{\boldsymbol{x}}_{0}=U \boldsymbol{x}_{0}^{\prime}-U \widetilde{\boldsymbol{x}}_{0}, U \boldsymbol{x}_{0}^{\prime}=E$, and $V U \widetilde{\boldsymbol{x}}_{0}=\Delta \sigma$-a. e., thus $U \widetilde{\boldsymbol{x}}_{0}=V^{-1} \Delta=\Delta f^{+}$by (1).

Corollary 3. The range of Δ is equal to the range of P.
Proof. It was shown in the proof of Theorem 2 that $\mathcal{R}(\triangle) \subseteq \mathcal{R}(P)$. Thus, if P_{Δ} denotes the orthogonal projector onto $\mathcal{R}(\Delta)$, we get $\int P f^{+} P d \sigma=\Delta^{+}=$ $P_{\Delta} \Delta^{+} P_{\Delta}=P_{\Delta} \int P f^{+} P \mathrm{~d} \sigma P_{\Delta}=\int P_{\Delta} P f^{+} P P_{\Delta} \mathrm{d} \sigma=\int P_{\Delta} f^{+} P_{\Delta} \mathrm{d} \sigma$. From this equality it is easy to conclude that $\mathcal{R}\left(P_{\Delta}\right)=\mathcal{R}(P)$.

4. SPECIAL CASES

Under additional assumptions formula (6) can be brought into a more explicit form. Because of (5) it is enough to give expressions for Δ_{11}.

Corollary 4. If the values of f are regular matrices and

$$
\begin{equation*}
\int\left(f_{11}-f_{12} f_{22}^{-1} f_{12}^{*}\right)^{-1} \mathrm{~d} \sigma \tag{11}
\end{equation*}
$$

exists, then

$$
\begin{equation*}
\Delta_{11}=\left(\int\left(f_{11}-f_{12} f_{22}^{-1} f_{12}^{*}\right)^{-1} \mathrm{~d} \sigma\right)^{-1} \tag{12}
\end{equation*}
$$

Proof. If the matrix $f(\lambda)$ is regular, then the left upper block of $f(\lambda)^{-1}$ is equal to $\left(f_{11}(\lambda)-f_{12}(\lambda) f_{22}(\lambda)^{-1} f_{12}(\lambda)^{*}\right)^{-1}$ by the well-known Frobenius formula, $\lambda \in[-\pi, \pi)$. Now the result immediately follows from (6).

The following corollary generalizes Theorem 1 of [1].
Corollary 5. Let $p=1$ and the values of f be regular matrices. Then Δ_{11} can be computed by (12), where the right-hand side of (12) is to be interpreted as 0 , if the integral (11) does not exist.

Proof. If (11) exists, the result is a special case of Corollary 4. If (11) does not exist, the projection P is equal to 0 .

In the statement and the proof of our next corollary we make use of the following result on matrices, which can be easily obtained from formula (3.24) in [4]. If $A \in$ \mathcal{M}_{p+q} and A is non-negative Hermitian, then $\rho(A)=\rho\left(A_{22}\right)+\rho\left(A_{11}-A_{12} A_{22}^{+} A_{21}\right)$. In particular, $\rho(A)=\rho\left(A_{22}\right)$ if and only if $A_{11}-A_{12} A_{22}^{+} A_{21}=0$.

Corollary 6. Let $p=1$. Then $\Delta_{11}=0$ if one of the following conditions hold:
(i) $\rho(f)=\rho\left(f_{22}\right)$ or, equivalently, $f_{11}-f_{12} f_{22}^{+} f_{12}^{*}=0$ on a set of positive measure σ.
(ii) $\rho(f)>\rho\left(f_{22}\right) \sigma$-a. e. and the integral

$$
\begin{equation*}
\int\left(f_{11}-f_{12} f_{22}^{+} f_{12}^{*}\right)^{-1} \mathrm{~d} \sigma \tag{13}
\end{equation*}
$$

does not exist.

If $\rho(f)>\rho\left(f_{22}\right) \sigma$-a. e. and (13) exists, then Δ_{11} is equal to

$$
\begin{equation*}
\Delta_{11}=\left(\int\left(f_{11}-f_{12} f_{22}^{+} f_{12}^{*}\right)^{-1} \mathrm{~d} \sigma\right)^{-1} \tag{14}
\end{equation*}
$$

Proof. It is not hard to see that the condition $\rho(f(\lambda))=\rho\left(f_{22}(\lambda)\right)$ is equivalent to the fact that \boldsymbol{e}_{1} does not belong to $\mathcal{R}(f(\lambda)), \lambda \in[-\pi, \pi)$. So, (i) yields $P=0$ and, hence, $\Delta_{11}=0$. If $\rho(f(\lambda))>\rho\left(f_{22}(\lambda)\right)$, we have $\rho\left(f_{11}(\lambda)-f_{12}(\lambda) f_{22}(\lambda)^{+} f_{12}(\lambda)^{*}\right)=$ $1=\rho\left(f_{11}(\lambda)\right)$ and therefore $\rho(f(\lambda))=\rho\left(f_{11}(\lambda)\right)+\rho\left(f_{22}(\lambda)\right)$. Under this condition the left upper block of $f(\lambda)^{+}$is equal to $\left(f_{11}(\lambda)-f_{12}(\lambda) f_{22}(\lambda)^{+} f_{12}(\lambda)^{*}\right)^{-1}$, cf. formula (3.32) in [4]. Thus, from the non-existence of (13) we again conclude $P=0$ and the existence of (13) yields (14) because of (6).

Corollary 7. Let $p=1$. Then $\Delta_{11}=0$ if and only if \boldsymbol{e}_{1} belongs to $\mathcal{R}(f) \sigma$-a.e. and the integral (13) exists.

Proof. In the proof of Corollary 6 it was mentioned that \boldsymbol{e}_{1} belongs to $\mathcal{R}(f(\lambda))$ if and only if $\rho(f(\lambda))>\rho\left(f_{22}(\lambda)\right), \lambda \in[-\pi, \pi)$. Hence, Corollary 7 is a consequence of Corollary 6 .

Now let us use our results to derive a minimality condition for r-variate stationary sequences due to Rozanov [5, Theorem 10.2 of Ch. 2].

An r-variate stationary sequence S is called minimal in the sense of Rozanov if for each $k \in\{1, \ldots, r\}$ the k th entry $s_{0}^{(k)}$ of s_{0} does not belong to the space \mathcal{H}_{k} spanned by the entries of all $s_{n}, n \in \boldsymbol{Z} \backslash\{0\}$, and the elements $s_{0}^{(j)}, j \neq k$.

Corollary 8. An r-variate stationary process S is minimal in the sense of Rozanov if and only if the values of f are regular matrices and all functions on the principal diagonal of f^{-1} are integrable.

Proof. From Corollary 7 it follows that $s_{0}^{(k)}$ does not belong to \mathcal{H}_{k} if and only if \boldsymbol{e}_{k} belongs to $\mathcal{R}(f)$ and the k th function on the principal diagonal of f^{+}is integrable. But $e_{k} \in \mathcal{R}(f)$ for all $k \in\{1, \ldots, r\}$ if and only if f^{-1} exists.

Remark 9. We conclude with the remark that all results of the present paper can be extended to a multivariate stationary process on a discrete Abelian group in an obvious way.

REFERENCES

[1] P. Budinský: Improvement of interpolation under additional information. In: Proceedings of the 4th Prague Symposium on Asymptotic Statistics (P. Mandl and M. Hušková, eds.), Charles University, Prague 1989, pp. 159-167.
[2] A. Makagon: Interpolation error operator for Hilbert space valued stationary stochastic processes. Probab. Math. Statist. 4 (1984), 57-65.
[3] A. Makagon and A. Weron: q-variate minimal stationary processes. Studia Math. 59 (1976), 41-52.
[4] R. M. Pringle and A. A. Rayner: Generalized Inverse Matrices with Applications to Statistics. Griffin, London 1971.
[5] Yu. A. Rozanov: Stationary Random Processes (in Russian). Fizmatgiz, Moscow 1963.
[6] H. Salehi: The Hellinger square-integrability of matrix-valued measures with respect to a non-negative hermitian measure. Ark. Mat. 7 (1967), 299-303.
[7] H. Salehi: Application of the Hellinger integrals to q-variate stationary stochastic processes. Ark. Mat. 7 (1967), 305-311.
[8] A. Weron: On characterizations of interpolable and minimal stationary processes. Studia Math. 49 (1974), 165-183.

Dr. Lutz Klotz, Fakultät für Mathematik und Informatik, Universität, 04109 Leipzig. Germany.

