ON CALCULATION OF STATIONARY DENSITY OF AUTOREGRESSIVE PROCESSES

Jirí Anděl and Karel Hrach

An iterative procedure for computation of stationary density of autoregressive processes is proposed. On an example with exponentially distributed white noise it is demonstrated that the procedure converges geometrically fast. The $\operatorname{AR}(1)$ and $\operatorname{AR}(2)$ models are analyzed in detail.

1. INTRODUCTION AND PRELIMINARIES

Let $\left\{X_{t}\right\}$ be a stationary autoregressive process of the first order defined by

$$
\begin{equation*}
X_{t}=b X_{t-1}+e_{t}, \quad 0 \neq b \in(-1,1) \tag{1.1}
\end{equation*}
$$

where $\left\{e_{t}\right\}$ are i.i.d. random variables with a finite second moment. From (1.1) we have

$$
\begin{equation*}
X_{t}=e_{t}+b e_{t-1}+b^{2} e_{t-2}+\ldots \tag{1.2}
\end{equation*}
$$

and the series converges in the quadratic mean. It is clear from (1.2) that $\left\{X_{t}\right\}$ is strictly stationary. We are interested in the stationary distribution of the process $\left\{X_{t}\right\}$. The following assertions show that this distribution is continuous.

Theorem 1.1. Let $\left\{\xi_{t}\right\}$ be i.i.d. random variables. If the series $X=\sum_{t=-\infty}^{\infty} k_{t} \xi_{t}$ converges almost surely and infinite many k_{t} are different from 0 then X has a continuous distribution.

Proof. See [10].

Theorem 1.2. Let $\left\{\eta_{t}\right\}$ be independent random variables such that $E \eta_{t}^{2}<\infty$ and $\sum \operatorname{var} \eta_{t}<\infty$. Then the series $\sum\left(\eta_{t}-E \eta_{t}\right)$ converges almost surely.

Proof. See [15], § 16.2 and $\S 17.2$, or [18], Theorem IV.1.4, p. 241.

Theorem 1.3. The stationary distribution of the process $\left\{X_{t}\right\}$ defined by (1.1) is continuous.

Proof. The assertion is a direct consequence of Theorems 1.1 and 1.2.

For example, if $b=0.5$ and e_{t} is a discrete random variable such that $P\left(e_{t}=\right.$ $0.5)=P\left(e_{t}=-0.5\right)=0.5$ then X_{t} has the continuous rectangular distribution $R(-1,1)$. A review of some results of this kind can be found in [2].

However, in many cases stronger assumptions about e_{t} are made.
Theorem 1.4. If e_{t} has a density, then X_{t} has also a density.
Proof. Using (1.2) we can write $X_{t}=e_{t}+Z_{t}$ where $Z_{t}=b e_{t-1}+b^{2} e_{t-2}+\ldots$ Since e_{t} and Z_{t} are independent and e_{t} has a density, their sum $e_{t}+Z_{t}=X_{t}$ has an absolutely continuous distribution (see [16], p. 196).

Now, we introduce a known equation for the stationary distribution of X_{t} and a formula for the characteristic function of X_{t}.

Theorem 1.5. Let e_{t} have a density f. Then the density h of X_{t} satisfies the equation

$$
\begin{equation*}
h(x)=\int f(x-b u) h(u) \mathrm{d} u \tag{1.3}
\end{equation*}
$$

Proof. The equation follows from (1.1), since X_{t-1} has also the density h and X_{t-1} and e_{t} are independent.

Theorem 1.6. Let $\psi(t)$ be the characteristic function of e_{t} and let $\rho(t)$ be the characteristic function of X_{t}. Then

$$
\rho(t)=\prod_{n=0}^{\infty} \psi\left(b^{n} t\right)
$$

Proof. Define

$$
\begin{equation*}
Y_{t, n}=e_{t}+b e_{t-1}+\ldots+b^{n} e_{t-n} \tag{1.4}
\end{equation*}
$$

Then $Y_{t, n} \rightarrow X_{t}$ in the quadratic mean as $n \rightarrow \infty$. Thus $Y_{t, n} \rightarrow X_{t}$ also in the distribution. It implies that the characteristic functions of the variables $Y_{t, n}$ converge pointwise to $\rho(t)$. But the characteristic function of $Y_{t, n}$ is $\psi(t) \psi(b t) \ldots \psi\left(b^{n} t\right)$.

If e_{t} has normal distribution then it is well known that X_{t} is also normally distributed. One of the first attempts to find a connection between the distributions of X_{t} and e_{t} in a non-normal case was published in [9]. For some special nonnormal distributions of e_{t} (continuous and discrete rectangular distributions, Laplace distribution) the stationary distribution of X_{t} is calculated in [2]. It is also known
that if e_{t} has a stable distribution of exponent $\theta,(0<\theta \leq 2)$ then X_{t} also has a stable distribution of the same exponent (e.g., see [19], p. 208, Ex. 11).

By the way, the opposite problem was more popular, viz. to find a distribution of e_{t} for a given stationary distribution of X_{t}. The famous paper [12] contains the cases when X_{t} has exponential or gamma distributions. A review of such results can be found in [1] and [2].

The methods mentioned above were applicable only to some special distributions of X_{t} and e_{t}. Another approach was proposed in [3]. The goal of this paper was to find a distribution of e_{t} such that the stationary distribution of X_{t} has given moments. This method was derived for general linear processes so that autoregressive models form only a special class. Detailed results for $\operatorname{AR}(1)$ models are published in [4]. A different method based on Hermite polynomials can be found in [17].

The problem how to calculate stationary distribution of a process from the distribution of a white noise seems to be even more popular in non-linear models. The method of moments was applied in [6]. Exact explicit results are quite rare. One of them can be found in [7] but formulas for stationary density of the absolute autoregression published in [8] and [5] became more familiar (cf. [19], pp. 140-142 and p.205). Numerical procedures suggested for computation of stationary density in non-linear models (see [19], p.152) can be, of course, also used in the model (1.1). It corresponds to numerical solution of the equation (1.3).

Quite recently (see [13]) some theoretic results for the stationary density of X_{t} in the model (1.1) were derived in the case that e_{t} has the rectangular distribution on (0,1). It was proved that the stationary density belongs to the class C^{∞} and some bounds for tails of this stationary distribution were derived. The derivation was based on investigation of asymptotic properties of $e_{t}+b e_{t-1}+\cdots+b^{n} e_{t-n}$ as $n \rightarrow \infty$.

2. AN ITERATIVE METHOD FOR AR(1) PROCESSES

An explicit formula for h satisfying (1.3) given f is known only in a few cases. Here we propose an iterative method for its computation. Let h_{0} be an arbitrary density. For $n \geq 1$ define

$$
\begin{equation*}
h_{n}(x)=\int f(x-b u) h_{n-1}(u) \mathrm{d} u \tag{2.1}
\end{equation*}
$$

It is obvious that every function h_{n} defined by (2.1) is a density.

Theorem 2.1. Let h_{0} be a density. Define h_{n} by (2.1). Assume that there exists an integer $m \geq 0$ such that

$$
\begin{equation*}
\int_{-\infty}^{\infty}\left|\psi(t) \psi(b t) \ldots \psi\left(b^{m} t\right)\right| \mathrm{d} t<\infty \tag{2.2}
\end{equation*}
$$

Then $h_{n}(x) \rightarrow h(x)$ for all x as $n \rightarrow \infty$.

Proof. Let λ_{n} be the characteristic function corresponding to h_{n}. Using (2.1) we obtain

$$
\begin{aligned}
\lambda_{n}(t) & =\int e^{i t x} h_{n}(x) \mathrm{d} x=\int e^{i t x}\left[\int f(x-b u) h_{n-1}(u) \mathrm{d} u\right] \mathrm{d} x \\
& =\int h_{n-1}(u)\left[\int e^{i t x} f(x-b u) \mathrm{d} x\right] \mathrm{d} u=\int h_{n-1}(u)\left[\int e^{i t b u+i t y} f(y) \mathrm{d} y\right] \mathrm{d} u \\
& =\psi(t) \int e^{i t b u} h_{n-1}(u) \mathrm{d} u=\psi(t) \lambda_{n-1}(b t)
\end{aligned}
$$

Thus

$$
\lambda_{n}(t)=\psi(t) \psi(b t) \psi\left(b^{2} t\right) \ldots \psi\left(b^{n-1} t\right) \lambda_{0}\left(b^{n} t\right)
$$

From the continuity of the characteristic function we have

$$
\lambda_{0}\left(b^{n} t\right) \rightarrow \lambda_{0}(0)=1 \quad \text { as } n \rightarrow \infty
$$

Using Theorem 1.6 we get $\lambda_{n}(t) \rightarrow \rho(t)$ as $n \rightarrow \infty$. Assume that $n>m$. Because

$$
\begin{equation*}
h_{n}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i t x} \lambda_{n}(t) \mathrm{d} t \tag{2.3}
\end{equation*}
$$

and $\left|e^{-i t x} \lambda_{n}(t)\right| \leq\left|\psi(t) \psi(b t) \ldots \psi\left(b^{m} t\right)\right|$, Lebesgue theorem gives

$$
\lim _{n \rightarrow \infty} h_{n}(x)=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i t x}\left[\lim _{n \rightarrow \infty} \lambda_{n}(t)\right] \mathrm{d} t=\frac{1}{2 \pi} \int_{-\infty}^{\infty} e^{-i t x} \rho(t) \mathrm{d} t=h(x)
$$

Of course, speed of the convergence and complexity of formulas for h_{n} depend heavily on the choice of h_{0}.

3. AN EXAMPLE

Sometimes it is easy to derive speed of convergence $h_{n}(x) \rightarrow h(x)$. From (2.3) we have

$$
\left|h_{n+1}(x)-h_{n}(x)\right| \leq \frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|\lambda_{n+1}(t)-\lambda_{n}(t)\right| \mathrm{d} t
$$

Define

$$
\Delta_{n+1}=\sup _{x}\left|h_{n+1}(x)-h_{n}(x)\right|
$$

Then we get

$$
\begin{equation*}
\Delta_{n+1} \leq \frac{1}{2 \pi} \int_{-\infty}^{\infty}\left|\psi(t) \psi(b t) \ldots \psi\left(b^{n-1} t\right)\left[\psi\left(b^{n} t\right) \lambda_{0}\left(b^{n+1} t\right)-\lambda_{0}\left(b^{n} t\right)\right]\right| \mathrm{d} t \tag{3.1}
\end{equation*}
$$

Consider the process $\left\{X_{t}\right\}$ given by (1.1) such that $b \in(0,1)$ and $e_{t} \sim E x(1)$, i. e., $f(x)=e^{-x}$ for $x>0$. For simplicity, choose $h_{0}(x)=f(x)$. Then

$$
\psi(t)=\lambda_{0}(t)=\frac{1}{1-i t}
$$

Since

$$
\begin{equation*}
|\psi(t)|=\frac{1}{\sqrt{1+t^{2}}} \tag{3.2}
\end{equation*}
$$

the assumption (2.2) is fulfilled for $m=1$. The inequality (3.1) can be written in the form

$$
\begin{equation*}
\Delta_{n+1} \leq \int_{-\infty}^{\infty}\left|\left[\prod_{s=0}^{n} \psi\left(b^{s} t\right)\right]\left[\psi\left(b^{n+1} t\right)-1\right]\right| \mathrm{d} t \tag{3.3}
\end{equation*}
$$

Assume that $n \geq 3$. Then (3.3) and (3.2) yield

$$
\begin{aligned}
\Delta_{n+1} & \leq \frac{1}{\pi} \int_{-\infty}^{\infty}|\psi(t) \psi(b t)| \cdot\left|\psi\left(b^{2} t\right) \psi\left(b^{3} t\right)\right| \cdot\left|\psi\left(b^{n+1} t\right)-1\right| \mathrm{d} t \\
& \leq \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{1+b^{2} t^{2}} \frac{1}{1+b^{6} t^{2}} \frac{b^{n+1} t}{\sqrt{1+b^{2 n+2} t^{2}}} \mathrm{~d} t \\
& \leq b^{n+1} \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{1}{1+b^{2} t^{2}} \frac{1}{1+b^{6} t^{2}} \mathrm{~d} t
\end{aligned}
$$

Since

$$
\frac{t}{1+b^{6} t^{2}} \leq \frac{1}{2 b^{3}}, \quad \frac{1}{\pi} \int_{-\infty}^{\infty} \frac{\mathrm{d} t}{1+b^{2} t^{2}}=\frac{1}{2 b}
$$

we have

$$
\Delta_{n+1} \leq \frac{1}{4} b^{n-3}
$$

In this case the iterative procedure converges to the limit density geometrically fast.
For small values of n we write (3.3) in the form

$$
\Delta_{n+1} \leq \frac{b^{n+1}}{\pi} \int_{0}^{\infty} t \prod_{s=0}^{n+1}\left(1+b^{2 s} t^{2}\right)^{-1 / 2} \mathrm{~d} t
$$

Especially,

$$
\begin{aligned}
\Delta_{2} & \leq \frac{b^{2}}{\pi} \int_{0}^{\infty} t \frac{1}{\sqrt{1+t^{2}}} \frac{1}{\sqrt{1+b^{2} t^{2}}} \frac{1}{\sqrt{1+b^{4} t^{2}}} \mathrm{~d} t \\
& \leq \frac{b^{2}}{\pi} \int_{0}^{\infty} \frac{t}{\left(1+b^{4} t^{2}\right) \sqrt{1+t^{2}}} \mathrm{~d} t=\frac{b^{2}}{2 \pi} \int_{0}^{\infty} \frac{\mathrm{d} x}{\left(1+b^{4} x\right) \sqrt{1+x}} \\
& =\frac{\pi-2 \operatorname{arctg} \frac{b^{2}}{\sqrt{1-b^{4}}}}{2 \pi \sqrt{1-b^{4}}}=D_{2}(b)
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
\Delta_{3} & \leq \frac{b^{3}}{\pi} \int_{0}^{\infty} \frac{t}{\sqrt{1+t^{2}}} \frac{1}{\sqrt{1+b^{2} t^{2}}} \frac{1}{\sqrt{1+b^{4} t^{2}}} \frac{1}{\sqrt{1+b^{6} t^{2}}} \mathrm{~d} t \\
& \leq \frac{b^{3}}{\pi} \int_{0}^{\infty} \frac{1}{1+b^{2} t^{2}} \frac{1}{1+b^{6} t^{2}} \mathrm{~d} t=-\frac{2 b \ln b}{\pi\left(1-b^{4}\right)}=D_{3}(b)
\end{aligned}
$$

Some values of $D_{2}(b)$ and $D_{3}(b)$ are introduced in Table 3.1.

Fig. 3.1.

Table 3.1.

b	0.01	0.1	0.5	0.9	0.99
$D_{2}(b)$	0.50	0.50	0.43	0.34	0.32
$D_{3}(b)$	0.03	0.15	0.24	0.18	0.16

Explicit formulas for $h_{n}(x)$ can be written down if n is small. For example,

$$
\begin{aligned}
h_{1}(x) & =\frac{e^{-x}}{1-b}\left(1-e^{x-x / b}\right) \\
h_{2}(x) & =\frac{e^{-x}}{(1-b)^{2}}\left[1-e^{x-x / b}-\frac{b-e^{x\left(b^{2}+b-1\right) / b-1 / b}}{1+b}\right]
\end{aligned}
$$

and so on. However, it is easier to use a program package for calculating and processing the functions $h_{n}(x)$. We used Mathematica. Figure 3.1 shows functions $h_{0}(x), \ldots, h_{5}(x)$ in the case $b=0.5$.

4. A GENERALIZATION TO AR PROCESSES OF HIGHER ORDER

The iterative method for calculating stationary density can be generalized to autoregressive processes of higher order. Here we present a derivation for AR(2) model.

Let X_{t} be a stationary AR(2) process defined by

$$
\begin{equation*}
X_{t}=b_{1} X_{t-1}+b_{2} X_{t-2}+e_{t} \tag{4.1}
\end{equation*}
$$

where e_{t} is a strict white noise with a density f and a finite second moment. Let ψ be the characteristic function of e_{t} and

$$
\boldsymbol{F}=\left(\begin{array}{cc}
b_{1} & b_{2} \\
1 & 0
\end{array}\right)
$$

It is known that

$$
X_{t}=\sum_{j=0}^{\infty} a_{j} e_{t-j}
$$

where a_{j} is the (1,1)-element of the matrix F^{j} (see [14], p. 57). It follows from the assumption of stationarity that all roots of \boldsymbol{F} lie inside the unit circle and thus the series (4.1) converges in the quadratic mean. If we define $\boldsymbol{c}=(1,0)^{\prime}$ then $a_{j}=\boldsymbol{c}^{\prime} \boldsymbol{F}^{\boldsymbol{j}} \boldsymbol{c}=\boldsymbol{c}^{\boldsymbol{\prime}} \boldsymbol{F}^{\prime \boldsymbol{j}} \boldsymbol{c}$ and the characteristic function λ of X_{t} is given by

$$
\begin{equation*}
\lambda(v)=\prod_{j=0}^{\infty} \psi\left(v a_{j}\right)=\prod_{j=0}^{\infty} \psi\left(v \boldsymbol{c}^{\prime} \boldsymbol{F}^{\prime j} \boldsymbol{c}\right) \tag{4.2}
\end{equation*}
$$

Since we assume that e_{t} has a density, it follows from (4.1) that the random vector $\left(X_{t}, X_{t-1}\right)^{\prime}$ has a joint density, say $q(x, y)$. The stationary density of $\left\{X_{t}\right\}$ is $\int q(x, y) \mathrm{d} y$. Because $\left\{X_{t}\right\}$ is stationary, the vector $\left(X_{t-1}, X_{t-2}\right)^{\prime}$ has also the density q. The joint density of $\left(X_{t}, X_{t-1}, X_{t-2}\right)^{\prime}$ is $q\left(x_{t-1}, x_{t-2}\right) f\left(x_{t}-b_{1} x_{t-1}-b_{2} x_{t-2}\right)$ and so we have an integral equation

$$
\begin{equation*}
q\left(x_{t}, x_{t-1}\right)=\int q\left(x_{t-1}, x_{t-2}\right) f\left(x_{t}-b_{1} x_{t-1}-b_{2} x_{t-2}\right) \mathrm{d} x_{t-2} \tag{4.3}
\end{equation*}
$$

Let $q_{0}(y, z)$ be a density. Formula (4.3) suggests that a method for calculating q can be based on the recurrent relation

$$
\begin{equation*}
q_{n}(x, y)=\int q_{n-1}(y, z) f\left(x-b_{1} y-b_{2} z\right) \mathrm{d} z \tag{4.4}
\end{equation*}
$$

We prove that under some conditions concerning q_{0} the functions q_{n} converge pointwise to q.

Theorem 4.1. Let λ_{n} be the characteristic function corresponding to q_{n}. Then for arbitrary $t=\left(t_{1}, t_{2}\right)^{\prime}$ we have $\lambda_{n}(t) \rightarrow \lambda(t)$.

Proof. Using (4.4) we get

$$
\begin{aligned}
\lambda_{n}\left(t_{1}, t_{2}\right) & =\iint e^{i t_{1} x+i t_{2} y} q_{n}(x, y) \mathrm{d} x \mathrm{~d} y \\
& =\iiint e^{i t_{1} x+i t_{2} y} q_{n-1}(y, z) f\left(x-b_{1} y-b_{2} z\right) \mathrm{d} z \mathrm{~d} x \mathrm{~d} y
\end{aligned}
$$

$$
\begin{aligned}
& =\iiint e^{i t_{1}\left(w+b_{1} y+b_{2} z\right)+i t_{2} y} q_{n-1}(y, z) f(w) \mathrm{d} z \mathrm{~d} w \mathrm{~d} y \\
& =\iint e^{i\left(t_{1} b_{1}+t_{2}\right) y+i t_{1} b_{2} z} q_{n-1}(y, z) \mathrm{d} y \mathrm{~d} z \int e^{i t_{1} w} f(w) \mathrm{d} w \\
& =\lambda_{n-1}\left(t_{1} b_{1}+t_{2}, t_{1} b_{2}\right) \psi\left(t_{1}\right) \\
& =\lambda_{n-1}\left(\boldsymbol{F}^{\prime} \boldsymbol{t}\right) \psi\left(\boldsymbol{c}^{\prime} \boldsymbol{t}\right)
\end{aligned}
$$

This gives

$$
\lambda_{n}(\boldsymbol{t})=\psi\left(\boldsymbol{c}^{\prime} \boldsymbol{t}\right) \psi\left(\boldsymbol{c}^{\prime} \boldsymbol{F}^{\prime} \boldsymbol{t}\right) \ldots \psi\left(\boldsymbol{c}^{\prime} \boldsymbol{F}^{\prime n-1} \boldsymbol{t}\right) \lambda_{0}\left(\boldsymbol{F}^{\prime n} \boldsymbol{t}\right)
$$

Since $\boldsymbol{F}^{n} \rightarrow \mathbf{0}$ as $n \rightarrow \infty$, we have $\lambda_{0}\left(\boldsymbol{F}^{\prime n} \boldsymbol{t}\right) \rightarrow 1$ and in view of (4.2) it follows that $\lambda_{n}(t) \rightarrow \lambda(t)$.

Theorem 4.2. Let q_{0} be a density. Assume that there exists an integer $m \geq 0$ such that

$$
\iint\left|\psi\left(\boldsymbol{c}^{\prime} \boldsymbol{t}\right) \psi\left(\boldsymbol{c}^{\prime} \boldsymbol{F}^{\prime} \boldsymbol{t}\right) \ldots \psi\left(\boldsymbol{c}^{\prime} \boldsymbol{F}^{\prime m} \boldsymbol{t}\right)\right| \mathrm{d} t_{1} \mathrm{~d} t_{2}<\infty
$$

Then $q_{n}(x, y) \rightarrow q(x, y)$ for all (x, y) as $n \rightarrow \infty$.
Proof. For $n \geq m$ we have

$$
\left|\lambda_{n}\left(t_{1}, t_{2}\right)\right| \leq\left|\psi\left(\boldsymbol{c}^{\prime} \boldsymbol{t}\right) \psi\left(\boldsymbol{c}^{\prime} \boldsymbol{F}^{\prime} \boldsymbol{t}\right) \ldots \psi\left(\boldsymbol{c}^{\prime} \boldsymbol{F}^{\prime m} \boldsymbol{t}\right)\right|
$$

and thus $\iint\left|\lambda_{n}\left(t_{1}, t_{2}\right)\right| \mathrm{d} t_{1} \mathrm{~d} t_{2}<\infty$. Then $q_{n}(x, y)$ is bounded, continuous, and

$$
q_{n}(x, y)=\frac{1}{(2 \pi)^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-i\left(x t_{1}+y t_{2}\right)} \lambda_{n}\left(t_{1}, t_{2}\right) \mathrm{d} t_{1} \mathrm{~d} t_{2}
$$

(see [11], formula 7.12). Theorem 4.1 and Lebesgue theorem imply

$$
\lim _{n \rightarrow \infty} \frac{1}{(2 \pi)^{2}} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-i\left(x t_{1}+y t_{2}\right)} \lambda_{n}\left(t_{1}, t_{2}\right) \mathrm{d} t_{1} \mathrm{~d} t_{2}=q(x, y)
$$

ACKNOWLEDGEMENT

The research was supported by Grant 201/97/1176 of the Grant Agency of the Czech Republic and by Grant CEZ:J13/98:113200008.
(Received April 13, 1999.)

REFERENCES

[1] J. Andèl: Dependent random variables with a given marginal distribution. Acta Univ. Carolin. - Math. Phys. 24 (1983), 3-11.
[2] J. Andĕl: Marginal distributions of autoregressive processes. In: Trans. 9th Prague Conf. Inform. Theory, Statist. Decision Functions, Random Processes, Academia, Prague 1983, pp. 127-135.
[3] J. Andël: On linear processes with given moments. J. Time Ser. Anal. 8 (1987), 373378.
[4] J. Andèl: AR(1) processes with given moments of marginal distribution. Kybernetika 22 (1989), 337-347.
[5] J. Andèl and T. Bartoñ: A note on the threshold AR(1) model with Cauchy innovations. J. Time Ser. Anal. 7 (1986), 1-5.
[6] J. Anděl and M. Garrido: On stationary distributions of some time series models. In: Trans. 10th Prague Conf. Inform. Theory, Statist. Decision Functions, Random Processes, Academia, Prague 1988, pp. 193-202.
[7] J. Andèl, M. Gómez and C. Vega: Stationary distribution of some nonlinear AR(1) processes. Kybernetika 25 (1989), 453-460.
[8] J. Andĕl, I. Netuka and K. Zvára: On threshold autoregressive processes. Kybernetika 20 (1984), 89-106.
[9] J. Bernier: Inventaire des modèles et processus stochastique applicables de la description des déluts journaliers des riviers. Rev. Inst. Internat. Statist. 38 (1970), 50-71.
[10] R.A. Davis and M. Rosenblatt: Parameter estimation for some time series models without contiguity. Statist. Probab. Lett. 11 (1991), 515-521.
[11] W. Feller: An Introduction to Probability Theory and its Applications II. Wiley, New York 1966.
[12] D.P. Gaver and P.A.W. Lewis: First-order autoregressive gamma sequences and point processes. Adv. in Appl. Probab. 12 (1980), 727-745.
[13] G. Haiman: Upper and lower bounds for the tail of the invariant distribution of some AR(1) processes. In: Asymptotic Methods in Probability and Statistics (B. Szyszkowicz, ed.), North-Holland/Elsevier, Amsterdam 1998, pp. 723-730.
[14] J. D. Hamilton: Time Series Analysis. Princeton University Press, Princeton 1994.
[15] M. Loève: Probability Theory. Second edition. Van Nostrand, Princeton 1955.
[16] A. Rényi: Probability Theory. Akadémiai Kiadó, Budapest 1970.
[17] M. M. Sondhi: Random processes with specified spectral density and first-order probability density. Bell System Technical J. 62 (1983), 679-701.
[18] J. Štěpán: Teorie pravděpodobnosti. Academia, Praha 1987.
[19] H. Tong: Non-linear Time Series. Clarendon Press, Oxford 1990.
[20] Wolfram Research, Inc.: Mathematica, Version 2.2. Wolfram Research, Inc., Champaign, Illinois 1994.

Prof. RNDr. Jiří Andël, DrSc., Charles University - Faculty of Mathematics and Physics, Department of Statistics, Sokolovská 83, 18600 Praha 8. Czech Republic. e-mail: andel@karlin.mff.cuni.cz

Mgr. Karel Hrach, University of Jan Evangelista Purkyně, Faculty of Social Sciences and Economy, Department of Mathematics and Informatics, Moskevská 54, 40001 Ústí n. L. Czech Republic.
e-mail: hrach@fse.ujep.cz

