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O N C U M U L A T I V E P R O C E S S M O D E L 
AND ITS STATISTICAL ANALYSIS 

P E T R VOLF 

The notion of the counting process is recalled and the idea of the 'cumulative' process is 
presented. While the counting process describes the sequence of events, by the cumulative 
process we understand a stochastic process which cumulates random increments at random 
moments. It is described by an intensity of the random (counting) process of these moments 
and by a distribution of increments. We derive the martingale - compensator decomposition 
of the process and then we study the estimator of the cumulative rate of the process. We 
prove the uniform consistency of the estimator and the asymptotic normality of the process 
of residuals. On this basis, the goodness-of-fit test and the test of homogeneity are proposed. 
We also give an example of application to analysis of financial transactions. 

1. INTRODUCTION 

A counting process is a stochastic point process registering random events and count
ing their number. The trajectory of such a process starts at zero and has jumps +1 
at random moments. The main characteristic is the intensity of the stream of events. 
A review of theory and applications of counting process models is given, for instance, 
in Andersen et al [2], or in Fleming and Harrington [5]. 

In the present paper, we consider a random process 

C(t)= ftY(s)dN(s), (1) 
JO 

where N(t) is a counting process and Y(t) is a set of random variables. We assume 
that the time runs through [0,T] and starting value is again C(0) -= 0. From this 
point of view, we deal with a process having the random increments at disjoint 
random moments. The process C(t) will be called the cumulative process. In the 
special case when the process of times, N(t), is the Poisson one, the process (1) is 
known as the compound Poisson process (see for example Embrechts et al [4]). 

The objective of the present paper is to describe the process (1) with the aid 
of characteristics of both its components, i.e. the hazard function of N(t) and the 
distribution of Y(t). The paper is organized as follows: In part 2 the process (1) 
is defined more accurately. Its martingale-compensator decomposition is presented 
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and the variance process of the martingale is computed. Then the estimator of 
the mean trajectory of the process (actually representing the cumulative rate) is 
constructed and its uniform consistency is proved. In this we generalize the results 
of Volf [7] achieved for the case of underlying Poisson process of events. The main 
result consists in the derivation of the weak convergence of the residual process to a 
Wiener one. Finally, based on this convergence, a test procedure is proposed both 
for assessing the goodness-of-fit of the model and for testing the homogeneity of 
two processes. In this we follow the method of analysis of generalized residuals for 
counting processes proposed in Arjas [3] and also in Volf [6]. 

2. THE MODEL OF CUMULATIVE PROCESS 

In order to define the process (1), we consider a measurable, nonnegative and 
bounded function h(t),t > 0, the hazard function, and the indicator process I(t) 
which equals 1 if N(t) is in the risk of count, l(t) = 0 otherwise. Actually, I(t) is 
an indicator of observability of counting process N(t). Then, the behaviour of the 
counting process N(t) in (1) is governed by a random (in general) intensity process 
X(t) = h(t)I(t). 

Further, let us consider a right-continuous nondecreasing sequence of cr-algebras, 
S(t), where each S(t) is defined on the sample space of {N(s))I(s)1Y(s)1 0 < s < 
t}. We assume that process N(t) is «S(2)-measurable. Following Andersen and 
Borgan [1], we denote by dN(t) the increments of N(t) over the small time interval 
[t,t+dt). Then we can write that A(*) d* = P(dN(t) = 1| £(*")) . The trajectories of 
N(t) are right-continuous, the trajectories of I(t) and also the "histories" collected 
in S(t~~) are left-continuous. 

As regards the variables Y(t), we assume that 

1. Y(t) are distributed with (unknown) densities f(y]t). 

2. Their means fi(t)} variances cr2(tf), and also F'dY^).3) exist and are measurable 
and bounded functions on [0,T]. 

3. Each Y(t) is independent of S(t")i i.e. of the history of the process C(s) up 
to t (on the other hand, dN(t) can depend on history of Y(s), s < t). 

Remark . Point 3 is a rather strong condition which in some cases is not fulfilled. 
On the other hand, we can imagine a number of processes (especially in the area of 
natural sciences) for which such an independence of increments on the history is a 
quite realistic property. 

The assumption on existence and boundedness of the 3-rd absolute moments is 
actually a condition of the Lyapunov version of the central limit theorem. Here, it 
will be utilized for the proof of the condition of Lindeberg required in the central 
limit theorem for martingales (Proposition 3.). 

Let us now recall the martingale-compensator decomposition of the counting pro
cess N(t). Define first its cumulative intensity L(t) = / 0 A(s)ds. Then N(t) = 
L(t) + M(t)) where M(t) is a martingale adapted to the cr-algebras S(t) (i.e. it 
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is S(f)-measurable). It holds that EM(t) = 0 and variance processes (N)(t) = 
(M)(t) = L(t)} where the notation (N)(t) means var(N(t)\S(t~)). Similarly as the 
paths of N(t), the paths of M(t)) and also of C(t)) are right-continuous (while the 
paths of L(t) are continuous). 

The first task is to derive a compensator of the process C(t). We utilize the 
decomposition N(t) = L(t) + M(t) of the counting process. Denote Y*(t) = Y(t) — 
fi(t). Then we can decompose 

C(t) = I (Y*(s) + fi(s)) dN(s) = I fi(s) dL(s) + M(t), 
Jo Jo 

M(t) = Mi(t)+M2(t)= I Y*(s)dN(s)+[ fi(s)dM(s). 
Jo Jo 

where 

Proposition 1. The processes M(t), M\(t)y M2(t) are martingales adapted to 
cr-algebras S(t) on [0,T], the variance process of M(t) is 

(м)(t)= Л(ra(*)+^(*))dад-
Jo 

P r o o f . Evidently, E M(t) = 0. As regards the property defining the martingale, 
we have for 0 < s < t that 

E(M(t) | S(s)) = M(s) + E([ dM(r)\S(s)\ = M(s), 

because E (f* dM(r)\S(s)) = 0 holds for both parts of M(t)\ For Mi(t) it follows 

from the centering of Y*(t) and from the independence of Y*(t) on dN(tf). Properties 
of M2(t) follow directly from properties of M(t). From the independence of Y*(t) 
on the past up to t it also follows that Y*(t) is orthogonal both to dM(tf) and to 
dN(/), distribution of dN and dM being given by predictable process dL. Therefore 

(Mi)(t) = i cr2(s)dL(s), (MuM2)(t) = 0. 
Jo 

Further, from martingale properties of M(t) we have that (M2)(t) = fQ fi2(s) dL(s). 
Then 

(M)(t) = E{M1(t)2 + M2(t)2 + 2Mi(t)M2(t)\S(t')} 

= I <T2(s)dL(s)+ ( fi2(s)dL(s). D 
Jo Jo 

Corollary. Process fQ n(s)dL(s) is the compensator of process C(t) on [0,T]. 

Evidently, process fQ fi(s) dL(s) fulfils the conditions of compensator. Its sub-
straction from C(t) yields a martingale, process is predictable and its paths are 
uniformly continuous on [0,T] (which is more than is needed). 



168 P. VOLF 

3. LARGE SAMPLE PROPERTIES 

In the follow-up, let us imagine that n realizations Ci(t) of a cumulative process 
C(t) are observed in interval [0,T]. More precisely, we observe moments of events 
Tij of counting processes Ni(t), corresponding indicators Ii(t) and "jumps" Yf(Tfj), 
(i = 1,. . . , n, j = 1,. . . , rij = Ni(T)). Formally, observed trajectories are 

d(t) = Ґщs^dN^^f^ЩTij). 
i=1 

It is assumed that random variables If (<), i = 1,2,... ,ji have the same distributions, 
with densities f(y\t) and moments fi(t) and c2(t). Further, we assume that Yi(t) 
are independent of the common history of the processes N{(s), Yf (s), Ii(s)} s < t, i = 
1, 2, . . . , n stored now in cr-algebras S(t~). Finally, we assume that Ni(t) are charac
terized by the same hazard function h(t). Corresponding intensities of Ni(t) are then 
Xi(t) = h(t)Ii(t). As it is assumed that the hazard function is finite, the compen
sator is a continuous process. The consequence is also that there are not two events 
at one moment and, further, that for i / j d(Mf, Mj)(t) = 0, d(yVff, Mj)(t) = 0 and 
even cov{Yi(t)dMi(t), Yj(t)dMj(t)\S(t')} = 0. 

The likelihood process (which is actually the generalization of the likelihood of 
Poisson process) is 

^ = fl ft {^(^i)/(^(^i)iT0)} - exp 1 - /T Af(0 dA . 
t = l j = l { J o ) 

It is seen that the part containing the intensities and the part containing the 
distribution of Y's can be separated (and therefore both characteristics can be es
timated independently). Denote by C(f) — Y^i-\Y\^l-i f(Yi(Tij)\Tij). Then we 
obtain the following log-likelihood: 

lnC = f2\f hiAf(*)dNf(*)- / Af(0d*i+ln(£(/)). (2) 

In the case of parametrized function / , its parameters can be estimated from the 
maximum likelihood estimation procedure based on £ ( / ) only. In a nonparametrized 
case, estimates of functions n(t), &2(t) can be obtained with the help of a smoothing 
(kernel) technique. Even the density f(y\ t) can be then estimated via the kernel 
method. In the follow-up, we shall try to characterize the process C(t) jointly and 
to derive some asymptotic properties which depend on h(t), fi(t) and v2(t). 

3.1. Es t imates and the i r convergence 

Let us recall here the well-known Nelson-Aalen estimator of the cumulative hazard 
function H(t) = J0 h(s)ds\ 

£> n\ \h ft-\!(8)>-]AKTt ^ 
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where I(s) = Yli=i k(s) characterizes the risk set at moment s. Let us make the 
following assumption: 

Al . There exists the limit r(s) = lim -^-- in probability such that 

a) the limit is uniform on [0,T], 

b) 1 > r(s) > e on [0, T], for some e > 0. 

Then it is proved elsewhere (for instance in Andersen and Borgan [1], Andersen 
et al [2]) that Hn(t) is a consistent estimate of H(t). Further, such an estimate 
is asymptotically normal on [0,T], namely y/n(Hn(t) - H(t)) « V ^ E L i Jo T ^ 
converges weakly to a Wiener process with variance function f0 Sy , when n —> oo. 
It follows from the central limit theorems for martingales (e.g. Andersen et al [2], 
chapter II). Moreover, it is due Al and due the boundedness of all involved functions 
that Hn(t) is a uniformly consistent estimator of H(t) on [0,T] (see also Winter, 
Foldes and Rejto [8], and their variant of Glivenko-Cantelli theorem). 

Inspired by these results, we consider the average of observed processes 

S.M-£/--$p1«M<-v.M 

as an estimator of the function K(t) = fQ fi(s)dH(s). Actually, K(t) represents the 
cumulative rate describing the risk and the mean size of jumps of C(t). 

From Al and boundedness of H(s) and fi(s) we easily see that P< fQ l[I(s) = 

= 0] ds = o} -> 1 for n -+ oo, so that even Piy/n fl \[I(s) = 0] dK(s) = o} -* 1, 

uniformly w.r. t. t G [0,T]. 

Proposit ion 2. Under Al, Cn(t) is a uniformly consistent estimate of K(t) on 
[0,T], that is __ 

lim sup \Cn(t) — K(t)\ = 0 in probability. 
n-*°°te[otT) 

Proof . 

=K«)+Jl E ^ r - H w*)=°i di<(s)- (3) 
Here JVfj(J) are square integrable martingales, with the same distribution as M(t) 
defined in the preceding part. They are mutually orthogonal, (.Mi,Mj)(t) = 0 for 
i / j , their variances are uniformly bounded on [0,T]. From Lenglart's inequality 
(cf. Andersen and Borgan [1], or Andersen et al [2], part II.5.2) it follows that for 
each 8, e > 0 and for sufficiently large n > n(8) e) 

(sup |ij>.(f)|>e) < i 
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This, together with the uniform convergence of - ^ assumed in Al,.leads to the 

convergence of sup | jjj £ ^777^. i n probability to zero. D 
te[o,T] ,-=i v ; 

Proposi t ion 3. Under Al the process y/n(Cn(t) - K(t)) converges weakly on 
[0, T] to a Wiener process (i. e. the continuous Gaussian process with zero mean and 
independent increments) which has the variance function W(t) = / ' ^fa(n2(s) + 
<r2(s))dH(s). 

P r o o f . From (3) we have that 

V^(cn(t) - i<(t)) = V^ fJ2 ^ r ~^f l^s) = °1 dA»-
Jo —[ 1\s) J0 

The convergence follows from the central limit theorem for martingales. We use the 
version stated in Andersen et al [2], namely Theorem II.5.1 (Rebolledo's). The proof 
requires two convergences in probability to hold, namely that for all t E [0,T] 

(i) (M<">)(.) - W(t), 

(ii) (Me
(n))(0 — 0 (Lindeberg condition). 

(i) Here M^n\t) = .,/n/„' £ " = 1 ^TJjf1- F r o m Proposition 1 and from Al it follows 
that 

= f(smmim!i±3iH{s)-,w(t) 
jo I(*)l" 

in probability, (i) is proved. 

(ii) By M(n)(<) = J o ' E L i $QiA*)dMi(8), with <?,•,,(«) = l[\^idMi(s)/I(s)\ 
> e], we mean the process (martingale) containing all jumps of M^n\t) larger 
than chosen e > 0. For "zero-one" random variables Qif€(s) we have from the 
Chebyshev inequality that, for each k = 1, 2 , . . . 

£(<2',( sMO) = P(QiA') = i|*(«-)) = 

= f { | ^ | > £ | S ( , - ) }<{»«^} d l l ( ! ) , (4) 
where the expression in brackets is of size Op (£-) uniformly in s G [0,T], 
as a consequence of Al (by the notation Bn ~ Op(an)) for sequences Bn of 
random variables and an of numbers, we mean that the sequence Bn/an is 
asymptotically bounded in probability). 
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From the conditional orthogonality of increments d(Mi, Mj)(s) for i i1 j , we 
obtain that 

( M £ ( " ) > ( 0 - / / ^ ^ ^ { Q , ? ' £ ( s ) ( d ^ , ( 5 ) ) 2 | 5 ( s " ) } ' 

Further, the Holder inequality yields that 

E{Qle(s)(dMi(s))2\S(s-)} < [E{\dMi(s)\3\S(s-)}]i • [E{Qlt(s)\S(a-)}]i. 

From our assumptions on the boundedness of (absolute) moments of vari
ables Y(s) up to the 3-rd moment it follows that E{\dMi(s)\3\S(s~)} = 
E{\Yi(s)\3}dL{(s) + 0((ds)2), taking into account that dLi(s) = h(s)I{(s)ds. 
Finally, we obtain 

(M™){t) <J*J^~ J2im(s)\3dLi(s) + O((d5)2)}§{Op(i)dLi(«)}" 

~ J* -^{E\Y1(s)\3h(s)ds}iOP(n-^)(h(s)ds)^ ~ j T ^0P(n-*)h(s)ds, 

which is of size Op(n~s) uniformly in t G [0,T]. This proves the condition 
(ii). a 

4. STATISTICAL TESTS 

In the following part, the asymptotic normality of the residual process will be utilized 
for the construction of statistical tests, namely the goodness-of-fit test and the test 
of homogeneity of two samples of cumulative processes. 

From two parts of martingale M(t) the first reflects the variability of Y's and the 
second equals fi(t)-times the 'residual' martingale known from the counting processes 
scheme. Hence, the variance function of residuals y/n(C(t) — K(t)) contains also two 
parts, expressed by a2 and /i2 . They can significantly influence the power of test 
procedures. Therefore, for the purpose of tests, we recommend to normalize the 
residuals, i.e. to divide them by y/a2 + \i2. 

4.1. The goodness-of-fit test 

Arjas [3] and later Volf [6] derived goodness-of-fit tests for the counting processes 
model, and generalized them for the case of hazard regression models (namely Arjas 
considered the Cox model, Volf a general case of hazard regression model and the 
Aalen model). From this point of view, the case considered here is much simpler, 
because the regression is not involved. 

Let the model be given by functions H(t), /j(t), cr2(t), we want to decide whether 
the data correspond to it. The data are represented by the observed trajectories 
Ci(t) and indicators /j(tf), i = 1 , . . . , n. The tests are quite naturally based on the 
comparison of Cn(t) with expected A'(f). The process of differences C n ( 0 - K(t) is 
called the residual process. 
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Graphical tes t : Let us order all moments of events into one nondecreasing sequence 
rp 

Tjb, k — 1,. . ., K. For a graphical comparison, we plot K(Tk) = f0

 k fi(s) dH(s) and 
C(Tk) into one figure, against k on the abscissa. If the model fits the residual 
process is a martingale asymptotically tending to zero. Then it is expected that 
both plots will be close to each other. An opposite case (i.e. an increasing distance 
of both curves) indicates that the model K(t) does not correspond to the data. Of 
course, a more precise test will need a specification of critical limits for the distance 
of compared curves. Such critical bounds can be derived from the large sample 
properties, for instance in the following way. 

Numerical tes t : Numerical test is based on asyniptotic distribution. Define the 
normalized residual process by 

f4S , d(Cn(s) - K(s)) 
in(t) = / 

Jo vУO)+ «--(«) 

From Proposition 3 it follows that y/nRn(t) is asymptotically distributed as a Wiener 

process with the variance function V(t) = J0 dH(s)/r(s). Then the process 

Dn(t) = y/HRn(t)/(l + V(t)) 

is (if the model holds) asymptotically distributed as a Brownian bridge process 
B((V(t)/(l + V(t)), in t G [0,T]. Hence, a test of Kolmogorov-Smirnov type can 
be used. From the theory of Brownian bridge it follows, for instance, that for any 
d > 0 , 

P (maxDn(t) >d)=P (minD n (z) < -d) « exp(-2d 2) 

approximately. So that the value exp(—2d2), where d is the observed max* |Dn(Tjb)|, 
is an approximate P-value for the test of hypothesis of the goodness-of-fit against a 
proper one-sided alternative. Unknown limit function r(s) needed for computation 
of V(t) is consistently estimated by I(s)/n from Al. 

4.2. Test of homogenei ty 

Besides the goodness-of-fit tests, we can also consider the tests of homogeneity. They 
compare two (sets of) realizations of the process. Both graphical and numerical 
comparison can be based on slight modifications of the methods described above. 
On the other hand, the performance of a test of homogeneity is influenced by the 
fact that, as a rule, certain characteristics of the joint model have to be estimated. 
The properties of the test procedure then depend strongly on the properties of the 
estimator. 

Let us consider two independent sets of cumulative processes, C\ (t)) k = 1,2, 
i = 1,2,..., mfc, each representing a certain model characterized by H(*)(t), ^k\t), 
a(k\t). The test of homogeneity assesses the hypothesis Ho that H^k\t)y //*)(*), 
<r(k\t) are the same for k = 1,2, on a given interval [0,T]. To confirm it, we analyse 
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the averaged processes 

rt mk v ( f c ) ^ = ^ M ä l r t ) > ł 

and their difference 

yHp{c<"(()-c<2'w} 

where m = mi -f m 2 . Let us now assume that: 

1. H0 holds, so that K^(t) = I<W(t), fi,<T and H are common for both pro
cesses. 

2. mi, m 2 tend to infinity in such a way that ^ - —> a £ (0,1). 

3. Assumption Al is fulfilled for both sets of processes (possibly with different 
Ak\s)). 

Then, from Proposition 3 it follows that 

'*(&%)-&2\s)) / m i m 2 ľ 

V m Уo VV(-0 + *2(«) 
(5) 

tends weakly to the Wiener process with zero mean and variance function V*(t) = 
( l - a J ^ W + a ^ i ) , where V<<k\t) = /0*d.ff(s)/r<*)(s), A: = 1,2- In order 
to estimate (5), we need the estimates of joint characteristics of the processes. As 
regards H(t), the Nelson-Aalen estimator is available, cf. part 3.1. The moments 
fi(t) and cr2(t) can be estimated e.g. with the help of the moving window (or kernel) 
approach. We can then compute (approximately) the test process 

( 1 )(s)-č<2 )( 
v V ( * ) + *-(*) 

ад^ľWpiдHV,,,,, (6) 

which again behaves asymptotically as the process of Brownian bridge. Therefore, 
the test of J3"o is then performed in a quite similar way as the goodness-of-fit test, i. e. 
by evaluation of d = max|F)m(<)| on [0,T] and taking exp(—2d2) as an approximate 
P-value of the test against a one-sided alternative. 

5. EXAMPLE OF THE TEST OF HOMOGENEITY 

As an example, let us consider one-day processes of financial transactions performed 
via credit cards at two different gas stations, both for mi = m 2 = 100 days. We 
follow both the number of transactions (forming the counting process) and also the 
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cumulation of transferred amounts (from this we obtain the cumulative process), t G 
*) , /-<*)/ [0,24] hours. Figure 1 contains the averaged processes IV (/) — ^YlT=i^i (0 

and estimated corresponding hazard functions h(k\t), k — 1,2. Estimates of haz
ard function were obtained from the estimated cumulative hazard functions by a 
smoothing (kernel) technique. 

Stations 5541 —-, 5542 -

1.5 

10 15 
t (hours) 

Fig. 1. Averaged counting processes and estimates of their hazard rates. 

Figure 2 shows the averaged cumulative processes C (t) — -^- Y^=i Q (0> 

and estimated and smoothed derivatives of functions I<(k\t). 
From the graphical comparison we already see the difference between both sets 

of processes. By the numerical test of homogeneity computed in accordance with 
(6) we obtained that the minimum of Dn(t) was -3.841, which was highly significant 
(P-value was ~ 10~13). Functions fj,(t) and v2(t) were estimated with the aid of the 
moving window procedure, H(t) by the Nelson-Aalen estimator. 

6. CONCLUSION 

The main advantage of the counting processes is their dynamics resulting from the 
conditioning the actual intensities by the history of the system. This area of statis
tical methods has a well developed theoretical background as well as the techniques 
of computational analysis. 

The main purpose of the paper was to describe and analyze the random process 
(called here the cumulative process) consisting in the combination of the counting 
process with the process of random increments. Such models are suitable for descrip
tion of many real-world technological, environmental, biological (and also financial) 
processes. We derived tools for modelling and statistical analysis of such situations, 
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namely we proposed the est imator of the rate of the cumulative process and proved 

its large sample properties. These properties were utilized in the proposal of proce

dures for the test of agreement of the d a t a with the cumulative process model and 

for the tests of homogeneity of two cumulative processes. 

As regards the generalization of the case studied in the present paper, the first 

one should consider a functional model for the hazard function describing also the 

influence of the history of Ci(t) on the actual intensity. For instance, regression mod

els (variants of Cox model, say) are available for such a case. Another generalization 

should omit the assumption of the independence of variables Yi(t) on the history 

and should deal with increments generated by a specific random process model. 

15000 

.г?10000 
Ü 

1 
rt 5000 

Stations 5541 —-, 5542 
15000 

.г?10000 
Ü 

1 
rt 5000 

n 
^^Л^——" 

10 15 20 25 

1000 

10 15 
t (hours) 

Fig. 2. Averaged cumulative processes and estimates of their rates. 
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