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FURTHER RESULTS ON SLIDING MANIFOLD DESIGN 
AND OBSERVATION FOR A HEAT EQUATION 

E N R I Q U E B A R B I E R I , S E R G E Y D R A K U N O V AND J . F E R N A N D O F I G U E R O A 

This article presents new extensions regarding a nonlinear control design framework 
that is suitable for a class of distributed parameter systems with uncertainties (DPS). The 
control objective is first formulated as a function of the distributed system state. Then, 
a control is sought such that the set in the state space where this relation is true forms 
an integral manifold reachable in finite time. The manifold is called a Sliding Manifold. 
The Sliding Mode controller implements a theoretically infinite gain but with finite control 
amplitudes serving as an effective tool to suppress the influence of matched disturbances 
and uncertainties in the system behavior. The theory is developed generically for a finite 
dimensional Jordan Canonical representation of the DPS. The controller manifold design 
is described in detail and the observer manifold design can be described in a dual man
ner. Finally, the control law is expressed in terms of the distributed state. However, in 
a temperature field control problem motivated by a robotic arc-welding application, the 
simulations presented are done in the standard manner: a reduced-order finite-dimensional 
model is used to design the controller which is then implemented on a higher-order, still 
finite-dimensional (truth) model of the system. An analysis of the potential spillover prob
lem shows the effectiveness of our approach. The article concludes with a brief description 
of the development of an experimental setup that is underway in our Control Systems Lab. 

1. INTRODUCTION 

We are developing an implementable theory of stable integral manifold synthesis 
for control and observation problems for a general type of distributed parameter 
systems (DPS). The first step is to design a manifold which defines control goals 
and specifications as a function of the system states. Therefore, when the s tate is 
confined to the manifold by a suitably chosen control, the required goals are achieved. 
This general problem sta tement is seen to consist of three parts : 

1. Manifold Design: the requirements are written as a function of the system 
states. 

2. Control Design: a controller is specified which forces the states to the manifold 
and maintains them there. At this stage, one assumes the availability of the 
state vector. 
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3. State Estimator Design: an observer is specified to implement the controller. 

Typical examples of DPS include nonlinear diffusion equations modeling the evo
lution of the temperature field in arc welding, and Euler-Bernoulli or Timoshenko 
equations modeling the vibrations of a flexible manipulator. The main difficulties 
to control these systems are complexity and strong uncertainty. Although one can 
assume for simulation purposes that the geometry and properties of the heated ma
terial are known, or that the manipulator payload is negligible, in practice they 
may vary in a wide range. For these reasons, the control engineer selects a simpli
fied DPS model together with a suitable set of boundary conditions that describe 
a closely-related problem. For example, a flexible maiiipulator with a payload may 
be modeled by an Euler-Bernoulli beam equation with clamped-free boundary con
ditions. In arc-welding applications, one may select 2D or 3D heat equations on a 
plate with Dirichlet-Neumann boundary conditions. After the simplified DPS model 
is selected, one solves the associated eigenvalue/eigenfunction problem and invokes 
the assumed-mode method [9, 3] to derive a model for the original system. The 
resulting model comprises a theoretically infinite number of uncoupled differential 
equations for the so called system modes. In practice one truncates the model for 
controller design and simulates on a higher dimensional model so that the effect of 
unmodelled dynamics or spillover effects can be examined. This familiar technique 
of truncated modal expansions is therefore seen to lead very naturally to a finite 
dimensional model in the Jordan Canonical Form. In our work we allow the state 
vector of the finite dimensional model to evolve in the complex vector space Cn for 
convenience. The spectrum of the system matrix may consist of real and complex, 
simple and repeated eigenvalues, with complex eigenvalues appearing in complex 
conjugate pairs. 

The sliding mode control methodology is well developed for finite dimensional 
systems (see, for example [4] and references therein) but relatively very little has 
appeared in the literature for infinite dimensional systems [5, 8]. The appeal of the 
sliding mode controller is its natural insensitivity to matched disturbances and pa
rameter variations thereby providing robustness to the controller. We are interested 
in employing this design methodology for DPS as applied to the specific engineering 
problem of robotic arc-welding [2, 6, 7]. The design idea is based on the following 
procedure: in order to solve a control problem such as the stabilization of the weld 
width or heat penetration, we reformulate these objectives as a certain function 
of the system states which defines a desired manifold [7]. A control is found such 
that the set in the state space where this relation is true forms a sliding manifold, 
that is, an integral manifold reachable in finite time. The sliding mode algorithm 
implements a high (theoretically infinite) gain needed to keep the state on the man
ifold and as a result, the influence of disturbances and uncertainties in the system 
behavior is suppressed. 

The remainder of the article is organized as follows: Section 2 describes the 
general model of DPS that is being considered and its finite dimensional model in the 
Jordan form; Section 3 introduces two transformations that convert the model to the 
phase-canonic form where the design of the sliding surface becomes very natural and 
transparent; Section 4 details the design of the controller sliding manifold; Section 5 
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provides the control law synthesis and stability analysis via a standard Lyapunov 
argument; Section 6 illustrates the results by simulation, describes the development 
of an experimental setup, and takes a glimpse at the spillover problem; and Section 7 
draws several conclusions and lists topics for further research. 

2. DISTRIBUTED PARAMETER SYSTEM MODEL 

The distributed parameter systems (DPS) under consideration evolve in a Banach 
space W with norm || • || and governed by partial differential equations (PDE) of the 
form 

^ | ^ = AQ(t, x) + F(t, x) + b(x) u(t), (1) 

where Q is the state, F(t,x) (continuous in t) is a vector of disturbances that, like 
b(x), belongs to the class Cl(Q.) of continuously differentiable functions of x e fi, 
where Q e R3 is a spatial region with a smooth boundary <9f2. The system is 
controlled by a scalar control input u. The standard restrictions on A are that it is a 
closed, linear, differential operator, that generates a semigroup of strongly continuous 
bounded operators eAt defined for t > 0 [11]. The natural and geometric boundary 
conditions imposed on (1) render the corresponding boundary value problem well 
posed with a unique solution for x e fi and t > 0. 

The operator A has eigenvalues fij and normalized eigenvectors <j>j(x), j = 1,2,... 
(||0j|| = 1) that satisfy the equation 

A(j>j(x) = ^(j)j(x). (2) 

Although one is usually concerned with real, self-adjoint, linear operators [12, 10] 
which are known to have real eigenvalues and eigenvectors, we allow for generality 
in the system description (1) operators which may have pairs of complex conjugate 
eigenvalues and eigenvectors as well. Using the standard technique of separation of 
variables it is possible to write the solution of system (1) in the form of an infinite 
series 

oo 

Q(tyx) = Y,<i>j(x)<l&), (3) 
i= i 

where qj(t) are scalar functions of time known as modes. The state vector q(t) = 
[qi </2 • • •] satisfies the system of ordinary differential equations 

q(t) = Jq(t) + bu + f(t) (4) 

where the system matrix J is comprised of Jordan blocks on the diagonal, 

J = blockdiag{Ji, J2,...} 

and 6 = [&i, 6 2 , . . . ] ' e I2 and f(t) = [fi(t)y f2(t),...]' e I2 are obtained by expanding 
b(x) and /(tf,x), respectively, in terms of the eigenfunctions </>j> Clearly, a compo
nent in 6 corresponding to a complex eigenvalue Aj, has a complex conjugate entry 
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corresponding to A!-. Each block Jj can be of the form 

гл;- 1 0 0 ' 
0 X, 1 . . . 0 

Jj = 0 

. 0 0 
. . . *i 

0 

1 

(5) 

for repeated eigenvalues, or 

(6) Jj = [Ay].. 

for distinct eigenvalues. For example, the differential operator associated with a 
cantilever Euler-Bernoulli beam with constant parameters defined by 

AW=-aWW 

is an unbounded, positive, self-adjoint operator with positive eigenvalues fij. The re
sulting modal differential equations are of the form (4) with eigenvalues Xj = ±Jy/PJ. 
In the case of a slewing beam or flexible robotic manipulator, an additional degree 
of freedom called "rigid" mode is characterized by the twice repeated eigenvalue 
Ai = 0 . 

Finally, in the ideal situation we require the following assumption to hold 

/(*) G Range{6} — f(t) = bg(t) 

which is known as the Matching Condition in the Sliding Mode Control literature. It 
basically restricts the admissible perturbations to those entering the system through 
the input channels. 

In summary then, we are led to consider a linear, time-invariant, controllable 
system in the Jordan Canonical form 

q = Jq + b(u + д(t)). (7) 

Due to physical implementation constraints, in the development that follows we 
consider the finite dimensional version of (7). Consequently, the model retains IV 
modes, q is of dimension n, and each Jj is of size nj > 1 such that rai+ri2+- • .+njy = n. 

3. PHASE CANONIC VARIABLES 

The model derived in the previous section is transformed to phase canonic variables 
(controllable canonic form) for which the manifold design becomes transparent. To 
that end, we introduce the following two transformations 

q = T(а)q 

= V-Xz (8) 
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where V is defined below and 

T~l(a) = blockdiag{T1-1, I?1,..., T^1} 

where TV"1 (a) £ cniXni are upper triangular matrices of the form 

т - i = 

OÍÌI OLІ2 a i з a i 4 

0 aц ai2 aiз 

0 0 aц ai2 

<*i,nt 

ai,nt-l 

<xi}ni-2 

0 0 0 an 

for blocks corresponding to repeated eigenvalues, or 

T-1 = [aa] 

for blocks corresponding to distinct eigenvalues. 
The new system of equations are found to be 

z = VJV~lz + VT~xbu = Az + e{u + g(t)) (9) 

where the pair {A, e) is in the standard Phase Canonic (controllable) form, that is 

A-

and det(AI - A) = Xn + hn-i\n"1 + ... + h0. The transformation V in (8) is a 
Vandermonde matrix of eigenvectors and generalized eigenvectors of A. 

Such a construction can be done by selecting the vector a in the transformation 
T(a) as shown next. The vector 6 is partitioned as 

b= [b[, b'2) ... , 6 ^ ] 

0 1 o - " 0 

0 0 0 0 

0 0 1 ; e = 

-Лo -hx . • —Һn-\- ì 

where 

Let 

bk = [ЬJЫ, bk2) bk3ì . . . , ЬkìПk] . 

B = blockdiag{5i, H2,..., BN} 

with each block Bi given by 

BІ = 

bц 
Ьi2 

Ьi2 

6ѓЗ 

bi,Пi o 

bi,m 
0 

0 

Then, 
a = B--V-le 

The following proposition answers the question of invertibility of matrix B. 

(10) 
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Proposition 1. If the pair {J, b] is controllable, then matrix B is invertible. 

P r o o f . The necessary and sufficient conditions for the pair {J,6} to be control
lable are that 

- any two blocks J,- a n d J / , i ^ j , have dist inct eigenvalues; 

- n o n e of t h e entr ies 6,7 in b corresponding t o t h e last row of each J o r d a n block 
be zero. 

It can be easily seen t h a t 

det(5) = rj,.(Mn<-

Thus, controllability ensures solvability of (10). D 

The following example should clarify the construction of T(a), V, and the calcu
lation of a. Let 

j = 

Лi 0 
0 A2 

0 
0 
0 

0 
0 

Aз 
0 
0 

0 
0 
1 

Aз 
0 

Then, the transformation T is given by 

т - i = 

and the matrix B is given by 

в = 

oц 0 

0 
0 
0 
1 

Aз 

0 

bu 
62i 
631 
Ьз2 
bзз 

bu 
0 
0 
0 
0 

«21 0 
0 
0 
0 

0 

621 
0 
0 
0 

<*31 <*32 £*зз 
0 «31 <*32 
0 0 £*зi 

0 0 0 
0 0 0 

bзi 632 bзз 
bз2 bзз 0 
633 0 0 

(П) 

The Vandermonde matrix of eigenvectors for the companion form corresponding 
to matrix J in (11) is given by 

V = [ Vг V2 Щ V2 vз ] = 

1 1 1 0 0 
Ax A2 A 3 1 0 
\\ \\ \\ 2A 3 1 
Ai A2 A 3 3A3 0A3 
\\ \i \i 4Ai 6A1 

It can be verified that VJV"1 = A with A in phase canonic (companion) form. 
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4. CONTROL MANIFOLD SYNTHESIS 

The first step in the control design is to consider a linear, time-varying manifold in 
the state space of system (9) defined by 

S = 7i*i + . . • + 7n-l*n-l + Zn - w(t) = 0. (12) 

We now prove the main result of this article: 

Theorem 1. Denote by P(A) a desired, Hurwitz, closed-loop characteristic poly
nomial written as follows: 

P(A) = A n- 1 + 7„- iA n - 2 + . . . + 7 2A + 71- (13) 

Consider A;- an eigenvalue of J and compute the polynomials Pk, k = 2, 3 , . . . , n;-

A(A) = P « . 
If the control u in system (7) is such that the state q belongs to the time-varying 
manifold 

S={qeCn : Kq(t) - w(t) = 0} (14) 

for t > t\j then the coefficient vector K is given by 

к = Ei(Ai)P2(A1)...P1(A2)P2(A2) 

П 2 

. • V. 

П l 

т-\ (15) 

P r o o f . Since the control u is such that S = 0 for t > t\, then, from (12) we have 

Zn = -7iZi - . . . - 7n-l*n-l + W(t), (16) 

and the dynamics of the closed loop system restricted to S are described by 

i i = z2 

\ \ (17) 

i„_i = - 7 i * i - . . . - 7„_i*„-i + w(t). 

which indicates that 7 i , . . . , 7 n _ i are the coefficients of the characteristic polyno
mial (13) for the free motion of the system constrained within the manifold. 

Now, let us return to the original state variable q. The function S can be writ
ten as 

r *i 

*2 

S= [ т i , - . , T n - i . l ] — w(t) = y'z — w(t). (18) 
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or equivalently, 
S = YVT-1q-w(t) (19) 

from which the result follows as we observe that the product y'V can be written as 
shown in (15). • 

R e m a r k . We show next that (15) is equivalent to Ackermann's Pole Placement 
formula. For brevity we show this for a second order Jordan system. Ackermann's 
formula [1] for a gain vector K in the full-state feedback law u = Kq for system (7) 
can be written as follows 

K = e'C-l(J,b)Pdes(J) (20) 

where C(J, 6) is the Controllability matrix of the pair (J, 6), and Pdes denotes the 
desired closed-loop characteristic polynomial. Using the notation in this paper, it is 
straightforward to verify that 

K = e'(V')-1(B')-1Pdes(J) = a'Pdes(J) 

Pi(Ai) P2(Ai) 
0 Pi(Xi) 

= [«i a2] = [A(Ai) Л(Ai)]Г - ì 

5. CONTROL DESIGN 

Let us assume that the control u in (1) is such that it steers and keeps the state Q 
on the manifold 

S(t, Q) = J a(x)Q(t) x) dx - w(t) 
Jd 

= (a(x),Q(t,x))Li-w(t) = Q. (21) 

Then 
N 

S = £>(<) M*)' h ^ v - (̂0- (22) 

Comparing (22), (14), and (15) we obtain that, to guarantee the desired dynamics, 

N 

a(x)cj>j(x)dx = Kj => a(x) ^^Krf^x) (23) 
i = i 

/ 
Jft 

that is, the function c(x) is easily resolved by invoking the orthogonality property 
of the eigenfunctions <f>j(x). 

The general expression for the control law can be written as 

u = -(<r(z), b(x))ll
2 (A<r(x), Q(t, x))L2 - g(t) + v(S), (24) 

where v(S) is any function continuous or discontinuous such that Sv(S) < 0. In this 
case, differentiating (21) and using (1) and (24) we obtain 

S = -v (S) (25) 
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which guarantees convergence S —> 0. If g(t) cannot be measured as it usually 
happens in practice, then let v(S) = —Msign(S). In this case the control law 

u = -(<T(X),b(x))ll(Aff(x)tQ(t, x))L* - Msign(S), (26) 

results in S = —M sign(S) + g(t) and convergence is guaranteed if \g\ < M, that is, 
if the control magnitude M dominates the bound on the disturbance vector g. 

5.1. Observer design 

The problem of designing an observer can be treated as the dual of the controller 
design. Due to space limitations however, the details are not included in this paper. 

6. A TEMPERATURE FIELD CONTROL PROBLEM 

Within the broad class of systems discussed in this article, we consider a parabolic 
partial differential equation in two spatial dimensions modeling the heat diffusion in 
a plate. The experimental setup we are developing is illustrated in Figure 1. 

Fig. 1. Experimental testbed. 

It consists of a thin square aluminum plate instrumented with 13 thermocouples 
for temperature measurements. The planar manipulator holds a heating element 
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with its end-effector that is used as the heat input. The motivation is a robotic arc-
welding application. The controller is synthesized using the SIMULINK environment 
and implemented in a DSP board by dSPACE. In this article we only report on 
simulation results. 

The operator A is the Laplacian defined in L2(Q) which, together with Dirichlet-
Neumann boundary conditions, is known to be a positive self-adjoint operator with 
positive (real) eigenvalues Aj, j = 1,2,... and normalized eigenfunctions <f>j(x), j = 
1,2,... forming an orthonormal basis for the Hilbert space L2(Q). 

Figure 2 is a Simulink diagram of a controller/observer simulation for a finite 
dimensional model of a heat equation. The simulation model contains 20 modes 
(see block DPS with NMODES) wTith eigenvalues ranging from Ai = —0.1 to A20 = 
— 10. These numerical values were chosen to facilitate the simulation runs. The 
controller/observer is designed from a model that includes only the first 10 modes. 
The output of the simulation model contains the influence of all 20 modes and is 
used to generate the observation error y — y that drives the observer signum block. 

Fig. 2. Simulink diagram of a heat equation with sliding mode controller and observer. 

Figures 3 through 6 illustrate a typical simulation run. The plots clearly show 
that sliding occurs after a finite convergence time and the 20 mode-model remains 
stable. 

6.1. A glimpse at the residual modes 

The simulations presented in this section could present a potentially destabilizing 
effect known as spillover. The effect is basically caused by the unmodelled dynamics 
that are present in the simulation model and that were not included in the controller 
design. In what follows, we provide a preliminary result along the lines of spillover 
analysis. 
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Consider the following infinite dimensional model 

X = 

Y 

л m 0 
0 л r 

= [CmCr]X 

Xm 

Xr 
+ 

Ьm 

W («(*)+*(*)) (27) 

where the subscript m denotes modeled and the subscript r denotes residual. There
fore, Xm £ Rm and in practice, one would consider Xr £ Rr where r >• ra. 

The design of a sliding mode controller/observer pair discussed in the simulations 
section leads to the following sliding surface dynamics 

l'bm + (ІL)(CmL)-lCrbr 0 
O f Ø r —O771L/ + 

El 
E2 

(28) 

where S is the controller sliding function, a is the observer sliding function, the 
respective control/observer inputs are u and v, the observer gain matrix is L, and 
Fi and F2 are disturbance functions. 

In order to design a sliding mode controller of the form u~ M sign(S) in the first 
equation of (28), it is necessary that the sign of the coefficient of u be known. Upon 
examining (28), we establish the following fairly conservative bound that makes the 
coefficient of u positive. The bound also provides a guideline in the selection of L 
and of the relative sizes of ra and r, that is, the modeled and residual subsystem 
sizes: 

Proposit ion 2, If 
\\Crbr\\ < \\(ÍL)(CmL)-'\\ 

then the coefficient of u in (28) is positive. Moreover, the observer gain L may be 
selected in accordance with the following mini-max problem: 

minmaxA[ L(CmL)-l(CmL)-'L1 ] 

where A() is an eigenvalue of the indicated matrix. 

We observe that the above proposition also gives an indication of how to tackle 
the sensor placement problem. This direction is currently being investigated. 

7. CONCLUSIONS 

We have investigated the problems of control and observation designs for a class of 
distributed parameter systems. In particular, we write the system in the Jordan 
canonical form and develop a formula for the sliding manifolds. The main result 
states that the manifolds can be synthesized in terms of the desired closed-loop 
characteristic polynomial evaluated at the known open-loop eigenvalues. This result 
was initially reported at the 1997 American Control Conference by Drakunov et 
al [6] for the special case of a diagonal system matrix. The recent work in 1998 by 
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Ackermann and Utkin [1] makes a connection between the manifold design problem 
and Ackermann's formula for eigenvalue placement. The connection between our 
result and Ackermann's formula is also shown. Simulations are included for a heat 
equation and a brief analysis of the spillover problem is presented. Further research 
efforts are underway to (1) obtain experimental results on a square plate temperature 
control problem; (2) to tackle the sensor placement problem using Proposition 2; 
and (3) to apply the results of this paper to an arc-welding problem for weld-quality 
control. 
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