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AN EFFICIENT COMPUTATION OF THE SOLUTION 
OF THE BLOCK DECOUPLING PROBLEM 
WITH COEFFICIENT ASSIGNMENT OVER A RING 

JEAN ASSAN AND ANNA M. PERDON 

The paper presents procedures to check solvability and to compute solutions to the Block 
Decoupling Problem over a Noetherian ring and procedures to compute a feedback law that 
assigns the coefficients of the compensated system while mantaining the decoupled structure 
over a Principal Ideal Domain. The algorithms have been implemented using MapleV® 
and CoCoA [7]. 

1. INTRODUCTION 

Systems over rings have recently received a renewed attention, since they appear 
to be useful in describing various classes of systems such as, for instance, delay 
differential systems and systems depending on parameters. A number of control 
problems such as the Disturbance Decoupling Problem, the Model Matching Problem 
and the Block Decoupling Problem for systems over rings are known to be solvable 
in theory using geometric methods [8, 9, 10, 13, 14, 16]. 

An obstacle to the practical implementation of such methods is represented by 
the fact that the algorithms usually employed for linear systems over a field do not 
work when the coefficients of the systems belong to a ring. However, new geometric 
algorithms have recently been found (see [2, 3]), and tools for symbolic computer 
algebraic computations, such as MapleV®, Matematica® and CoCoA [7], allow us 
to implement them. 

In this paper we describe a number of procedures, implemented using MapleV and 
CoCoA, that check the solvability conditions of the Block Decoupling Problem, and, 
in case of positive answer, compute the state feedback which achieves the decoupling 
for systems over a Noetherian ring. 

In the case of a Principal Ideal Domain, if the coefficients or the poles of the 
closed loop system have to be assigned in order to assure, for instance, stability, 
a further procedure computes a feedback which achieves the coefficient assignment 
while maintaining the decoupled structure. 

The paper is based on the results of [10] for the solution of the Block Decoupling 
Problem using the geometric approach and on the results of [11] and [5] on the 
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Coefficient Assignment Problem. An application to the Block Decoupling Problem 
with stability for delay differential systems with a finite number of incommensurable 
delays is given in the examples. 

2. PRELIMINARIES AND STATEMENT OF THE PROBLEM 

Let £ be the system defined over a ring R (commutative, with identity, without zero 
divisors) by 

J x(* + l) = Ax(t) + Bu(t) 

{ y(t) = Cx(t) (1) 

where x(-) belongs to the free state module X = Rn, u() belongs to the free input 
module U = Rm

i y(-) belongs to the free output module y = Rp, and A,B,C are 
matrices of suitable dimensions with entries in R. 
A good reference for the reader who is not familiar with algebraic notions such zero 
divisors, Principal Ideal Domain, Noetherian ring e tc is [15]. 

Let us assume that the output of (1) splits into k blocks, k > 2. Writing y, £ 
y{ := 7£Pl, i = 1 , . . . , k with ]>2i_i p% = p and y = y\®.. .©^jb, the output equations 
of (1) read as 

W Vi(t) = dx(t), i=l,...,k, (2) 

where C» : X —• ^ , , i = 1 , . . . , k are matrices of suitable dimensions with entries in 
R. Then our problem can be stated as follows. 

Prob lem Statement . Given a system £ of the form (1), (2), the Block Decoupling 
Problem for E, shortly BDP, consists in finding, if possible, suitable integers na and 
m , , i = 1 , . . . , A:, and a dynamic state feedback law of the form 

( xa(t+l) = A1x(t) + A2xa(t) + Y?i=iGaiVi(t) 

\ u(t) = Fxtf + Hx^ + YlUiGM*) 

where xa £ Xa := Rn*, Vi £ Rm*, i = 1,.. .,k, A\, A2, F} / / , Gj and Ga» are matrices 
of suitable dimensions with entries in the ring 72, such that in the compensated 
system X.F.G 

x(t + l) = (A + BF)x(t) + BHxa(t) + J2ki=lBGiVi(t) 

XFfG=\ xa(t + l) = AlX(t) + A2xa(t) + Y!l=lGaiVi(t) (4) 

Vi(t) = dx(t), 1 = 1 , . . . , * 

each block input Vi completely controls y,-, but has no influence on the output yj for 
j ^ z*, i = l , . . . , fc . 

In case it is also required that the coefficients of the characteristic polynomial of 

( A 4- RF Rf-f \ 
A . J are assigned, we will speak of BDP with Coefficient Assignment 

and will modify accordingly the previous definition. 
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For systems with coefficients in a field, the solvability of the BDP can be charac
terized in terms of controllability subspaces (see [17]). For systems with coefficients 
in a ring, it is more convenient, in order to avoid problems connected with the defi
nition of controllability submodules (see [9]), to use pre-controllability submodules. 

Definition 1. (see [9]) Given a system E described over a ring R by equations of 
the form (1), a submodule TZ is a pre-controllability submodule if 

i) 1Z is (A, £)-invariant, i.e. A1ZC1Z + ImB ; 

ii) TZ is the minimum element of the family 

Sn = { 5 C I s u c h that S = 1Z n (AS + Im B)}. 

Pre-controllability submodules which satisfy the strong condition of being (A, B)-
invariant submodules of feedback type, i.e. such that (A + BF)1Z C 7Z for some 
static state feedback F : X —> £/, are controllability submodules in classical sense. 
In general (A) 5)-invariance does not imply (A) L?)-invariance of feeback type and, 
to this regards, it is of crucial importance the following result. 

Proposition 1. [9] Let E be a system defined by (1) over a Noetherian ring R. 
Then, an (A, 5)-invariant submodule of the state module X = Rn which is a direct 
summand of X is an (A, 5)-invariant submodule of feedback type. 

An important consequence of the above Proposition is that, by using a suitable 
extension of the system E, one can always expand an (A, 5)-invariant submodule into 
an (A, J3)-invariant submodule of feedback type in the extended system (see [9]). In 
other words, this means that an (A, Z?)-invariant submodule can be made invariant 
by using a dynamic feedback. 

We can state the following result about the solvability of the BDP, whose proof 
can be found in [10]. 

Theorem 1. [10] Assume that the system E, defined over a Noetherian ring R by 
(1) and (2), is reachable. Let 1Z\ denote the maximum pre-controllability submodule 
of E contained in /C, := n*= 1 J?£lKer Cj. Then, the Block Decoupling Problem with 
Coefficient Assignment is solvable for the system E if and only if 

TZ! + KeiCi = Xt t = l , . . . , i b . (5) 

In practical terms, to check the above solvability conditions for the BDP one has 
to compute a number of pre-controllability submodules. Since classical geometric 
algorithms (see [17]) do not converge in a finite number of steps over a ring, new 
"ad hoc" algorithms for the computation of maximal pre-controllability submodules 
have been introduced. 
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Proposition 2. [2] Let E be a system defined by (1) over a PID R and let V C X 
be a submodule. Then, the sequence {TZ}} defined by 

f n\ :=S*(lmB)nV 
S (6) 
[ n1

k:=s*(imB)nvnA-l(nl_l+imB), 
where S*(lmB) is the maximum submodule of X containing ImB and verifying 
A(SnKer C) C 5, converges in a finite number of steps towards 7£*(V), the maximum 
pre-controllability submodule contained in V. 

Recently, the following more general algorithm was obtained. 

Proposition 3. [3] Let £ be a system defined by (1) over a Noetherian ring R 
and let V C X be a submodule. Then the sequence {It}} defined by 

J n\ — ^ ( i m ^ n v n A - ^ i m B ) 

\ n\ :=S*(lmB)nVC)A-1(nl_l + lmB), 

where S*(lmB) is the maximum submodule of X containing ImB and verifying 
j4(SnKer C) C 5, converges in a finite number of steps towards n* (V), the maximum 
pre-controllability submodule contained in V. 

The above algorithms and the results mentioned in Theorem 1 allow us to com
pute practically a solution to the BDP with Coefficient Assignment when one exists. 

3. THE ALGORITHMS 

The procedures we describe in this section allow one to check the solvability condi
tions of the BDP for a system £ described by (1) and (2) over a Noetherian ring. 
In case of positive answer a feedback which decouples the system is computed. If 
the ring is a PID, it is also possible to assign the coefficients, or the poles, of the 
closed loop system and a feedback is computed which achieves coefficients or pole 
assignment, while mantaining the decoupled structure. 

3.1, Checking the solvability conditions 

PID case. In order to check conditions (5) one has to compute the elements of the 
sequence {R>}} using Algorithm (6). This requires the computation of the sum of 
two submodules, of the intersection of two submodules and of the inverse image of a 
submodule by a linear map. Over a PID a submodule V of a free module Rn is free 
and can be described by a generating-matrix V, namely a matrix whose columns are 
a minimal set of generators for V. It can be shown that 

i) Let S = P ( Vx | V2 ) Q = ( * J V be the Smith Form of the matrix 

( V\ | V2 ) with P and Q unimodular, V\ and V2 generating matrices of Vi 
and V2 respectively. Writing Q = ( Q\ Q2 ), we have that the matrix 
W = P ( V\ | V2 ) Q\ is a generating matrix for the submodule Vi + V2\ 
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ii) denoting by I\i2 a generating matrix for the Kernel of ( V\ \ — V2 )> a gener
ating matrix for Vi C\ V2 is given by the matrix ( In | 0 ) I\i2; 

iii) denoting by KA\ a generating matrix for the Kernel of ( A \ —V\ ) , a gener
ating matrix for ^4_1(Vi), the inverse image of Vi by A} is given by the matrix 
( In I 0 )KAi. 

Using MapleV, each of the elementary procedures mentioned above, including 
the construction of the Smith Form, can be implemented. Then, the elements of 
the sequence {7Z}} can be computed using Algorithm (6) and conditions (5) can be 
practically checked. 

Remark that the computations are carried on in a symbolic way and therefore no 
numerical approximation is involved. 

Noether ian case. In the more general case of systems over a Noetherian ring 
R) more sophisticated tools are needed, since submodules of a free module are not 
necessarily free and the Smith Form is no longer available. In general, a submodule V 
of Rn can be characterized by a generating matrix V whose columns form a Grobner 
Basis for V (see [6]). In order to deal with the general case, we'll need to consider the 
module of all the solutions of an homogeneous system of linear equations Vw = 0 
with coefficients in the ring, called the Syzygy module of IV. More precisely, let us 
state the following Definition. 

Definition 2. [1] Given the vectors v l r .. ,vs £ Rn
) a syzygy of the n x s matrix 

V = [v\ • • • vs] is a vector w G Rs such that Vw = 0. The set of all such syzygies is 
called the Syzygy module of V. 

To construct the elements of the sequence {Rf} using Algorithm (7) one has to 
compute the sum of two submodules and the intersection of two ideals or of two 
submodules and to determine if an element, or a vector, belongs, respectively, to an 
ideal or to a submodule (see [1] for details). 

If A is an n x n matrix with entries in a Noetherian ring I?, Vi, V2 are two 
submodules of Rn and the columns of Vi are a Grobner basis for V,-, i = 1, 2, it can 
be shown that 

i) a Grobner basis for the submodule Vi + V2 and for Vi fl V2 can be computed 
directly from Vi, i= 1> 2; 

ii) a Grobner basis for A~~1(Vi), the inverse image of Vi by A, can be obtained 
by computing the Syzygy module of the matrix ( A \ — V\ ) and by taking 
the first n coordinates of each syzygy. 

The package C0C0A [7], devoted to computations in commutative algebra, allows 
one to compute the Grobner basis of a submodule and the Syzygy module of a set 
of homogeneous linear equations. Then, Algorithm (7) can be directly implemented 
using C0C0A and Grobner bases I?, for the submodules {TV{} are computed. The 
integers ni are the number of vectors in R{. The solvability conditions (5) of the 
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3.2. Constructing the decoupling feedback 

Assume that the solvability conditions (5) are satisfied and that /?,• is a generating 
matrix for U*, i = 1 , . . . , k. Following the lines in the proof of Theorem 1 (see [10]), 
we extend the system E to a system E c described by the matrices: 

\ vnaxn Vnaxna J \ Vnaxm *-naxna J 

and 
Oe = ( O 0 p x n a ) (8) 

where na = n\ + n^ + V nk and the integers n,-, i = 1 , . . . , k, are the number of 
elements of a Grobner Basis .ft, for the submodules 7£*, i = 1 , . . . , k. The columns 

1 *• \ 
of the matrices span the submodules 7l*eii which are (A€,Be)-invariant 

\ 0 / 
of feedback type, since they are direct summands of Rn+na (compare with Proposi
tion 1. 

R\ . . . Rk Inxn 
Inxxnx 0 . . . 0 

The matrix Re = \ | is unimodular and we have Rp — 
0 . 0 0 
0 0 I„fcXnfc 0 

0 I n i x n , . . . 0 

0 '*. 0 lnkxnk 

Inxn —R\ ••• — Rk 
The first step towards the construction of a Decoupling Feedback is now the 

computation of matrices Mt- 6 i j m x n - and Li G RniXrit such that 

ARi = RiLi + BMi, 

whose existence is guaranteed by the (Jl, £)-invariance of 11*. 

(Xi^ \ 
This is achieved computing a generating matrix Xif2 for the Syzygy module 

V ^ .3 / 
of the matrix 

( A -Ri -B ) , (9) 

where the number of rows in Xi 1, Xi 2, Xi 3 is respectively n, m and m. Since 

the columns of [ Li J are also elements of the Syzygy module of the matrix (9), a 

VM. J 

matrix K,-, with nt- columns, can be found by solving a linear system such that 

Ri = XitlKi, Li = Xit2Ki and M. = X.,3K,. 
/ O-'1 \ 

A generating matrix I ^x J for the Syzygy module of the matrix [ R,- | —B ] 
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gives the matrices G)e and Gie such that 

RiC[e
l = B(?ie\ i=l,...,k, 

Then, a static state feedback which solves the Block Decoupling Problem for S e is 

given by (F e ,G e) 

Ee = 

/ E i - M i - E i ß i -M2-FiR2 . . . -Mk-F1Rk\ 
0 Li 0 . . . 0 
0 0 L2 ... 0 

/ 

(Ю) 

\ 0 0 0 . . . Lk 

(the matrix Ei can be chosen arbitrarily to satisfy further conditions if needed) and 

/ ^ ( 0 1 ) -(0,1) -(0,1) \ 
/ ^ l e <J2e •• W e \ 

0 ... 0 

Ge = 

GYel) 

0 G (2,1) 
2e 

V o 
In fact, (see [10]), we have that 

0 

ЧM) 
ř * e 

(11) 

-Г1' 

and 

f L, 0 . 
0 L2 . 

.. 0 0 

.. 0 0 
\ 

{Ae + BeFe) Re = 

0 0 
^ 0 0 . 

• • Lk 0 
0 A + BFi ) 

f Gf;!> o . 
o G?; 1 ' . 

0 0 \ 

. . 0 0 

Re BeGe = 

0 0 
0 

.'. G ^ 0 
0 0 ) 

(12) 

(13) 

The static state feedback (Fe,Ge) which decouples E e gives rise to a dynamic 
feedback of the form (3) for £. 

The procedure to compute the matrices Lt-, M{, G^e , G\e implemented using Co-
CoA is much simpler than the one written with MapleV, which anyway can be used 
only for systems defined over a PID. In fact, even if also MapleV allows the use of 
Grobner Bases, CoCoA is much more efficient and the time required to perform the 
computations is ten times smaller. On the other hand, in building up the Decoupling 
Feedback Fe,Gey MapleV is faster, being more suitable to matrix manipulation. 
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only for systems defined over a PID. In fact, even if also MapleV allows the use of 
Grobner Bases, CoCoA is much more efficient and the time required to perform the 
computations is ten times smaller. On the other hand, in building up the Decoupling 
Feedback Fe)Ge, MapleV is faster, being more suitable to matrix manipulation. 

3.3. Assigning the coefficients 

In the PID case, in addition to decouple one can also stabilize or assign the coeffi
cients of the resulting closed loop system. For this, the integers n, n, should be chosen 
as follows: h = 0 if m = 1 and n = 1 otherwise, and n,- = 0 if dim(G^*~ ) = 1, 
fti = 1 otherwise (see [10]). After having achieved the decoupled form, one can 
assign arbitrarily the coefficients of (AyB) and of each subsystems (Li,G\e

l~ ), 
maintaining the decoupled structure, by following the procedure described in [12]. 
Implementation of such procedure requires essentially the same elementary opera
tions we have already used and can therefore be performed in MapleV or CoCoA. 

4. EXAMPLES 

To illustrate the procedures described above we will apply them to a couple of delay 
differential systems. 

E x a m p l e 1. Let us consider the delay-differential system T,[ given by: 

* i ( 0 = xx(t) + x2(t) + ux(t) 

i2(t) = Xl(t-d) + x3(t) + u2(t) 

is(t) = x2(t) + Ul(t-d) (14) 

2/1 (0 = xi(t) 

y2(0 = x2(t-d) 

where h represents a delay. By introducing the delay operators A, defined for any 
function f(t) by Af(t) = f(t — /i), we can formally associate to Ei the system Ei 
over the PID ring TZ[A] of polynomials in one indeterminate. Ei is then defined by 
equation of the form (1), with 

1 1 0 \ 1 f * ° 
Д 0 1 , B:=\ 0 1 
0 1 o 

1 

l Д 0 
A := Д 0 1 , B := 0 1 and C . l i 0 0 \ 

• ^ 0 A 0 ) 

We search for a dynamic feedback law of the form (3) which decouples the two 
outputs of the system. The algorithm (6) implemented using MapleV, following the 
lines described above, gives generating matrices 

я i : = 
0 - l \ / f 0 0 
0 0 and Rг •= 1 -1 0 
-Д - Д / \ ̂  o 1 - Д 
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needed to decouple the system. Following the procedure described above we obtain 
the matrices Fe, Ge (with Fi = 0) 

Fe:= 

Since 

one has 

/ 0 0 0 0 0 1 0 \ / - 1 0 \ 
0 0 0 Д 2Д 0 0 0 - 1 
0 0 0 0 - 1 
0 0 0 0 1 

0 
0 

0 
0 

Ge:--
0 0 
1 0 

0 0 0 0 0 0 - ] l + Д 0 1 
\ 0 0 0 0 0 - 1 o ì \ 0 0 1 

0 • - 1 0 0 1 0 0 
0 0 - 1 0 0 1 0 

-д --д 0 1 - Д 0 0 1 
R7

l = 1 0 0 0 0 0 0 1 > 
0 1 0 0 0 0 0 
0 0 1 0 0 0 0 
0 0 0 1 0 0 0 

" 0 - 1 0 0 0 0 0 " 
0 1 0 0 0 0 0 
0 0 0 - 1 + Д 0 0 0 

-\Ae + BeFe)Re = 0 
0 

0 
0 

- 1 
0 

0 
0 

0 0 0 
1 1 0 

0 0 0 0 Д 0 1 
0 0 0 0 0 1 0 

Re BeGe — 

Г o 0 ' 
ì 0 
0 1 
0 0 
0 0 
0 0 

L ° 0 

and CeRe = 
0 - 1 0 0 1 0 0 
0 0 - Д 0 0 Д 0 

The resulting closed loop system is 

x i (0 = " * 2 ( 0 

±2(0 = *2(0 + Wl(0 

x 3 (0 = -x4(t) + x4(t-д) + v2(t) 

±4(0 = - * 3 ( 0 

x 5 ( 0 = x в ( 0 + *б(0 

x б ( 0 = x 5 ( ť - Л ) + x 7 ( 0 

x 7 ( 0 = x 6 ( 0 

Уì(t) = -X2(0 + «5(0 

У2(t) = -x3(ť - д) + x6(t - д). 

(15) 
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The closed loop transfer matrix of the system is then 

i 

T(s) = s - 1 

0 
- 1 + e -дs + S2 ì 

and the system £ ' is decoupled. 
Suppose now that we want to assign all the coefficient at 2. As 71* f i l m B is of 
dimension 1 for i = 1,2, it follows that nt- = 0 for i = 1,2 as the subsystems 
(Li,Gie

l~ ) are cyclic. Thus, h must be equal to 1 to make the subsystem (A,B) 
cyclic. Now, one should take a dynamic extension of na = 5. The program then 
computes the new matrices Fe and Ge, giving rise to the closed loop transfer function 

— 5 

T(s) = A + As + s2 

0 

0 

-єдss 

4 + Лs + s2 

The coefficients of the matrix Fe have very involved expressions, so they will not be 
displayed here. The computation of this example were performed with MapleV on 
a PC 166 MHz in 26 seconds. 

E x a m p l e 2. We consider now a system with two incommensurable delays, which 
can be modeled by a system over the ring R[Ai,A2], which is not a PID but is 
Noetherian. Let the delay-differential system E 2 be g i y e n by the equations 

ii(t) = x3(t) + щ(t - h2) 

x2(t) = z i ( * - 4 Л i ) + x 2 ( ť - / i 2 ) 

x3(t) = xi(t - Зh2) ++x2(t - h2) + x3(t) + u2(t) 

yi(t) = x2(t) - x3(t - Лi) 

У2(t) = Xl(t), 

(16) 

where fti, /12 are two incommensurable delays. Introducing the delay operators Ai, 
A2, defined by A»/(ar) := f(x — ft,), i = 1,2, we can associate to E'2 the system £2 
defined by the following matrices: 

A:=\ A< 
0 0 1 \ j ŕ д 2 

0 
д? д 2 0 • в-=\ \ 0 0 

дf д 2 1 / 1 \. 0 1 
and C 

_ ( 0 1 - A i \ 

- v 1 0 o j 

and consider the problem of decoupling the two outputs of E2- By C0C0A we 
compute Grobner Bases of the submodules TZ*, i = 1,2, 

Яi = 
0 \ I f A

2 
0 

0 , Ä2 = 
f 0 д?д 2 

A
2
 / I l 0 Д?A

2 
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The Block Decoupling Problem is solvable here only in a weak sense, (see [10]) since 
£2 is only weakly reachable. In fact, a Grobner Basis of the reachability submodule 

/ l 0 0 \ 
of £ 2 is 0 A* 0 . 

\ ° .° * / 
The dimension na of the extension required to achieve decoupling is: na — 1+2 = 3 

and the decoupling feedback is given by the matrices Fe, Ge: 

Fe:= 

0 0 0 - 1 
0 0 0 
0 0 0 
0 0 0 
0 0 0 

0 

Һ 
0 
0 
1 

0 

Һ 
0 

A? 
д 2 

Ge:= 

0 1 " 

д 2 
0 

1 0 
0 1 
0 0 

with fx = A?A2 - Al h = A?A\ - A?A2 - At A 
The decoupled system is then given by 

W~1(Ae + BeFe)We = 

1 0 
0 0 
0 1 
0 0 
0 0 
0 0 

0 

A? 
д 2 

0 
0 
0 

0 
0 
0 
0 

0 
0 
0 
0 

д 2 

д? д 2 1 

WTXBeGe = 

' 1 0 " 
0 1 
0 0 
0 0 
0 0 
0 0 

and CeWe = 
- Д i д 2 0 0 0 1 - Д i 

0 д 2 
0 1 0 0 

The transfer function matrix of the compensated system is 

T(s) = 
Д I Д І 

0 д 2 ( д 2 - - Q 
Д ? + 5 Д 2 - * 2 

5. CONCLUSIONS 

The paper shows how to practically check the solvability conditions and compute 
solutions for the Block Decoupling Problem and the Coefficient Assignment Prob
lem The proposed procedures are based on the results obtained using the geomet
ric approach in [10] and perform symbolic computer algebraic computations using 
MapleV® and CocoA. Examples are provided concerning delay differential systems. 

(Received December 11, 1998.) 
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