
KYBERNETIKA — V O L U M E 35 ( 1 9 9 9 ) , N U M B E R 5, PAGES 5 9 9 - 6 1 2 

GLOBAL ASYMPTOTIC STABILISATION 
OF AN ACTIVE MASS DAMPER 
FOR A FLEXIBLE BEAM 1 

L A U R A M E N I N I , A N T O N I O T O R N A M B Ě A N D L U C A Z A C C A R I A N 

In this paper, a finite dimensional approximated model of a mechanical system consti
tuted by a vertical heavy flexible beam with lumped masses placed along the beam and a 
mobile mass located at the tip, is proposed; such a model is parametric in the approxima
tion order, so that a prescribed accuracy in the representation of the actual system can be 
easily obtained with the proposed model. The system itself can be understood as a simple 
representation of a building subject to transverse vibrations, whose vibrating modes are 
damped by a control action performed at the top by means of a mobile mass. A simple 
PD control law, which requires only the measurement of the position and velocity of the 
mobile mass with respect to the end-point of the beam, is shown to globally asymptotically 
stabilise all the flexible modes considered in the approximated model, regardless of the 
chosen approximation order, under a technical assumption that is satisfied in many cases 
of practical interest. Simulation runs confirm the effectiveness of the proposed control law 
in achieving both position regulation of the mobile mass and vibration control. 

1. INTRODUCTION 

In the last decade, great deal of attention has been paid to the problem of mod
elling and controlling flexible structures [2]-[4], [7]- [12], [14]. The classic mod
elling approach, which is used to represent mechanical systems, is usually based on 
the rigidity assumption; however, such an assumption, in most cases, leads to heavy 
limitations on the maximum speeds and accelerations supported by the systems 
themselves. A solution to this problem may be to take into account the deforma
tions of the structures in the modelling process, and to analyse the behaviour of the 
deformed bodies, possibly under the action of certain control laws. In such a way, 
the deformations may be inquired to verify, for instance, certain security bounds re
lated to the structure elasticity, or, simply, to monitor such deformations occurring 
in the flexible components of the system. 

The planar mechanical structure analysed in this paper is constituted by a heavy 
flexible beam clamped on an inertial base, at one of its extremities, and rigidly 

1A version of this paper was presented at the 5th Mediterranean Conference on Control and 
Systems held in Paphos (Cyprus) on June 21-23, 1997. 
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connected, at the other extremity, to a platform where a mass is free to move per
pendicularly to the direction assumed by the undeformed beam (see Figure 1). The 
mass is assumed to be subject to a force (which constitutes the input of the system) 
exerted by an actuator placed at the end-point of the beam. Moreover, it is assumed 
that H lumped masses are located at fixed points along the beam, with H being an 
arbitrary non-negative integer. The motivation for studying such a system arises in 
civil engineering, when studying the transverse vibrations of a building of H storeys. 
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Fig. 1. The mechanical systém (in the čase of H = 3 storeys). 

In Section 2, an infinite dimensional model of the mechanical system, taking into 
account the distributed properties of the beam, is derived, first. Hence, explicit 
expressions are derived for the equations of an approximated dynamic model of 
order IV of the mechanical structure. Such a model is parametric with respect 
to the approximation order IV, i.e., the same equations can be used to obtain a 
representation as accurate as necessary by choosing suitable values for N. The 
dynamic equations of both models are derived by neglecting any kind of friction 
or damping in the system; in real applications, the presence of damping in the 
mechanical structures will possibly increase the robustness of the closed-loop system, 
with respect to the stability requirement. 

In Section 3, it is shown that, under certain assumptions, which are not too 
restrictive, the same PD controller asymptotically stabilises the approximated equa
tions of motion, for any number H of storeys and for any approximation order IV 
of the model. The feedback PD control law requires the measurements of the only 
relative position and velocity of the mobile mass, with respect to the end-point of 
the beam; whence, no deformation measurements are needed for the implementa
tion of the control scheme on the real system. The result obtained is global, so that 
the prescribed control law can be actually applied in the domain of validity of the 
Bernoulli approximation of elastic deformations. 
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Finally, in Section 4, some simulation runs are presented, which test the per
formance of the PD controller on a finite dimensional model, in the simplest case 
of absence of lumped masses along the beam. The results of the simulations con
firm the effectiveness of the control law, reporting satisfactory behaviour of the time 
responses, and asymptotic stability of the closed-loop system. 

2. MOTION EQUATIONS 

The mechanical system under consideration is constituted by a heavy flexible beam, 
whose mass per unit length and elastic constant are denoted by p and k, respectively, 
by a mass m, and by H £ IN masses M. The system under consideration is seen as 
a model for an H-storey building, having an active mass damper actuator on its top 
floor. Hence, the mass m (which is free to move on a platform perpendicular to the 
direction assumed by the undeformed beam, under the action of an external force 
u(t), exerted between the mass and the end point of the beam) is the representation 
of the mobile mass, whereas the H masses (which are placed along the beam, at 
equally spaced positions) are lumped representations of the H storeys. The beam 
and the masses are located on a plane, where an inertial reference frame (x, y) is 
defined (see Figure 1), whose origin O coincides with one of the extremities of the 
beam, which is clamped to an inertial base. The beam, having length L, lies on the 
x axis of the reference frame when undeformed. 

Under the assumption of small deformations, the Cartesian coordinates of an 
infinitesimal element of the beam at time / £ JR, t > 0, expressed in the reference 
frame (x, y), are (£, a(t, £)), with £ £ [0, L], whereas the Cartesian coordinates of 
the mass m at time t, expressed in the same reference frame, are (L, 0(t)). The 
Cartesian coordinates of the masses M at time / are given by (£{, a(t, £()), with 
ii := i L/H, 1 = 1,2, . . . , / /" . Hence, variables a(t, £) and 0(t) can be taken as the 
generalised coordinates, which uniquely describe the configuration of the mechanical 
system. 

In the following, in order to simplify the notation, the derivative with respect 
to t will be denoted by ', and the derivative with respect to £ will be denoted by 
superscript '. 

Due to the assumption of small deformations, the effects of the gravity force can 
be neglected. In addition, any dissipative force, such as viscous friction or internal 
damping due to deformation, will not be considered in this model, since its presence 
will possibly increase the stability properties of the overall system. 

The kinetic energy 7& of the beam and of the masses M, which constitute a single 
body representing the overall building, can be expressed by the following functional 
depending on a: 

Tb:=ULa\t,e)d£+,£^(t>£i). (1) 
ZJo i=i l 

The potential energy Uj (due only to flexure, by assumption) of the single body can 
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be expressed by the following functional depending on a: 

D6 := | j (a"(t, £))2d£; (2) 

notice that the potential energy of the lumped masses M is constant and can be 
taken to be equal to zero, whence no terms due to the masses M appear in Ub-

The kinetic energy Tm of the mass m is: 

Tm:=j02(t); (3) 

the potential energy of the mass m is constant, similarly to that of the masses M, 
and is taken to be equal to zero as well. 

Now, assume that an external force u(t) acts on the mass m and on the end-point 
of the beam, and that the associated generalised potential (see [5]) is given by 

Uu = -u(t)(0(t)-a(t,L)). (4) 

Moreover, assume that, at each time t > 0, the function a(t, £) can be expressed 
by the following series expansion: 

a(t,Є) = Y27h(t)<тh(t), ІЄ[0,L}. (5) 

by 

+oo 

£ 
h=0 

The functions <Th(£)y h G Z) h > 0, which constitute a complete set, are given 

ch(£):=ah f s i n h K l)-sin(o„, £)- S ^ h ^ + s i n ^ L) (c0Bh((<.., l)-coS(c,,, £))) , 
\ cosh(uh L) + cos(wh L) J 

with the reals u;^, h G -ZT, h > 0, being the countable solutions of the following 

equation (i.e., uh « ^—^ ^ ) : 

1 + cos(u;/i L) cosh(uh L) = 0. (7) 

The normalisation constants ah) h £ Z£, h > 0, are chosen so that the following 
relation is fulfilled: 

JT'»W>M«={ I; i;t: w 
which implies 
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Remark 1. The functions (Th() given in (6) are the eigenfunctions of the eigen
value problem resulting from an infinite dimensional model of the considered system, 
when the mass m and the masses M are absent. The boundary conditions at the ex
tremities of the beam, in such a case, guarantee the possibility of satisfying equations 
(8), so that the choice of the set of functions 0"»(), given in equation (6), presents 
remarkable advantages in the subsequent computations, with respect to other com
plete sets of functions which could be chosen in order to perform a series expansion 
such as (5). 

With these positions, the energies given in (1), (2) and (4), become: 

+oo M H /+oo \ 2 

n = \ E T2(0 + y E E WW*) . (-<>-•) 
h=0 t= l \h=0 / 

u> = £ E T 2 ( 0 " 1 . (10b) 
z h=0 

uu = -ii(0 (o(t)-£n(t)*h(L))- (10c) 
\ h=0 J 

The variables 0(t) and jh(t), h £ Z, h > 0, can be taken as the generalised coor
dinates describing the configuration of the mechanical system under consideration, 
and the related Euler-Lagrange equations are given by: 

d 9C dC 

dt-Je-W = 0' ( l l a ) 

A | £ - | £ = o, hez,h>ot (lib) 
dt djh djh 

where the Lagrangian function C is given by C := TJ, + Tm — Ub — Uu. By (3) and 
(10), the Euler-Lagrange equations (11) can be recast as follows: 

m0(t) = u(t)t (12a) 

H +oo 

P7fc(0+^X^MA)^7j(0^i(AO+pnfc7fc(0 he2Z, h>0, (12b) 
i= l j=0 

where Qh -= w\ \jh- The countable set of equations (12) constitutes the infinite 
dimensional model of the mechanical system under consideration, which will be taken 
here as an "exact" model. 

In order to obtain a finite-dimensional approximated model of the system, the 
sum in equation (5) is now truncated to the first IV terms, with IV being an arbitrary 
positive integer. Therefore, the function a(t,£) will be represented by its IV-order 
approximation: 

tv-i 

*(t,£)naN(t,£) :=Y^lh(t)(Th(£)- (13) 
h=0 
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In the following, only the approximated model obtained by (13) will be considered. 
To this end, taking into account relations (8) and (9), the substitution of (13) 

into (1),(2) and (4) allows the IV-order approximation of the kinetic and potential 
energies to be obtained as follows: 

Tb,N = \ E^O + yEfE^W^)) , (Ha) 
h=0 i = \ \h=0 ) 

kN~x 

UЬ,N = xE7І(<Я> (Hb) 

UU,N = -u(t) І0(t)-f^lh(t)ah(L)) . (14c) 
h=0 

Since 0(t) and 7h(0> /i = 0, . . . , IV— 1, can be taken as the generalised coordinates 
describing the configuration of the approximated mechanical system, the Euler-
Lagrange equations for such a IV-order approximated system can be written as: 

d d £yv OCM 

dť дÒ д 

d д £лr д CN 

dí дўh дyh 

= 0, (15a) 

= 0, /i = 0 , . . . , J V - l , (15b) 

where the Lagrangian function £yv of the approximated system is given by CM := 
TbtN + Tm — Ub,N — UU)N. 

By (14) and (3), equations (15) become: 

m0(t) = u(t)y (16a) 

Plh(t)+MZah(£i) J2 li(t)v^i)+ptihlh(t) = -<rh(L)u(t), /i = 0,. . . ,IV-l.(16b) 
t = l ; = 0 

Equations (16) are the TV-order approximated equations of motion. Note that 
the accuracy of such an approximated model can be chosen as high as necessary, by 
a proper choice of the integer IV. 

3. STABILISATION OF THE MECHANICAL SYSTEM 

The purpose of this section is to achieve global asymptotic stability of the mechanical 
system under the action of a suitable control law; due to practical problems, only 
the relative position and velocity of the mobile mass m with respect to the end-
point of the beam can be assumed to be measurable. Therefore, since only the 
approximated model is considered, it is assumed that the following variables are 
available for feedback: 

J V - l 

y(t) = 0 ( 0 - ! > * ( * W W > (17a) 
h=o 
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IV-1 

y(t) = 0 ( O - £ 7 h ( O < ^ ( £ ) . (17b) 
h=0 

Under such an assumption, the regulation problem under consideration can be 
stated as follows. 

Problem 1. Find (if any) a static feedback control law 

«(0 = /(y(0.y(0). (is) 

with /(• , •) being a suitable function, from y(t) and y(t) such that the closed-loop 
system (16), (17), (18) has [0 y0 • . . 7IV-1 0 7o •. • 7Iv-i]T = [0 0 . . . 0 0 0 . . . 0]T as 
globally asymptotically stable equilibrium point. 

The control law considered as possible solution to Problem 1 is a classical PD 
from y(t) and y(t): 

u(t) = -kpy(t)-kvy(t), (19) 

where kp) kv are two suitable real constants. 
The closed-loop system obtained by applying the control law (19) to system 

(16), (17) can be recast as follows: 

m6(t) + kpy(t) + kvy(t) = 0, (20a) 

Bj(t) + nj(t)-kpay(t)-kvay(t) = 0, (20b) 

where y(t) G lFtN is given by j(t) := [jo(t) Ji(t) ••• 7Iv-i(0] > ^ e square IV-
dimensional matrix B is given by: 

H H H 

в. 

p+M^ЫЄi))2 M ^ o ( A ) < т i ( ^ ) ••• Mj2<ro(łi)<ГN-iЏi) 
« = 1 « = 1 i = l 

н н н 

м5>o(гť)<-i(4) p+мү^^Џi))2 ... мJ2Ыti)<rN-i(ti) 
i = l t = l « = 1 

H H H 

MX>o(4W-i(4) M^i(/,-)^-i(A) ... p + Mj2(<TN-i(ti))* 
i = l i = l » = 1 

H is the IV-dimensional, diagonal, square matrix given by 7i := diag (pfig, P ^ i , • • •, 

r^^Iv-i)) a n d ^ e vector a G JR is given by a := [a0(L) a\(L) . . . aN-i(L)] . 
Notice that the dependence of matrices B and 7i and vector a on the physical pa
rameters L, p, fc, and M of the system has been omitted for the sake of simplicity. 

The following assumption is needed in order to prove the main result of this sec
tion; such an assumption is not too restrictive, as shown in the subsequent Lemma 1 
and Remark 2. 
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Assumption 1. Matrix B l7i has N distinct eigenvalues, and, in addition, for 
each eigenvector v G MN of B~l7i, one has aTv ^ 0. 

Assumption 1 is "robust" with respect to small variations of the physical param
eters L, p, Ar, and M, of the system, as stated in the following lemma (notice that 
matrix B~l7i is independent of mass m). 

L e m m a 1. If Assumption 1 is satisfied for L = L, p = p, k = k, and M = M, for 
rp 

some L, p, k, M E M*, then there exists a neighbourhood U C -K4 of [L p k M] 
such that such an assumption is satisfied for all [L p k M] EU. 

P r o o f . All the entries of matrices B and 7i are continuous functions of the pa
rameters L, p, k, M, and matrix B is non-singular; hence, also the entries of matrix 
B~~17i are continuous functions of such parameters. By taking into account that the 
eigenvalues of B~x7i are all distinct for L = L, p = p, k = Ar, and M = M, and that 
the eigenvalues of a square matrix are continuous functions of its entries, one has 
that the 1V eigenvalues of B~17i are all distinct in a suitable neighbourhood 0 of 

____ ____^ rp 

[L p k M] , and this proves that the first statement of Assumption 1 holds in 0 . 
Now, let A,(-, •, •, •), i = 1, 2, . . . , IV, be IV scalar continuous functions such that, 
for each [L p k M] G 0, {Ai(L, p, k, M), A2(L, p, k, M ) , . . . , \ N ( L , p, k, M)} 
is the set of the distinct eigenvalues of B~17i. Due to the fact that the N eigenval
ues of B~l7i are distinct in 0 , it is possible to define IV continuous vector functions 
vi(', » *> •)> v2(', *, -i *). • • •, vn('i *, *, •) G MN, such that, in a suitable neighbour-

rp 

hood 0 of [L p k M] , 0 C 0 , for each i = 1, 2, . . . , IV, V{(L, p, k, M) is an 
eigenvector of B~17C relative to the eigenvalue A.(L, p, A:, M). Since the vector a 
is a continuous function of L, then, for each i = 1, 2, . . . , N, the product crTt;. is a 

____ _ _ _ ^ rp 

continuous function of the parameters, which is non-null at [L p k M] , whence 
it is non null in a suitable neighbourhood 0 . C 0 . The proof of the lemma is 
completed, by letting U = Hi-i ®»* D 

R e m a r k 2. It is easy to see that, if M = 0, then Assumption 1 holds for any L, 
p, k G -R+: in this case one has B = p / , with 7 being the IV-dimensional identity 
matrix, and matrix 7i is diagonal by definition, with its diagonal elements being 
all distinct; hence, the eigenvalues of B~l7i are all distinct, and the eigenvectors 
of B~l7i are the N vectors of the canonical basis of MN. The required property 
crT v ^ 0 for M = 0 and arbitrary L, p, k G -R+, easily follows from the consideration 
that all the components of vector a are different from zero; this can be proven by 
direct computation, by taking into account equations (6) and (7). 

Hence, by Lemma 1, Assumption 1 holds for a significant class of systems, namely 
those representing buildings in which the mass M of the storeys is not too big as 
compared with the mass of the whole structure. 

In the following theorem, the global asymptotic stability of the closed-loop sys
tem (20) is stated and proven. 
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Theorem 1. For each IV 6 Z, IV > 1, under Assumption 1, if kp > 0 and kv > 0, 
then system (20) has [6 70 . . . TIv-i 0 70 . . . TN-i]T = [0 0 . . . 0 0 0 . . . 0]T as 
globally asymptotically stable equilibrium point. 

Remark 3. Theorem 1 proves the effectiveness of a simple PD control law in sta
bilising the IV-order approximated model (with IV arbitrarily high) of the mechanical 
system under consideration; it is stressed that the structure of the proposed control 
algorithm is independent of the chosen approximation order. 

P r o o f of T h e o r e m 1. In the following, the dependence on variable t is some
times omitted for the sake of brevity. For any IV G -^, IV > 1, consider the following 
positive definite and radially unbounded function of 0, 0, 7/1, 7^, A = 0 , . . . , IV — 1, 

^ : = ^ 2 + ^ 7 T 0 T + 5 7 T W 7 + ^ y 2 , (21) 

to be used as a candidate Lyapunov function. It is easy to compute the total time 
derivative of VN along the dynamics of system (20) (see also Theorem 12.28 of [13]): 

VN = m00 + j T Bj + yTnj + kpyy 

= m0 0 + 7T B(-B-ln7 + B-lkpay + kvB-lay)+7Tni + kpyy 

= -kp 0y-kv9y + kpj
T(Ty + kvj

Tay + kpyy 

= -kvy
2. (22) 

Since the function Vjy defined in (21) is globally positive definite and its total 
time derivative (22) is globally negative semi-definite, then Theorem 25.1 of [6] proves 
that the equilibrium point [0 70 . . . 7IV-1 0 To • • • TIv-i]T = [ 0 0 . . . 0 0 0 . . . 0]T is 
stable. Let £ be the set of points [0 70 . . . 7IV-1 0 70 . . . TIV-i]T such that V"y = 0. 
Since kv > 0, if 0(t)y 6(t)y jh(t), ThC0> ^ = 0 , . . . , IV — 1, < > 0, is an half trajectory 
of (20) entirely contained in £, then it satisfies the following relations: 

y(t) = 0, Vt > 0, (23a) 

m6(t) + kpy(t) = 0, V * > 0 , (23b) 

By(t) + nj(t)-kpory(t) = 0, V* > 0. (23c) 

Equation (23a) implies y(t) = 6(t) — X /̂i-To 7h(t)o'h(L) — 0 for all t > 0 and 
y(t) = y for all t > 0, for some y E R\ hence, one obtains: 

Iv-i 

(t) = Y,Ыt)ЫL) 
ft=0 

= <7T7(ť), V ť > 0 . (24) 

Equation (23c) can be гewгitten as: 

Bÿ(t) + Пj(t) = kp(тy, V ť > 0 , 
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and its solutions are of the form 
jv-i 

7 (ť) = J ] (£• sin(/i. t) + тji cos(щ t))+П lkp(тy, (25) 
1 = 1 

where /i,- £ M, m > 0, are IV real numbers such that /i2 , i = 0, 1, . . . , N - 1, are 
the (distinct) eigenvalues of B~lTi (in addition, they are all real and positive, as it 
is proven in Section 10-2 of [5]) and, for every i = 0, 1, . . . , IV — 1, £,- = c , ^ ^ , 
rji = CijT1Vi with Vi being eigenvector of B~~17i, relative to the eigenvalue /i2, and 
C*,C> C*,T) being suitable reals. 

By substituting the expression of 0(t) given by (24) into (23b) and taking into 
account (25), one has: 

jv-i 
171 ] C rf (aT 0 sin(/ii t) + aT T)Í cos(/ix- /)) = kp y, V* > 0. (26) 

i =0 

Since the functions sin(/in*), cos(/i0*), . . . , sin(/ijv-iO> cos(f1N-it), 1, are lin
early independent over [0,+oo), by taking into account that /jh ^ 0 for all h = 
0,...,IV — 1, that kp > 0 and m > 0, and Assumption 1, relation (26) implies 
that (h = 0, rjh = 0, h = 0 , . . . , IV - 1, and y = 0. Hence, from (25), yh(t) = 0, 
/i = 0 , . . . ,IV — 1, for al l* > 0, and, by recalling equation (17a), it follows that 
6(t) = 0 for all t > 0. 

The above discussion shows that the largest invariant subset contained in £ 
is constituted by the only equilibrium point [0 70 . . .7 jv- i 0 To . . . 7 ; v - i ] T = 
[0 0 . . . 0 0 0 . . . 0]T ; whence, Theorem 26.1 of [6] proves the attractivity of such an 
equilibrium point. Since stability has already been proven, the global asymptotic 
stability of the mentioned equilibrium point follows, by taking into account that VN 
is globally positive definite and radially unbounded. • 

4. SIMULATIONS 

In this section, the results of some significant simulations of the behaviour of the 
closed-loop system (20), are reported. Two case studies have been considered, in 
the case of M = 0, characterised by different choices of the feedback constants kp 

and kv of the controller. In both cases, the order of the approximated model has 
been chosen as N = 10. It has been verified that a higher order approximation does 
not affect significantly the time responses obtained from the simulations; whence, 
the accuracy of the model obtained by the chosen approximation order is sufficiently 
high to guarantee a good fitness with the real case. 

The physical parameters of the system have been chosen as: 

L = l[m], m = 7.86-HГ 2[kg], p = 7.86 • 10 ì - i kg 

m 
ib = 2.05 102 [Nm2] , 

which correspond to the parameters of a hardened steel beam having a square cross 
section with edges 1 cm long, and to a mobile mass, whose mass m has a ratio 
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1 : 10 with the total mass of the beam itself (see Figure 2). With these parameters, 
the mass m is sufficiently heavy to perform a satisfactory control action on the 
system, without being too heavy compared to the weight of the whole structure. 
For such a choice of the system parameters and of the approximation order, the 
reals Uh, cih, h = 0, 1, . . . , 9, have been calculated as reported in Table 1. 

T a b l e 1. Values of t h e real cons tants w/,, Oh, /J = 0, 1, . . . , 9. 

Һ = 0 h= 1 Л = 2 ft = 3 ft = 4 Һ = Ъ Л = 6 Л = 7 Л = 8 Л = 9 

"Һ 1.88 4.69 7.85 11.00 14.14 17.28 20.42 23.56 26.70 29.85 
аh 0.73 1.02 0.99 1.00 1.00 1.00 1.00 1.00 1.00 1.00 

0.8 

0.6 

0.4 

0.2 

m = 7.86W2 

p = 7.86 101 

k = 2.05102 

1 cm 

Cross section 
of the beam 

0 0.1 0.2 0.3 \m\ 

F i g . 2 . Physical p a r a m e t e r s and initial conditions of the system. 

As for the initial conditions at the initial time t = 0, the velocities have been 
assumed to be all equal to zero (i.e., [6(0) 7o(0) . . . 79(0)]T = [ 0 0 . . . 0]T), and 
the initial configuration of the beam has been chosen as a deformed configuration 
characterised by the following coordinates: 

[7o(0) . . . 79(0)]T = [0.05 0.01 0.01 0.005 0.005 0 0 0 0 0] T , 

0(0) j > л ( L ) 7 A ( 0 ) . 
h = 0 

namely, the higher order modes have been assumed to be zero at the initial time, 
and the variable y(0) has been set to zero as well (see Figure 2). 

As regards to the first choice of the control parameters, the time responses 0(t), 
c*jv(i, L), y(t) and u(t), corresponding to the following values of kp and kv: 

л « — 1 , tCy — U .ö . 



610 L. MENINI, A. TORNAMBE AND L. ZACCARIAN 

are shown in Figure 3. In particular, the first plot represents the absolute position 
6(t) of the mobile mass, the second plot represents the position a^(t, L) of the end-
point of the beam, the third plot represents the relative position y(t) of the mobile 
mass with respect to the end-point of the beam, and the fourth plot represents the 
control action u(t). 

Position of the mass Position of the end-point of the beam 

2 3 
Tim [s] 

R lativ position of th mass 

1 2 3 4 
Time [s] 

Control action 

1 2 3 4 
Time [s] 

1 2 3 4 
Time [s] 

Fig. 3. Time responses of the closed loop system corresponding to the controller gains 
n>p — J., hifj •— U . O . 

It can be observed, from all the time responses, that the dissipative action of 
the derivative control efficiently reduces the intrinsic oscillations of the mechanism. 
The power exerted by the controller (i.e., the modulus of the control signal) is high 
because of the high potential energy of the system at the initial time; as a matter 
of fact, the hardened steel bar is widely deformed at time t = 0 with respect to its 
stiffness. 

As regards to the second choice of the control parameters, the time responses 
6(t), a^(t,L), y(t) and u(t), respectively, corresponding to the following values of 
kp and kv: 

kp = 100 , *„ = 3 , 

are shown in Figure 4. 
In this second case, the controller gains have been incremented to improve the 

performance of the control action. As a consequence, the dynamics of the closed 
loop system are faster (the time responses are damped to their steady-state values 
in 0.5 s instead of 3 s) but the power needed by the control action is higher (the force 
peaks are more than double in this case with respect to the previous one). It should 
be noticed that a stronger control action highly improves the performance of the 
controller in damping the intrinsic oscillations of the system. 
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Position of the mass Position of the end-point of the beam 

Fig. 4. Time responses of the closed loop system corresponding to the controller gains 

kp = 100, kv = 3. 

5. CONCLUSIONS 

A finite-dimensional approximated model, parametr ic in the order N of approxima

tion, of a flexible beam, with a mobile mass located at its end-point and H lumped 

masses placed along its length, has been obtained by considering the natura l vibra

tion modes of a clamped beam. Such a mechanical system is to be understood as a 

simple representation of an H-storey building subject to intrinsic vibration and con

trolled by means of an actuator exerting a relative force between the upper storey 

and a mass located on the roof. This modelling approach allowed to prove t h a t , 

under an assumption, which is fulfilled in many cases of interest, the same feedback 

PD control law from the relative position and velocity of the mobile mass with re

spect to the position of the end-point of the beam (namely, a local measurement), 

asymptotically stabilises the vibration modes considered in the approximated model, 

for any choice of the order IV of approximation. T h e proposed control law has been 

tested by means of simulations, which confirmed the effectiveness in achieving posi

tion regulation and stabilisation of the elastic modes of the beam, in the simplified 

case in which the mass of the storeys is negligible with respect to the total mass of 

the building. 

(Received April 8, 1998.) 
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