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^-OPTIMAL CONTROL FOR MULTIRATE SYSTEMS 
UNDER FULL STATE FEEDBACK1 2 

JOHANNES AUBRECHT AND PETROS G. VOULGARIS 

This paper considers the minimization of the -£°°-induced norm of the closed loop in 
linear multirate systems when full state information is available for feedback. A state-space 
approach is taken and concepts of viability theory and controlled invariance are utilized. 
The essential idea is to construct a set such that the state may be confined to that set 
and that such a confinement guarantees that the output satisfies the desired output norm 
conditions. Once such a set is computed, it is shown that a memoryless nonlinear controller 
results, which achieves near-optimal performance. The construction involves the solution 
of several finite linear programs and generalizes to the multirate case earlier work on linear 
time-invariant (LTI) systems. 

1. INTRODUCTION 

Multirate sampled data systems arise in many applications in which it is desirable to 
use multiple sampling rates for controlling a continuous-time system. The impetus 
to use multiple sampling rates could result from, for instance, differing bandwidths 
of input signals or differing limitations of the physical sensors and actuators used to 
implement a control algorithm. In addition, if the exogenous inputs or the regulated 
outputs are continuous signals, a multirate model can be used to approximate these 
continuous signals to any degree of accuracy. As a result, it is important to be able 
to design controllers for multirate sampled data systems that perform optimally in 
some sense. 

In this paper the notion of optimality is with respect to £°° performance. In 
particular, we are interested in minimizing the -?°°-induced norm of the closed loop 
map. In the linear time invariant (LTI), case this amounts to minimizing the corre
sponding £x norm. This £l problem can be solved using input-output techniques and 
duality theory (e.g., [5]). For linear multirate sampled data (LMRSD) systems the 
problem is solved in [3] using again an input-output viewpoint and lifting techniques 
developed in [7, 8, 9] that convert the problem to an LTI however nonstandard, 
problem. 

1 Supported by NSF grant ECS-9308481 and ONR grants N0014-96-1-1181 and N0014-97-1-0153. 
2 A version of this paper was presented at the 5th IEEE Mediterranean Conference on Control 

and Systems held in Paphos (Cyprus) on July 21 - 23, 1997. 
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Although the problem of *?°°-gain minimization is solved in the input-output 
framework for both LTI and LMRSD systems certain characteristics of their solutions 
may not be desirable. In particular, considering the ^-optimal control problem with 
full state feedback it was shown [4] that, unlike the 7V°°-optimal case, optimal as 
well as near-optimal controllers can be dynamic and of arbitrarily high order. This 
result motivated a new, state-space, approach to the tl problem when the state is 
available for feedback. Recent work in [12, 13] towards this direction has shown 
that static nonlinear state feedback performs as well as linear dynamic feedback. 
In other words, full state feedback -^-optimal control need not require dynamics if 
nonlinear controllers are admissible. Moreover, a constructive, finite-step, algorithm 
for near-optimal nonlinear state feedback is furnished. The approach in the work 
of [12, 13] is to construct controlled invariant sets in the context of viability theory 
and differential inclusions (e.g., [1, 2, 6, 10, 11]). It is precisely this work that we 
generalize to the multirate case in this paper. We show that a memoryless nonlinear 
controller can be constructed to achieve near-optimal performance. 

We note that the method of constructing controlled invariant sets has been used 
extensively throughout the control literature from a variety of contexts (see [13] 
and references therein) including dynamic programming, systems with control con
straints, construction of reachable sets, and time-varying system analysis. 

The remainder of this paper is organized as follows. Section 2 presents some 
background material. Section 3 presents the problem formulation. Section 4 dis
cusses the notion of a multirate controlled invariance kernel. Section 5 introduces 
machinery necessary for the construction of an ^-optimal multirate controller, and 
outlines an algorithm to construct such a controller. Section 6 presents an explicit 
formulation of this algorithm and an example, Section 7 contains an example il
lustrating an application of this algorithm and Section 8 contains some concluding 
remarks. 

2. MATHEMATICAL PRELIMINARIES 

First, we give some basic notation: 7£+ denotes the set of nonnegative real numbers 
and Z+ denotes the set of nonnegative integers. For M G Tlmxn, let M( t J) denote 
the ijth element of M, let M(l>:) denote the ith row of M, and let M(:j) denote the 
j th column of M. Also, let M(,jj:) denote the portion of the zth row of M which 
includes the j th through the right-most column. Define |M(t-:)| := 5^j = i l^(tj)l> 
and |M| = maxt |M(i>:)|. Similarly for x G F , let X{ denote the ith component 
of x and define \x\ = max* \x{\. The appropriate definition of | • | will be apparent 
from context. Let i?£°(Z+) denote the set of bounded one-sided sequences in 1Zn. 
For / = {/(0), / ( l ) , / ( 2 ) , . . .} G C ( 2 + ) , define | | / | | := s u p , 6 2 + \f(t)\. A causal 

operator H : C ( 2 + ) — C ( 2 + ) i s c a l l e d s t a b l e i f \\H\\ : = suP/€<~ ^ W < °°-

A set-valued map F : X ~> Y is a mapping from individual points x G X 
to sets F(x) C Y. The domain of a set-valued map F is defined sis dom(F) = 
{x G X : F(x) is non-empty}. Finally, we give the definition of lower and upper 
semicontinuity of a set-valued map which is required in later developments. 
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Definition 2.1. ([l],p.56) Let X and Y be Banach spaces. A set-valued map 
F : X ~> y is called lower semicontinuous if for any x G cfom(F), y G F(x), 
and sequence xn G dom(F) converging to z, there exists a sequence of elements 
yn G F(xn) converging to y. 

A set-valued map F : X ^ Y is called upper semicontinuous if 1) dom(F) is 
closed and 2) for any x G dom(F) and any £ > 0, there exists a <5 > 0 such that 
x' G dom(F) and ||:r' — x|| < A together imply 

sup inf lly'-r/ll < e. 
y'eF(x')y£F(x) 

In our developments the spaces X and Y in the above definitions will be product 
spaces of the real numbers TZ with itself. It should also be noted that some elements 
of viability theory will be adapted for use in this paper with multirate systems. For 
a more complete treatment of viability theory, the interested reader should consult 
[1,2]. 

Let 1 denote a column vector of appropriate length with unit elements. For 
M G Uzxn and m G Kn, let Set(M,n) denote the subset of 7ln associated with M 
and m, defined by the constraints 

Set(M) = {x : Mx < m}. 

This notation is used to develop the definition of the Rack operator which appears 
below. 

Definition 2.2. Let M G Tlrx(n+1) and m G ftn+1. Define Rack[M, m] as the set 
of matrices M and vectors m such that 

v G Set(M, fh) C TZn 

[ ) € Set(M, m) C 1ln+l, for some well. 

The Rack operator, then, allows a group of constraints on n variables to be rewrit
ten as a group of constraints of the first n — 1 variables. Often, it will be necessary 
to apply the Rack operator multiple times upon a single matrix in order to remove 
multiple variables from the constraints. Accordingly, the notation Rack [M, m] will 
be used to denote k such applications of the Rack operator when the removal of k 
variables from the constraints is desired. 

In the sequel the functions 4>M(0 and ^ ( O i a s defined below, will be used to 
define ^-optimal control laws. 
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Definition 2.3. Let M G ftrx(n+1) be a matrix and m G Kr be an associated 
vector, such that M and m describe a set of inequalities 

M £ < m. 

Define Mi = M(:ti.n) and M\\ = M(.jfl+i). For each row of Mn, let 

^ + = {j 

z~ = {j 
z° = {j 

(Mn)j > 0} 

(Mn)j < 0} (1) 

(M„) i = 0}. 

If Z + and Z are non-empty, the functions <f>M : 1Zn —* 72. and <j>M : 72n —• 7£ are 
defined such that 

*t«> = rv ( m ) , ; i :
( r" w 

«.<© = -ax ( ^ - - W t o - . ^ . (2) 
j - G Z - (1Wl l)(j-) 

The functions 0 M ( 0 and <^M(0 are intimately connected with the Raci operator, 
as may be seen by comparing Definition 2.3 with the Fourier-Motzkin algorithm 
contained in [13]. In fact, these functions provide upper and lower bounds upon a 
variable which has been removed by use of the Rack operator, such that 

v G Set(M, m) C Tln and w G {w : </>M(V) < w < ^(v)} C H 

fv} eSet(M,m)cnn+1. 

Note the form of the functions <j>M and <f>M depend upon both M and m, although 
only the matrix M is explicitly indicated by the notation. However, in practice, 
there will be a unique vector m corresponding to each M used to formulate the 
functions <j)M and <f)M. 

3. PROBLEM FORMULATION 

In this paper, the ^-optimal control problem for a linear multirate system with state 
feedback available is considered. The system equations are given by 

x(t + 1) = Ax(t) + Ew(t) + Bu(t) 

z(t) = dx(t) + Dnw(t) + D12u(t) (3) 

where x G TZn contains the state of the system, w(t) G 7£+ contains exogenous inputs, 
u(t) G Hm contains control inputs, z(t) G Ttp contains regulated outputs. The mea
sured inputs of the system (i. e. the states) are sampled at rates of l\T, /2T , . . . , / n T. 
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The control inputs are delivered to the system at rates of fciT, A^T,... ,kmT. It is 
assumed that T is the least common sampling interval among all of the inputs and 
the outputs. The noise enters the system discretely at a rate of T time units. The 
assumption that the noise enters at the fastest sampling rate simplifies the solution 
of the tx-optimal control problem, but is can be removed through straightforward 
extensions of the algorithms which appear in this paper. It is also assumed that the 
sampling intervals of the inputs and the outputs are all synchronized, such that the 
jump discontinuities in the inputs and the outputs occur at the same time instant. 
State feedback is assumed to be available such that the measured outputs (denoted 
as y G TZn) are the states. 

The controllers, /Cmuiti, which are admissible for this systems are memoryless 
multirate controllers which are, in general, a nonlinear function of the state. By 
memoryless, it is meant that the controllers may be defined without introducing ad
ditional state variables to the system. And, multirate refers to the above stipulation 
that the inputs and the regulated outputs may appear at different rates. 

Given an admissible controller, /Cmuiti, define T2W(ICmu\u) to be the forced dy
namics from w to z with zero initial conditions. Similarly define Txw(/Cmu\tl) and 
I uw (KmultiJ-

Definition 3.1. An admissible multirate controller, /Cmuiti, is said to be internally 
stabilizing with a performance (resp., strict performance) of 7 if 1) the unforced 
dynamics (w = 0) are globally exponentially stable and 2) the forced dynamics with 
zero initial conditions satisfy ||Tzti,(/Cmuiti)|| < 7, (resp., ||TZM,(/Cmuiti)|| < 7), with 
both ||TX^(/Cmuiti)||, I\T2W(/Cmuiti)|| < 00. 

The optimum performance problem can now be postulated as 

7oPt = inf {||T2U,(,fc)|| : /Cmuiti is admissible and internally stabilizing} . 
Cmuiti 

We point out that arbitrary time variation does not offer any advantage over 
multirate if the controller is linear [3]. Moreover, it can be deduced from the devel
opments of Section 5 and Section 6 that a memoryless nonlinear controller can at 
least match the performance of any linear one. In fact, if may perform better [15]. 
Finally, it also can be concluded from the results of Section 5 and Section 6 that 
a dynamic controller does not outperform a memoryless periodic one. Hence, the 
class of admissible controllers is not restrictive. 

4. MULTIRATE CONTROLLED INVARIANCE 

In this section, the concept of a multirate controlled difference inclusion, which may 
be used to represent a dynamic system, is introduced. For a particular multirate 
controlled difference inclusion, the structures which are of particular interest are 
multirate controlled invariant sets. If a multirate system begins within such a set, 
then it will be confined to that set for all time under the action of the associated 
controlled difference inclusion. This invariance property will be exploited in the 
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construction of a controller which solves the stated ^-optimal control problem. Due 
to the requirements of this control law construction method which will be detailed 
in Sections 5 and 6, it is necessary to consider simultaneously the behavior of the 
multirate system at each step of a time interval of R time steps (i. e. RT time units), 
where R = LCM(/i, /2, • • •, -n>-fci, &2, • • •, &n)- As a consequence, the definition of a 
controlled difference inclusion must be appropriately adapted in order to be used to 
model multirate systems. Specifically, it must be altered such that the behavior of 
the multirate system for R time steps is described. This requirement is met by the 
following definition. 

Definition 4 .1 . Let F : Tln x 1ZR~ ^ F b e a set valued map. Define 

^ ( * ) = { U - € * - F(x)u
Q

1...1u
R-1)). 

I «€{0 R-l) ) 

Then, x(j + R) £ F(x(j)) is the multirate controlled difference inclusion defined 
by F. 

In the above definition, the variables t i° , . . ., uR~l represent the control inputs at 
times Rj,..., Rj+(R-iy Also, the time interval described by a multirate controlled 
difference inclusion will always begin and end at time steps at which the system has 
access both to all the states and to all the controls. Note that the shortest length of 
time between such time steps is in fact R time steps. Another important detail of the 
above definition is that the output of the multirate system can only be considered 
every R steps when modeled with a multirate controlled difference inclusion. How
ever, when applied to an ^-optimal control problem, multirate controlled difference 
inclusions clearly also must satisfy the required bounds on the outputs of inter
mediate steps. This will be accomplished by appropriately defining the set-valued 
map F(x, u ° , . . . , uR"x). Finally, note that, while the above definition accomodates 
multirate controllers and systems, it does not explicitly restrict the system or the 
controller to be multirate. This over-generality will also be addressed in the sequel 
by appropriately defining the set valued map F(x, K°, . . . , ti**"1). 

As previously indicated, the concept of the controlled invariance of a multirate 
controlled difference inclusion is integral to the construction of an ^-optimal control 
law. The essential idea is to define a set which will insure that the required output 
^°°-norm bounds are met and to then search for the largest subset to which the 
multirate system can be confined under some admissible control law for all time. 
If such a set exists, then an ^-optimal controller can be constructed. Formally, a 
controlled invariant set for a multirate controlled difference inclusion satisfies the 
following definition. 

Definition 4.2. Consider the multirate controlled difference inclusion defined by 
F. A set K C 7Zn is multirate controlled invariant under F if Var £ K, there exists 
u{ £ f t m , i £ {()-. . . , i J - l},such that F(x, t i ° , . . . , uR~x) C K. 

Clearly, it is desirable to find the "largest" multirate controlled invariant set of 
a particular multirate controlled difference inclusion. Therefore, an important type 
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of multirate controlled invariant set is the multirate controlled invariance kernel, 
which is the largest multirate controlled invariant set in the sense given by the 
below definition. 

Definition 4.3. Consider the multirate controlled difference inclusion defined by F. 
Let the set A' be a subset of 1Zn. The multirate controlled invariance kernel of A" 
for F , denoted as C1NV(I\)/^, is the largest closed subset of K such that for all x G 
C INV(A)K, there exist ul e 11™, i G { 0 , . . . , I t - l},such that F(x, u°,..., uR~l) C 
C I N V ( K ) ^ . Here, the term largest implies that ClNv(I\ );* contains all other closed 
subsets of K with the above invariance property. 

An algorithm for the construction of the multirate controlled invariance kernel 
is given in the following proposition, which follows almost immediately from the 
version of the Controlled Invariance Kernel Algorithm contained in [4]. 

Proposi t ion 4 .1 . Let F : 1Zn x 1ZRm ~> 1Zn be a lower semicontinuous set valued 
map. Also, assume that the set 

\jnF(Xnyn,...,Un^) 

is bounded if and only if the sequence {ul
n} G 7£, i G {0 , . . . , R — 1} and xn G Hn 

are bounded. Let K C 1Zn be a compact set. Define A'o =- A, and recursively define 
the subsets KRJ of A", for j =- 1,2,..., by 

KRJ = j * G KR(J-I) ' F(x,u°,...1u
R-1) C Ayi(j-i), 

with u* e1Zm, i e { 0 - . . . - . R - l } } . 

Then oo 
ClNV(A)I* = [ ]. I<Rr 

1 ' j=0 

The construction of a multirate controlled invariance kernel CINV(A')/* is integral 
to the construction of the -^-optimal control law developed in this section for multi-
rate systems. It is important to note that in the most general sense, the definition of 
multirate controlled difference inclusions allows the control input to be non-causal 
and to depend upon unavailable state information. As discussed in the following sec
tion, this potential difficulty can be avoided by imparting to the multirate controlled 
difference inclusion a form which depends upon the particular multirate system of 
interest. 

5. FORMULATION OF MULTIRATE CONTROLLED DIFFERENCE 
INCLUSION 

In this section, the multirate controlled invariant set C INV(OBJECT^) is defined 
and its role in the construction of an admissible e-suboptimal multirate controller 
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is described. The following assumptions are made for the remaining discussion of 
multirate systems in order to simplify the construction of the controller and the 
arguments of the proofs which follow. 

Assumpt ion 5 .1 . 

1. rank(E) = rank(Ci(t)) = n 

2. rank(B(t)) = m. 

The first two assumptions simplify greatly the construction of the control law. It 
should be noted that is possible to remove the rank assumption on E with arbitrarily 
small perturbations to E. The rank assumption on each C\ may also be removed, 
but this must be done by introducing new, non-trivial outputs in order to avoid 
numerical difficulties and to insure a reasonable bound on the plant states. The 
final assumption insures that there will be no control redundancies, and it may be 
removed by arbitrarily small perturbations to B. 

For most remainder of the discussion of the construction of -^-optimal control 
laws for multirate systems, it also will be assumed that both the states and control 
input only have rates of T and 2T, such that R=2. The states and control variables 
with the same sampling rates will be grouped together, such that x\ (u\) contains 
all states (control inputs) which appear at rates of T, and x<i (u^) contains all states 
(control inputs) which appear at rates of 2T. Also, define nXl := dim(xi), xX2 := 
dim(x2), nUl := dim(ui), nU2 := dim(t/2)- This assumption that the multirate 
system possesses only sampling rates of T and 2T will greatly simplify and clarify the 
presentation of the multirate control law construction algorithm. But the algorithms 
presented here may be extended to the general multirate problem, and this extension 
process is described at the close of Section 6. In the sequel, we will write x and u as 

-GD IÍ2 
and u = 

Ui 

such that /! = ••• = /n x i = * ! = ••• = fcmui = 1 and /nxi+i = ••• = /„ = fcmui+i = 
.. • = km = 2. Note that i«2 appears above u\ in t/, opposite to the usual manner. 
This is done to simplify the formulation of the algorithms which follow. 

The first step in constructing an ^-optimal controller is to use the state equations 
given by (3) to formulate a multirate controlled difference inclusion which will be 
suitable for use in Proposition 4.1. As previously indicated, this multirate controlled 
difference inclusion must be peculiarly defined in order to insure that the resulting 
controller is causal and that only available state information is used to produce 
control inputs. 

To understand these difficulties, suppose a multirate system begins at an even 
time step 2j. Then, defining xx := x(t), it is clear from (3) that x 2 ; + 1 = Ax2* + 
JBM2J + Ew2*. It is important to note that since both all states and all control inputs 
are available at even time steps, as indicated in Section 4, each element of x2-7 is 
known and each element of u2-7 may be prescribed. Therefore, as in the LTI single 
rate case, the state dynamics from time step 2j to time step 2j + l can be represented 
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by the following controlled difference inclusion: 

x 2 ' + 1 G lAx2j + Bu2j + Ew2j, for some u G Tlm : \w2>\ < - } . (4) 

Here, as an ^-optimal controller is sought, a bound on the -?°°-norm of the exogenous 
noise is assumed, such that |u>2;| < ^. At even time steps 2j + 2, the state may be 
written as 

x2>+2 = _4x2 '+1 + Bu2^1 + Ew2^1. (5) 

If the state dynamics from time step 2j + 1 to time 2j + 2 were represented by 
a controlled difference inclusion in the simple form of (4), the standard LTI single 
rate technique of [13] could be used to construct a control law. However, unlike (4), 
some of the elements of the state and the control input are not known at time steps 
2jf + 1 (i.e. x2~*~ and u2 ). And the resulting control law, therefore, could be 
non-causal or utilize unavailable state information. In order to properly construct a 
controlled difference inclusion for a multirate system, its structure must inherently 
insure that the resulting controller both will be causal and will not use unavailable 
state information. 

To preserve the causality of the controller, when the controlled difference inclusion 
is defined to describe the transition from time step 2j + 1 to time step 2j + 2, the 
unavailable control inputs at time 2j + 1 (i.e. u2~*~ ) may be equated to u2 . This 
insures that the u<i may only be updated at even time steps. The resulting controlled 
difference inclusion would then have the following form: 

x 2 ^ 1 e {Ax2^1 + [ Bl 0 I 0 J5„ ] Q ^ ) + Ew2*+\ 

for some u G Tlm : |w 2 i + 1 | < - } 

where the B = [ B\ B\\ ] system matrix has been split according to the dimensions of 
u\ and 1X2- If the state were fully available at time step 2j + 1, the above controlled 
difference inclusion could be used to formulate a controller in a manner analogous to 
the LTI single rate case. But if B\\ is non-zero, then the controller will still depend 

9 i -4-1 

in general upon x2 , which is unavailable. We will, however, in the sequel use this 
technique of explicitly including u2i in the equation for x2«7+2 in order to preserve 
the causality of the controller. 

The problem of insuring that the equation for x 2 j + 2 is written only in terms 
of available information is more complicated than insuring causality. However, a 
solution may be obtained by considering the problem of removing the dependency 
of the controller upon unknown states (i.e. x2

l~*~ ) as the problem of "estimating" 
x2 . In this context, an estimate for x2 is a set which contains all possible 
values of x2~*~ , given the available information. The best estimate is then the 
smallest such set, with a single point corresponding to an estimate with zero error. 
Once an estimate for x 2

; + has been obtained, we will then seek a control law 
which will work for any x2~*~ contained in this estimating set. In constructing this 
estimating set, elements of the set-valued estimator developed in [14] will be used. 
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The first step is to insuring that the controller will not depend on x , 2 ; + 2 is to pro
duce a set-valued estimate of x2 . This may be done by modifying the set-valued 
estimator which appears in [14]. Recall that this algorithm describes a procedure 
to construct an online, set-valued estimator. At each time step, this set valued 
estimator produces the set of all possible states, which are consistent with all the 
available measurements. In general, these measurements could be noise corrupted 
combinations of the state. It was shown in [14] that the centers of these set valued 
estimates were optimal estimates in an induced-norm sense. Such a point estimate 
is not needed in the present case. However, a simplified version of the algorithm 
of [14] will be used to produce an estimating set for x2 . The simplifications 
result from the fact that there is no measurement noise and the fact that due to 
the assumed two-rate structure of the system, only a single step of the algorithm 
of [14] is required. (In the case of the general multirate problem, multiple steps 
of the algorithm of [14] will be required, as will be discussed subsequently.) One 
significant modification will be made in constructing this estimating set, due to the 
online nature of the algorithm of [14]. This online algorithm requires specific values 
for the measurements and the control inputs at each time step. Since an estimating 
set must be produced off line and since an explicit control law has yet to be chosen, 
specific values for the measurements and the control inputs will not be available, 
and, thus, they will be represented symbolically. 

We now proceed construct a set-valued estimate for x2 , by beginning at time 
step 2j at which we have noise free measurements of the entire state. Then, we move 
one time step forward to construct the set-valued estimate for the state at time step 
2.7 + 1. This can be done by noticing that x2i+l — Ax2j +Bu2j + Ew2i. In addition, 
in the context of ^-optimal control, a bound on the ^°°-norm of the exogenous 
noise exists, such that it will be assumed that \w2j\ < ^. This information may be 
grouped together to form an equivalent matrix inequality in the following manner: 

-I A B E 
I -A -B -E 
O O O т í 
0 0 0 - 7 / 

(6) 

:=M 

In order to form the estimating set for x2
J* we will apply the Rack operator 

to the above set of inequalities in order to produce a set of equivalent inequalities 
containing only a:2 '*1, x

2i, and u2j. Accordingly, if we write 

st ( M e s t , m e s t ) G Rackq[W , ňfst] 

then 

M e s t Mfî* Mest 
III ' I V 

= M e 

t *?+i \ 
xЪ 

7,2І 

< m e 
(7) 
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is the aforementioned set of inequalities equivalent to (6), which defines the estimat
ing set for x 2

J + . This may be seen by noticing that, since r 2 1 + 1 , x 2 j , and u 2 ; are 
all known at time t — 2j + 1, the only unknown quantity in (7) is x2^ . There
fore, the intersection of all of the inequalities contained in (7), provides limits on 
the possible values of x2 . Since (6) contains all available information relevant to 
producing an estimating set for x2 , the best possible estimating set for a noise 

level of |uv21| < i is given by x\J + l G Esty (x\J+1, x2j, u2jY where 

EsЧ7(æ^+1,*2;VJ') = 

I *?+1 \ 
: 2

І + 1 : [ Mfst Mft81 Mfiү M$ ] 
r 2 j + l 
Ľ2 

т 2 j 

V «2j I 

< m est 

(8) 
The above construction process for Est^^x^ , x 2 j , u21) is summarized in the fol 
lowing algorithm. 

Algorithm 5.1. (Construction of Estimating Set for x 2

; + with \w\ < -.) 

1. Specify 7 > 0. 

2. Let 
" -I A B E 

T П Ғ e s t 

M = 
I 
0 

-A 
0 

-B 
0 

-E 

TI 
0 0 0 - 7 / 

and mest = 
0 

1 

V - У 

3. Let 

M , řň e s c (Mest,mest) eRack9 

Then the estimating set for x 2 f° r a n ° i s e l e v e l °f l«x»2J | < - is given by 

Est ,(i? + , ,x«,«») = | 

/«?" \ 
# ' + 1 : Mest 

2j + l 

\ « 2 j / 

< m esfc 

Now that an explicit form for the estimating set for ar 2
7 + 1 is available, it is 

possible to insure that the controller will not depend upon -c 2
J + 1 by insuring that the 

2 i + 1 G E s t 7 ( x J i + \ x 2 J , x 2 J ) . This will be accomplished controller will work for any x2 

by allowing x 2
; + in the controlled difference inclusion defined below to assume any 

value in Esty(x1
3+ , x 2 j , u 2 ; ) . By also writing this controlled difference inclusion to 
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insure that causality is maintained, as was done previously, the set-valued map F 7 

is obtained, where 

= {Ax2i+1+[Bl 0 | 0 -SII ] ( M i + i ) + . C u » v + 1 : 

|O i* 2 i + Duw
2> + Di2«2j'| < 1, \dw2i+1 + Duw

2i+1 + D12u
2j+1| < 1, 

Vx2>'+1 6 Esty (a r« + 1 ,« 2 >,««) , V|u>2''| < - , and V | ^ ' + 1 | < i } 

where 
x2j+1 = [An A12] x2> + [Bu B12] u2> + Ex w2> (9) 

with [.An A\2\ (resp. [ B u B\2\) representing the first nXl (resp. nU l) rows of A 
(resp. B). Note that the multirate controlled difference inclusion defined by F 7 is 
equivalent to two time steps of the system equations (3) for \\w\\ < I /7 and ||ti|| < 1. 
Also, note that F 7 does not depend on u 2

J + 1 , since u2 is only available at times 
' = 2j, j G {0 ,1 , . . . } . And, since x 2

J + 1 may take any value in Est 7 (x 2 j + 1 , x2-7, u2 j) , 
the multirate controlled difference inclusion is effectively independent of x2

; 

Now, define the set OBJECT^ such that 

OBJECT^ = fxenn : \Cix + Dnw + D12u\ < 1, (10) 

for some ueTlm and V \w\ < - j . 

Then, if O B J E C T 7 is non-empty, it may be shown straightforwardly that Fy satisfies 
the hypotheses of Proposition 4.1. As a result, Proposition 4.1 may be used to con
struct the multirate controlled invariance kernel ClNV(OBJECT°), when it exists, of 

O B J E C T 7 . A simple recursive argument following the general structure of Proposi
tion 4.1 may also be used to show that the convexity and compactness of OBJECT^ 
implies the convexity and compactness of C I N V ( O B J E C T ^ ) , when it exists. 

As indicated in Section 4, the concept of the multirate controlled invariance kernel 
is integral to the formation of an -^-optimal controller. Specifically, the controlled 
invariance kernel of interest is C I N V ( O B J E C T ^ ) . Clearly, if the state is confined at 
time steps 2j to O B J E C T ^ , then the £°°-norm of the output at time steps 2j will 
be less than or equal to one. The -?°°-norm of the output at all intermediate times 
will also be less than one due to the definition of the multirate controlled difference 
inclusion F 7 . This ability to bound the -?°°-norm of the output at all times, suggests 
the following two step algorithm for the construction of an optimal control law. 

The first step of the algorithm is to construct the multirate controlled invariance 
kernel C I N V ( O B J E C T 7 ) for a particular 7 > 0, using the algorithm described in 
Proposition 4.1. Practically, C I N V ( O B J E C T ^ ) will be difficult to form if the infinite 
intersection C\7=o ^2j does not converge within a finite and suitably small number of 
steps. An alternative is to truncate the invariance kernel algorithm at a point when 
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additional iteгations pгoduce only an incremental change which is small in some 
sense. This issue will be commented upon in the Section 6. If it is determined that 
C І N V ( O B J E C T ^ ) is empty, then 7 has been chosen too small. In fact, it can be shown 
that if C І N V ( O B J E C T ^ ) does not exist foг a paгticular 7, then it is not possible to 
find a controller with a peгfoгmance level of 7- Therefore, if C І N V ( O B J E C T ° ) does 
not exist, 7 should be incгeased, and the algorithm should be re-run. 

If 7 is not too small, then the second step of the algorithm may be run. This 
second step is to deteгmine the set of all contгols by which the state can be con-
fined within the multirate contгolled invariant set Cшv(OвJECT°). A memoryless 
multiгate controller may then be chosen from this set of potential controls. By con-
struction, this contгoller will have a peгformance level of 7. If this perfoгmance level 
is not small enough or a perfoгmance level closer to the optimal value is desired, 
then 7 should be decreased by an appгopriate value and the algorithm should be 
re-гun from the fiгst step. An explicit description of this two step process is given 
in the following section. 

6. EXPLICIT MULTIRATE CONTROL CONSTRUCTЮN ALGORITHMS 

In this section, explicit algoгithms are discussed which may be used to constгuct 
memoryless multirate contгolleгs for the two-rate problem in which both the state 
and the contгol may only appear at rates of T and 2T. The extension of this 
process to the general multirate problem is described at the close of this section. 
These algorithms require an explicit form of the multirate controlled invariance 
keгnel C І N V ( O B J E C T ^ ) . As previously discussed, confinement to C І N V ( O B J E C Г ° ) 
is desiгable, since, if the state belongs to C Ш V ( O B J E C T ^ ) , then a bound on the 
ŕ°°-norm of the output will be insured. The control law is then defined such that it 
ensuгes the invaгiance of C І N V ( O B J E C T ° ) . 

In Section 6.1, an explicit algorithm is developed to construct CІNV(OBJECT Í J ) . 
The case of zero D system matrices is addressed first, and then the results are gener-
alized to the case of non-zero D system matrices. In Section 6.2, a control algoгithm 
is foгmulated which insures that C І N V ( O B J E C T ^ ) remains controlled invariant. 

6.1. C o n s t r u c t i o n of t h e m u l t i r a t e control led invariance kernel 

In ordeг to construct C Ш V ( O B J E C T ° ) , the methodology of Pгoposition 4.1 will be 
utilized. Since the state must be confined to OBJECT!J, the set KQ in Pгoposition 4.1 
will be set equal to OвJECT^. Then, matrices M2j and associated vectors m2j will 
be computed, such that K2j = Set^M^^m^^ wheгe the K2j are as defined in 
Proposition 4.1. 

6.1.1. Case oťD\\ = Dì2 = 0 

The first case of the construction of C І N V ( O B J E C T ! J ) addressed is that of a system 
with a D system matrix which is zero (i.e. D\\ = D\2 = 0). The first step in 
constгucting C Ш V ( O B J E C T ^ ) for this case is to substitute D\\ = 0 and D\2 = 0 
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into (10) and (9) in order to obtain simplified versions of OBJECT^ and Fy. The 
result is that 

OBJECT° = { x 2 > + 2 : | O i a : 2 ^ ' + 2 | < l } 

such that 

x2j+2 e OBJECT" Oi 
- O i 

x2i+2 < 1. 

Also 

Fy{x2>,u*,u*+l) = {Ax2}+i + [Bl 0 | 0 Bnl^fiU^j+Ew2^: 

I O ^ ' ^ 1 , 1 , \C1X

2^\<1, Mxy+leEst,{x\i+\x2i,u2>), V | u ^ | < i 

a n d V | u ; 2 ' ' + 1 | < - } 

where 

*?'" + 1 = [J4H Al2]x25 + [Bn BnW'+Exw2'. (11) 

Following Proposition 4.1, we start by initializing KQ = OBJECT^. Defining 

м0 -(-%) 
and mo = 1 

it follows that Set(M0i m0) = A'o = O B J E C T ° . 

To construct 7\2, it is clear that x 2 ; G K2 necessarily requires that 

[An - 4 i 2 ] * 2 i + 1 + [flu Bl2\u*+l + E1w
2^1 C K0, V™2'+1 < - . 

7 

This condition may be rewritten in matrix notation as 

[M0A Mo[BiO] M o [ 0 ß и ] M0E] 

:=MB 

/ Z 2>'+ 1 \ 

u2i 

u2*+1 

\ w2i+l 

<m0, Чw2>+1<-. (12) 
7 

/ 

In order to remove the noise variables from the above inequality, the matrix 
Mi is defined using a row-by-row analysis. For each row of Mo, there are three 
possibilities: 

1. If — |(.A.fo-E)(/|:)| > (m0)/, the K2 is empty, and so is CINV(OBJECT ° ) . 

2. If i |(M0.E)(/,:)| = (m0)/, then 7 < T o p t . 

3. If i j(M0^)(/> : ) | < (m0)/, then 7 < 7 o p t . 
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If 7 > 7oPt for all rows, then define M i using a row-by-row analysis such that 

_ ( M 0 , 4 M 0 [ B i O ] Mp[0 £„])(,.) 
M * « . 0 - m(0),- i | (Mo-?)( , , : ) | ' • 

In order for x2-7 G K2 it also will be necessary that | C i x 2 ; + 1 | < 1. This is 
equivalent to 

M 0 x 2 i + 1 < 1. 

Splitting Mi and Mo according to the columns which correspond to the known and 
unknown states, the two control variables, and the noise, this new constraint can be 
appended to those defined by Mi, to yield 

: = M ł = 
( M , ) , ( M , ) „ ( M , ),„ ( M , ) , v ' ł ţЛп (мţ) 

( *?+1 \ 
(M0)i (Mo)ц 0 0 

( Л ф , ( M I ) I , ( M i ) , „ (Mi),v 

r 2 j + l 
c 2 

« « 
,2j + l \ U^ + 1 / 

(13) 

At this point, we would like to remove i i 2 ; + 1 from the above inequality. In the 
case of the LTI single rate problem, in which all states are sampled at all time 
steps, this would be done by applying the Rack operator m times (once for each 
element of tz2-7"1"1). This can not be done in the case of the multirate systems being 
considered here. The problem stems from the fact that using the Rack operator to 
remove control inputs from a set of constraints implicitly allows those controls to 
depend upon each of the remaining variables. Thus, if the Rack operator was used to 
remove the columns corresponding to u 2 j + 1 , there would be an implicit assumption 
that u 2 j + 1 could depend upon x_3+1. This would allow the controller to depend 
upon state information which is not available at time step 2j + 1. To avoid this type 
of difficulty, it will be necessary to remove x_3+1 from (13) before the Rack operator 
is applied. This will be done in a manner similar to that which was used to remove 
uv2 j + 1 in order to create M i . That is, a row-by-row analysis of M i will be used to 

identify a scalar region over which each row of (ML J varies. Then we insure that 

(13) holds for all possible values of x_2H1) G Est^ (x_i+l

9x
2',u2>Y Note that this 

will satisfy the inherent requirement of F^ that F^ C A'o for all possible values of 
X 2 

The first step of removing the x_J+1 variables is to identify the combinations of 

the x_3 variables which must be estimated. Since each row of (13) has to hold 

independently, it is necessary to determine the range over which each nonzero row 

of \M_J varies. To this end, let 

M l contain each row [ M i ] 
V * J U t 0 

with И'"),,,:, = 0, 
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2. Mi contain each row 
2 

(Mi) with ( (Mi)„) 
' (i.O 

Ф0. 

Using this notation and splitting Mi. and M i in the obvious ways, (13) may be 
rewritten in the following form 

(лф 0 (M.)„, (Mi),v 

(Mï) , (MІ)„ ( M l ) ш (MІ)iv 

I ^ \ 

u 2 ' 
< 1. (14) 

The vector est, which contains each variable which must be estimated, may then be 
defined as 

e s t ^ M l ) ^ * 1 . 

Let the dimension of est be dim(est) = e. 

We now need to determine scalar regions over which each est,, i G {l,.. .,e} 
varies. To accomplish this, we first form an individual estimating set for each esti 
and the available information (i.e. x± , x 2 ; , ti2-7). Let Esti be the estimating set 
for each est,-, for all i = 1, . . . , e. Then, using the notation of (8) we may write 

(MEstt,mEst.) 

6 Rade"1* 

and 

Mest Mщ* MJV 4 M,f* 

1 0 0 0 f(Mð i)„) 

- 1 0 0 0 ( ( Ã ф н ) ( . i : ) _ 

/ est,- \ 

Est,- = < esti : MEsU 

\ 

.-І+l 

w 2 > 

< mE, 'st, 

/ 

m 
est 

As the estimating set of esti} Esti) is the set of all possible values of esti^ given the 
available information, just as Est^ contained all possible values of x 2

; + . Each row 
of Esti defines an inequality constraint upon esti^ and, therefore, each row of Esti 
corresponds to either an upper bound or a lower bound on the value of esti. Taking 
the intersection of all of the upper bounds produces the desired upper bound on 
esti. However, since it will not be known a priori which individual upper bound is 
the most restrictive, this upper bound will not have a constant functional form. To 
produce upper bounds with a constant functional form, we will divide the space of 
the measured data (i.e. x ^ , x 2 j , and u 2 j ) into regions in which the upper bounds 
on all the esti variables have a constant functional form. To that end, define the 
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regions Region(lR), lR 6 { 1 , . . . , LR}, LR £ Z+ such that each est,- may be bounded 
by a function with a constant form within each Region(lR), such that we may write 

estiKaf+b? (*2>'+1 z 2 ' u*)', V i e { l > . . . , c } (15) 

for all (xx
J , x2-7, u2 j) 6 Region(lR)y where each a\ is a scalar constant and each &(• 

is a constant vector. These regions may be obtained from the inequality constraint 
descriptions of each Est{ by utilizing algebraic manipulations and linear program
ming methods. 

By sectioning the space of the measured data into regions, it is possible to remove 
the unmeasured variables, the -ĉ 7**"1 variables, from (14) in a row-by-row manner 
similar to that by which the noise variables were removed from (12). Over each 
region corresponding to some index lR, we want to insure that (14) will hold for any 

est E Est. Therefore, for each row of M i , let 

mrî(/л)ť = l - a Г 

and 

мRîЮov) = [И)i) (, : ) N ь ) ( , : ) N Ц j + [ Ŕ Г o] 

Also, let 

m.t-1 a„d 44-1(41), (ľi)m(ч\)„]. 
Note that MR\ and rarj will be the same over each Region(lR). Using the above 
notation, the following inequality holds for each Region(lR): 

мяŞ(/n) 
MR*(lR) 

( 
-2J+1 

x2j 

U2> 

\ 

: = M Л i ( / n ) \ uV+x J 

mr^l11) 

mr*(lR) 

:=mri( i H ) 

(16) 

Once MR\(lR) and mri(lR) have been constructed for each Region(lR), the con
straints no longer depend upon x2

J . Therefore, the u2'+l control variables may be 
removed by using the Rack operator without forcing the control law to depend upon 
x 2

J + . For each region corresponding to some index /H, define the matrix M\(lR) 
and the vector mi(lR), such that 

(Mr(lR),mi(lR)) E RaclT [ M R x ^ ) , mri(lR)\ . (17) 

Dividing M\(lR) in the obvious manner results in the following set of constraints 

[(A.Г,(/Л))- ШR))n (Mг(lR))m] x2> 

u 2j 

< m i ( ' Я ) . 



572 J. AUBRECHT AND P.G. VOULGARIS 

Note that the Rack operator is not applied 2m times to (13), as this also would 
remove the columns which correspond to u2j. As previously discussed, such a use 
of the Rack operator would implicitly allow u2j to depend upon xJ J + 1 , yielding a 
non-causal control law. To remove u2j from the above constraints using the Rack 
operator (and, thereby, yielding constraints only in terms of the states) without 
producing a non-causal controller, x2jJtl must be written in terms of x2j, u2j, and 
w2j by using the system equations. This yields, for each region corresponding to 
some index lR, the following inequality 

[ ( -Vi( / , l ) ) 1 [ i l i i i - i2]+(Afi ( /*) ) I I ]xW 

x?i 
+ [(M1(l

R))l [Bu B12] + (M1(l
R))m | (Ml(l

R))1 EX) ( - - - ) < m,( /«) . 
W 

<18) 
To this inequality, the final condition necessary to insure that x2j £ A'2, namely 
that ICi-c2-7! < 1, must be added. This condition is equivalent to 

M0x
2j < 1. 

Appending this inequality to (18) yields 

M,( / f l ) , ( ) + Mx(lR)u w2i < rrix(lR) (19) 

V «2j / 
where 

Mi(lR)i 

M0 0 

(Ml(l
R))1 [An Al2] + (Ml(l

R))u (M1(l
R))1 [Bn B12] + (Mx(lR)) 

M,(/я)„ = 

ш 

0 

(MxЦR))г E 

ш,(/ f l) = 

The next step is to remove w2j from (19) for each Region(lR). This will be done in 
a row-by-row manner similar to that used to remove w2j+l from (12), although there 
is one critical diíference. In the latter case, it was simply assumed that lit;2-7"1"1! < - . 
In the present instance, inside of each region associated with some index /Ä , the 
noise is actually more restricted. This is due to the fact that inequalities defining 
each region (i.e. (15)) restrict the value that x2j+1 may have relative to the values 
of x2j and u2j. This clearly restгicts the value that the noise w2j may hold. 

The unique relationship that each Region(lR) has with some region in the space 
of the w2j variables also may be seen from the definition of the Rack operator, which 
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was first used to construct each Est{. By the definition of the Rack operator, for 
each x2-7"1" , x 2 j , and u2-7 which satisfy the conditions of Est,-, there corresponds some 
w2j with |uv2; | < i Tracing the consequences of this fact through the formulation 
of each Region^7*), the unique relationship of each Region(lR) with some region of 
space of the uv2-7 variables may easily be seen. 

In order to remove ur2-7 from (19) it is necessary to determine a scalar bound on 
each row of (Mi(lR))u. Due to the unique relationship that each Region(lR) has 
with some region in the space of the ur2-7 variables, such a bound may be found by 
using algebraic manipulations of the constraints which define each Region(lR) and 
the state equations (3). The result is that for each Region(lR), we may write 

( ( M 1 ( / R ) ) , i ) ( i i : ) < « w ( / R ) . , V.. 

It is now possible to remove w2* from (19) by defining the matrix Mli(lR) such that 

m ftм'""»->»,) 
' * i '('.> ( Й . I ( . Я ) ) , - Ì » T O X ( / B ) І ' 

The next step is to remove u2* from the constraints defined by M1i(lR) in order 

to yield a set of constraints, which depend only upon x2K These constraints will 

define A'2, to whose construction the entire above process has been leading. To effect 

this removal, one must essentially determine the set of states for which a control law 

exists, which will insure that the constraints defined by Ml\_(lR) are satisfied, no 

matter which Region(lR) occurs. Since it is not known a priori which Region(lR) 

region will occur, the control must be chosen such that Set (M l \.( l R ) ) 1] is satisfied 

for all Region(lR). To insure this, define matrix M1± such that 

Set(мą>l)=f]iRSet[мą(lR),l). 

This intersection may be effected by simply collecting all the constraints defined by 
each M1\_(lR) into a single matrix inequality. The redundant constraints could then 
be removed by using a linear program in order to simplify later computations. 

Before finally constructing A'2, note that by definition x2-7 G I\2 only if x 2 j G I\rj-
Therefore, if M 2 and ra2 are defined such that 

M 2 = Ю and m 2 =(ľ 2°) 
where 

(ЛГ 2 )п 2)еКасГ M 

then Set(M2,m2) = I-"2. Given M 2 , the above process may be repeated recursively 
to yield If2j, j G {2, 3,...}. As indicated in Proposition 4.1, the intersection of this 
infinite sequences of sets equals ClNv(OBJECT^). 

The above iterative construction process is summarized in the following algorithm. 
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Algorithm 6.1 ( D n = D12 = 0 Control) 

1. Specify 7 > 0 and initialize 

Mo=(-Cl)
 and mo = (î)' 

2. Let the index j = 0. 

3. For each row of Mj, 

(a) If ^ |(Mji.7)(/i;)| > (m;)/, increase 7 and restart. 

(b) Otherwise, set 

Ы, = *• 
(mi)|-A|(-Vi.íO(,l!,| 

4. Define Myi and m^i as 

м iè = 
[M00] 

m •ił = 1. 

5. Let 

(a) Mji contain each row (MJI) wi with 

(b) MJL contain each row (A-fjiJ with 

(<м<ł>»)(,o 

Иi)»)(,0 

= 0. 

6. Use the set valued estimate Esty (x JJ"+1, x\*, tz2j J to form the regions Region(lR), 

lR G {1,..., L7*}, LR G 2+ within each Region(lR), such that we may write 

e s t , < a j R + 6 f ( x 2 j + 1 x 2 > « 2 > ) ' , 

V i e {!,...,e}, V ( x ? + 1 , x * , u « ) e Ke£ioi,(.*). 

7. For each /fl, let 

and 
mrj+1(/я)ť = l - a f 

Чl('\:)=[Иi).) (. ; ) Иł)HI)(ť,) Иł)lV)(,:)] -
[Ò'Я 0] 

< i = - «-* MRW=[(лîOi WOш WOJ • 
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8. For each lR let 

MR]+Áñ 
[ MBJ+1(/ f í) | 

/ *?+1 \ 
. 2 j + 1 

l 
x2j 

U2 ' 
< 

:=MЯ , + i ( .Я) ̂  v « 2 ; + 1 / 

™ľ+1(7 f í) 
mr?+1(/ f í) 

: = m r i + ł . ( ł я ) 

9. For each /H, define Mj+\ and raj+i by 

(M i + 1 (/*), m i + 1(/H)) € Racicm [MR,-(/*), mrj(l
R)] . 

10. For each lR, define JV7i+i(/H) and m i+1(/R) as 

M i+1(/ f l) = [(M i+1(/R)) Ia (M i+1(/*))I6 (M i+1(/f i))„] 

—<'*> = U V ) ) 
where 

(M i+1(/ f í)),a = 

(Mi+1(/fí))i* = 

M0 

(M i+1(/f í))! [ Л u Л 1 2] + (M i+1(/fí))ц 

[ (Mj+l(lR))i[Bn ß12] + (M i+1(/fí))ш 

("i+.(l"))n = [ ( M i + 1 0,E,] 

(20) 

U. Use the set valued estimate Esty [x2^*1 ,x2* ,u2i J to determine bounds ium a x(/H) 

such that 

( M i + 1 (/*)„) ( . : ) < u>max(.H)i, Vi. 

12. For each lR and each row of ( M i + 1 ( / R ) ) p define 

( ( M i + 1 ( . * ) ) 0 ( i : ) 

^ U ( ' \ ) = í = яv" ( m i + 1 ( / « ) ) , - I t , m a x ( / « ) , 

13. Construct Mj+ii such that 

&« ( " i + i *. i ) = n , H 6 Z — * 5 e t (^i+i*. -) 
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14. Set 
м ' + 2 = 0 £ ) a n d m'-+ 2 =(ľ;) 

where 
(.V i + 2 ) nj+2) 6 RacJcm [ M ; + 1 I , I ] . 

15. Let j = j + 2 and return to Step 3. 

The algorithm will restart whenever 7 < 7opt- Otherwise, 

C I N V ( O B J E C T ° ) = {(^_0Set(M2j)m2j)} . 

Note that the construction of the M2;- and the m2j does not require the solution 
of linear programs. However, linear programs are required for a computationally 
efficient implementation by removing redundant constraints in the matrix description 
of the various sets in the above algorithm. 

6.1.2. Case of Dn, D12 ^ 0 

Suppose now that D n 7-= 0 or F>i2 ^ 0. Define 

V(C) = UeTZp : C+-Dnw < 1 , V | u v | < l | . 

Assuming V is non-empty, use a row-by-row analysis to construct M_ 1, such that 

V = S e t ( M _ i , l ) . 

Then 

OBJECT!) = { I G F : M _ i ( C i x + D12u) < 1, for some u E Km\ . 

Defining M 0 and m 0 such that 

( M 0 , m 0 ) G Rackm f [M_iCi M _ i D i 2 ] , l ] 

it follows that Se^Mo.mo) = OBJECT^. Intialize K0 = Set(Mo,m0). Note that 

if Dn = D12 = 0, then M _ i = (^pxp j . In this case, M 0 = I ^ 1 and 

m 0 = 1, which are precisely the definitions given in the -Dn(j) = D12(j) = 0 
Control Algorithm. 

To construct the sets Kj> j E {1,2,...}, an algorithm which is nearly identical 
to the Dn(j) = D12(j) = 0 Control Algorithm may be used. Other than the above 
alteration to the definition of M 0 , alterations need only be made in Algorithm 6.1 at 
the points at which constraints were added to insure that | |z | | < 1. These conditions 
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were of the form of Idx2-7"1"1! < 1 and | C i x 2 j | < 1. Clearly, these constraints will 
not insure that the *?°°-norm of the regulated outputs remains less than one when 
the D system matrices are non-zero, as they were intended to do. Therefore, in the 
case of non-zero D system matrices, the above conditions must be replaced, with, 
respectively 

M_i[(Oi)i (COulQ^+Jkf. jKUw), o i o ( ř J 1 2 ) „ ] ( u ^ ) < 1 

and 
M _ _ C i x 2 j ' + M _ i o i 2 u 2 ' ' < 1. 

Note that the matrix D\2 has been split in the first expression according to the sizes 
of i/i and u2) in order to insure that the controller is causal. Also, the matrix C_ 
has been split according to the sizes of x\ and x2. As a result of the above changes, 
(13) becomes 

M_i(O i) ! M_i(O i )„ M _ i [ ( D i 2 ) , 0] M_i[0 (Di 2 )i i] 

Ы, Ы„ Ыш ы, řIV 

-Mjr-Lм^), (Mţ)„ (Mş)ш (M^iv l 

_2 

uV 

\ u2^1 ) 

and (19) becomes 

M_iO i M__DІ2 

(Mi(/ Л )), [Au Л i 2 ] + ( M i ( / ñ ) ) п (Mi(/ Л )) , [Bn Я 1 2 ] + (Mi(/*)) 
ш J 

< 1 

(21) 

_2^ 

u2-i 

:-(*f |( l")), 

+ ШiR))г Ei w 
•2] 

\mj' 

= = ( Л Í I ( ' Я ) ) I I 

(22) 
With these changes, Algorithm 6.1 may be used to construct the sets Kj} j = 
2 , 4 , 6 . . . 

6.2. Using t h e mu ltirate controlled invariance kernel to construct 
memory less controllers 

As previously indicated, once C I N V ( O B J E C T ^ ) has been constructed, it can be used 
to construct a memoryless multirate controller which meets the specified output £°°-
norm bounds. Consider first the case where both u\ and u2 are a scalar control 
inputs. That is where the system has only two control inputs: u\ which is sampled 
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at a rate of T time units and 1/2 which is sampled at a rate of TT time units. Given 
that CINV(OBJECTIJ) has been constructed using the algorithms in the previous 
sections, it can be written in the form 

C I N V ( O B J E C T ° ) = Set(Moo,moo). 

In order to construct a control law with the desired performance level, we will identify 
the range of values of the control u which will insure that the state is transfered from 
Set(Mooymoo) to Set(Moo, rrioo), under the action of F 7 . In order to identify this 
range of control values for u\ at times steps j = 1, 3 , . . . , Step 3 through Step 8 of 
Algorithm 6.1 are used to construct matrices MRoo(lR) and vectors mroo(lR) for all 
Region(lR), by replacing Mj in Step 3 of Algorithm 6.1 with Moo- Note that since 
unique MRoo(lR) and mroo(lR) exist for each Region(lR), a unique control law must 
be constructed for ux

3*1 for each Region(lR). 
Using Definition 2.3, the functions ^MR^JR) : 7£n —• 7£ and <f>MRnR) :Hn -+11 

may be defined, for all Region(lR), such that 

+ _ . (mr e . ( / J t)) ,+ - - ( ( J . f - - a , ( / l i ) ) I ) ( K . ) x 

<t>MR„(i«)(*) ~ ™^ ((M/M/*))n).+ 

(mrooC/")),.-^.^^))-)^,^ 

W(i*)(*) - ,_™n- ((M/M'*)),I).- ' " 

Note that, for each index lR, Zf is non-empty if and only if Zt" is non-empty. 
For each Region(lR), both <f>MRnR\(x) ar1d ^MRHR)^)

 a r e continuous func
tions. And, by construction, if either is used as a control law for u\3*1 inside of 
each Region(lR), Q N V ( O B J E C T ° ) will be multirate controlled invariant under F 7 , 
assuming that an appropriate control law is used for ux

3 and u2
3. In fact, from 

the definition of F7, it is apparent that any convex combination of the above func
tions is also a valid control law for u^ . Accordingly, we define for u\3*1 in each 
Region(lR) the control law 

^(lR\x) = «<t>+MR^lR)(x) + (\-a)<t>MRoa{lR)(x), a €[0,1] . (23) 

If the assumption of Definition 2.3 that Z+ and Z~ are non-empty does not hold 
for some index lR, then the Rack operation produces no constraints on the control 
in Region(lR). Therefore, g\(lR\x) may be set equal to any value, such that the 
assumption of the non-emptiness of Z+ and Z " is non-restrictive. 

To form a control law which holds for any Region(lR), g\(x) may be defined as 

3fi(ar2i+1,a:2i,ti«) = {>( /* ;* ) , where ( x « + 1 , x « , t i « ) E Region(lR)} . 

Following the pattern of the LTI control construction method, [13], to determine 
also the range of control values for u*i at times steps j = 1, 3 , . . . , we would apply 
the .Rack operator to MRoo(lR) and mroo(lR) in each Region(lR) to yield 

(Mfloo(/H), mroo(lR)) G Rack [MRoo(lR), mr0 o(/R)] . 
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Then we could attempt to use Definition 2.3 to construct functions (btrn /.»x and 
^MRoo(lR) 

<f>jf- (lRy However, Z+ and Z~ will be empty in each Region(lR) due to the fact 
that all the columns corresponding to u\3+l are zero. Therefore, no constraints are 
placed upon the control inputs u^^1 and no control functions (i.e. <f>+ and <j>~) can 
be constructed. This simply reflects the fact that 1*2 cannot be altered at time steps 
j = 1 ,3 , . . . 

Now, we proceed to construct the range of control values for u\ at j = 0, 2, 4 , . . . 
First, we define 

(Moo + 1 ( / H ) , meo+if/*)) G Rack [ M ^ 0 0 ( / f i ) , rnroo(lR)] • 

Then, following Step 9 of Algorithm 6.1, the set Moo+i(fH) is constructed by re
moving any element of x^"*"1, replacing it with an equivalent expression which con
tains only x2 j , u2 j , and u;2-7, and adding the output constraint. Then, following 
Step 10 through Step 12 of Algorithm 6.1, the noise variable w2j is removed to yield 
M M . , i ( / f l ) . Then, we may define the functions <£±- and QZ- using 

Definition 2.3, construct control functions h\(lR\x) analogously to <7i(/H;x), and 
define h\ analogously to g\. Then, h\ provides a control law for u\ at j = 0, 2, 4 , . . . 

To construct the range of control values for 1*2 at j = 0 , 2 , 4 , . . . , first construct 

( M O O + I I , ^oo+ i i ) e Rack [ M ^ + X ^ / 7 1 ) , moo+iiv'*)] • 

Then, using Definition 2.3, we may define the functions <̂ "t and <j> ~ 
M oo+i£ ( / R ) M oo+ i i ( / / ? ) 

Then, define /12 analogously to h\. Then, A2 provides a control law for U<L at j = 
0 , 2 , 4 , . . . Note that since ui is only updated every two time steps, h^ also will be 
the control law used for u<i at time steps j = 1, 3, 5 , . . . 

Utilizing each of the above steps, a control law which makes ClNV(OBJECT°) 
multirate controlled invariant under F1 is g, where 

-,., (U*(i))\ . „ , . 
sM =

 UMAJ'
 J = 0'2'4"" 

fill = (-,, . /M*VL . ,»)• i-!.».«.-
V ffi^OJi^O-^ffO-1)) / 

Note that the control input value for u% changes only every two steps, as required 
by the multirate structure of the system. 

For the case in which dim(tii) > 1 or dim(ti2) > 1, an appropriate controller 
may be formulated by extending the logic of the above algorithm. To illustrate the 
technique, we will focus on the construction of g\, with the construction of the other 
elements of g being analogous. For clarity, consider a situation in which both u\ 
and ti2 have a dimension of two. Then, let 

(MRoo(lR)9 mroo(/*)) 6 Rack [MRoo{lR), mroo(tR)] -
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Construct <P+
MR^)(X) a » d ^ « _ ( l « ) ( « ) a n d ' l i k e w i s e ^ . . ( . H ) ^ ) a n d 

«*__ I-*) for each Region(/fi). Define gn(l
R; x) :Kn -+K for each Region(lR), 

vMR„oRr 

such that 

fuC*:*) = "^fcju^M + a - °)*irju,.-)(*). " e [o, 11. 
Then, define </i2(l

fi; x):Kn -*K such that 

*i2(<V) =. ^iiuo^wGn^-.x)) 

+ (1- / 3)^MH0 0aH)(^)(~ i ( /
x

R ; x )) , /?e [o,i]. 

Then, set firi(lfi;x) : ftn -> 71 equal to 

ffi(l ; * ) - l ~ / .A. v )• 
\«7l2(« , * ) / 

To form a control law which holds for any Region(lR), 7ji(x) may be defined as 

?i (x2 ' '+ 1 .x2 ' ' .u2 ' ) = {?i(/ f i ;x), where ( x « + 1 , x « | U
2 J ) G Region(/fi)} . 

The above iterative process is necessary to construct the desired controller when 
ui and U2 are not scalars due to the structure imposed upon the problem by the 
Rack operator. When constructing C I N V ( O B J E C T ^ ) , the Rack operator is used 
successively to remove one control input at a time from the matrix which describes 
the inequality constraints on system and control inputs. Therefore, it is possible 
to construct the controller for the entire system by constructing a controller from 
each of the matrices produced by the Rack operator in reverse order. In order to 
produce h\(x) and fi2(x) a process similar to the one described above would be 
used, beginning with Moo+i(/fi) and m ^ i ^ ) . The primary difference is that four 
successive Rack operations are used to construct the two elements of h\(x)) followed 
by the two elements of /i2(x), as all components of the control input may be altered 
at the even time steps. It is clear that the above process may be extended to a 
system with dim(ui) > 2 or dim(w2) > 2 by continuing to work back through the 
matrices produced by the Rack operator such that g\3(lR] x), for example, would be 
constructed from #12 (lR] x) and gn(lR]x). And, after constructing M 0 0 + 1 i ( / H ) , the 

control law for time steps j = 0, 2, 4 , . . . can be formulated, such that hiz(x), for 
example, would be constructed from h^(x) and hn(x). 

The above process produces a controller which renders C I N V ( O B J E C T " ) multirate 
controlled invariant under the action of F 7 . To produce a controller which has a 
performance of 7, we define 

Po(x2j) = inf {/? e 11+ : x2j G P CINV(OBJECT°)} 

Pl(x?i + 1
l x « l u « ) = infjiSeW+l^^eiSClNvCOBJECTiJ), 

V x 2 ^ 1 e E s t ( x ^ + 1
j a r 2 i u 2 i ) j 
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where ClNv(OBJECT7) is the closed subset of ClNV(OBJECT7) to which the state 
will be confined at the time steps 2j + 1, j = 0, 1,.. . under the action of the control 
law g. This set may be constructed by using a similar method to that used to 
construct set valued estimates. Specifically, the Rack operator may be used to map 
the set ClNv(OBJECT7) forward in time, utilizing the state equations (3), the known 
form of the control law g, and the assumption that ||uv|| < I/7. 

Using these scalings with the previously constructed control law g, the new control 
law g results, where g is defined such that 

< = 0, 2, 4 , . . . 

g(xV
 + 1,xV) = Pl(xV+1,xV,uV)g 

. = 1, 3, 5 , . . . 

X 2; 

p^xЪ+^xЪ^uЪy p 1 ( æ 2 i + 1 , æ 2 i , ^ ) У ' 

Using the above definitions, the following proposition may be proven in a manner 
similar to that used in [12]. 

Proposi t ion 6.1. Assume that each state x and each u appears only at a rate of T 
or 2T (i.e. /1 = ••• = / n x i = fci = • • • = kmui = 1 and / „ x i + 1 = •• = /„ = fcmui+i = 
. . . — km = 2). Also, assume that C I N V ( O B J E C T 7 ) exists. Then, the control law g, 
as defined above, is internally stabilizing with a performance of 7 for the multirate 
system defined by (3). 

When using the algorithms in this and previous sections to construct C I N V ( 0 B J E C T 7 ) 
it is possible that an infinite number of iterations of the appropriate algorithm will 
be required. To address this problem, it is possible to construct an algorithm which 
produces an internally stabilizing controller in a finite number of steps. This finite 
termination algorithm essentially defines an auxiliary set KRJ for each set KRJ , such 
that p successive of the KR/S will belong to their corresponding KR^S only when all 
of the KR/S are close to their limit sets in C I N V ( O B J E C T 7 ) . It can be shown that 
the final KRJ is controlled invariant, such that an e-suboptimal control law may 
be constructed, and the algorithm terminates. The formulation of this algorithm 
follows that of the finite termination algorithm in [13], 

In the general multirate case, in which the system being considered has sampling 
rates different from, or in addition to, T and 2T, The general technique of con
structing a controlled invariant set and then using this set to construct an optimal 
controller remains largely the same for the general multirate problem, with a few 
modifications being necessary. The controlled difference inclusion F7 must now span 
R time steps. It must be defined such that the unavailable control inputs at each 
time step are equated to their previous values. In addition, set valued estimators for 
each of the unmeasured states at each time step are constructed in a manner anal
ogous to that used to construct Est^. An analogue to Algorithm 6.1 may then be 
constructed. Note that the space of the measured variables must again be sectioned 
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as one moves back in time in order to insure that the set valued estimator at each 
time step has a constant functional form. 

7. EXAMPLE 

As an example of the implementation of Algorithm 6.1 and of the construction of a 
memory less multirate controller, consider the multirate system 

" 0 1 0 ' " 0 0 " 
(<+-) = 0 0 1 

1 0 0 
x(t) + 0 1 

1 0 
u(t) + 

" 1 0 0" 
z(t) = 0 1 0 

0 0 1 
x(t) 

1 0 1 
0 1 1 
0 0 1 

w(t) 

(24) 

where 

/ . = ! , /2 = /3 = 2, *i = l, Jb2 = 2 

such that X2, £3, and u\ appear at a rate of 2T; and x\ and u\ appear at a rate 
of T. Note that as previously indicated the control inputs are ordered such that 

u(t) = ( J. Since both X2 and £3 are unknown at odd time steps, an estimating 
\uiJ 

set must be constructed by using Algorithm 5.1. The resulting estimating set is 

Esty(xlJ+\x2\uV) 

= < .2J+1 

0 0 1 - 1 0 0 - 1 0 
0 1 - 1 1 0 - 1 1 - 1 
1 0 - 1 1 - 1 0 1 0 
0 0 - 1 1 0 0 1 0 
0 - 1 1 - 1 0 1 - 1 1 

- 1 0 1 - 1 1 0 - 1 0 

/ *lj+1 \ 
„2J + 1 

r2j 

V «* / 

1 
8 
I 
8 
1 
8 
1 
8 

As both D n and D12 are zero, Algorithm 6.1 may be used to construct the multirate 
controlled invariance kernel, CINV(OBJECT°) . Choosing 7 = 8, which implies that 
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\\ip\\°° < 11 *he algorithm converges to 

CINV(OBJECT°) = < 

1 0 0 

0 4 
3 0 

0 0 1 
2 
3 

2 
3 0 

- 1 0 0 

0 4 
3 0 

0 0 - 1 
2 2 0 

x < 1 

Having obtained CINV(OBJECT ° ) for 7 = 8, a controller may be found which insures 
that the system remains within this controlled invariant set by utilizing the result 
of Section 6.2. One possible controller, which results from this type of construction 
and which achieves a performance of 7 = 8 has the form u(x, j) = („ 2[^)> where 

ui(j) = hi(x(j)) : for j even 

= 9i{xi(j), z ( j - 1)) : for j o d d 

«г(І) = Л2(x(i)) 

= 4*0'--)) 
: for j even 

: for j o d d 

and 

Mi) = 2m^{~P°2~ l3^} + 2min{P02~ l3^M 

^ ( i ) = 2 m a x { p O g - x i O ) . Pog-;t2(i )} + -min l-po--Xl(j), - P 0 g - x 2 ( i ) } 

| m a x { - p 1 | - x 1 ( j _ l ) - w 2 ( i - l ) ) 

-Pi|-*i(i-l)+*3(i-l)+«i(i-l) - «2(i-l)} 

+ i m i n { p 1 | - x 1 ( i ) _ . r 1 ( i - l ) + x 2 ( i - l ) - u 2 ( i - l ) , 

P i i - * i 0 ' - l ) + * 3 0 - l ) + « i 0 ' - l ) - « 2 0 ' - l ) } 

i m a x { - p i | - x 1 ( J ) ^ x 1 ( i - l ) + x 2 ( i - l ) - u 2 ( i - l ) , ' 

- P i i - - 5 i 0 ' - l ) + * a ( i - l ) + « i 0 ' - l ) " «2( i- l )} 

+ | m i n { p 1 | - x 1 ( i ^ 1 ) - u 2 ( i - l ) , 

[ P i i - « i 0 ' - i ) + « 3 ( j - i ) + « i 0 ' - i ) - « 2 0 ' - i ) } 

• if Xi.(j) < 

*2(Í-1) 

ffЧi) = { 

^f * i 0 ' ) > 
Z2(i-1) 



584 J. AUBRECHT AND P.G. VOULGARIS 

Pì = < 

po = max | |xi(j)|, - | x 2 ( j ) | , M-OI. 31 - XÁJ) + x2(j)\ \ 

max|2(xi( j) - x2(j - 1) + x3(j - 1) + ui(j - 1)), 

f (*i(j) + xiU - 1) - x2( i - 1) + u2(j - 1)), 

-2(x3(j - 1) + Ul(j - 1)), - f (X!(i - 1) + u2(j - 1)), 

|xiO)|, f| - x2(j - 1) + x3(j - 1) + UiO ~ 1)|} 

max J - 2(xi(j) - x2(j - 1) + x3(j - 1) + ui(j - 1)), 

- f (*i(j) + «i(i " 1) " *_0' ~ 1) + M j - 1)), 
2(x3(j - 1) + tii (i - 1)), §(*i(j ~ 1) + M j " 1)). 

|xi(j)|, | | - X2(j " 1) + X3(j - 1) + Ui(j - 1)|} 

> Іf Xi(j) < 
X 2 ( j-1) 

• if Xi(j) > 

^2(j-l)-

Note that Po(x(i)) and Pi(x(i), x(j — 1)) are the Minkowski scaling functions which 
were mentioned in Section 6.2. The calculation of pi requires the construction of 
C I N V ( O B J E C T ^ ) . It can be shown that C I N V ( O B J E C T * ) = C I N V ( O B J E C T ° ) . 

100 200 
time index 

100 200 
time index 

100 200 
time index 

3 0 0 

Fig. 1. Time history of state variables with ||iv||oo < £-

Using the above controller, a simulation was run with initial conditions of 
(xi,X2,X3) = (—1,—|,l). The disturbance w(t) was chosen with a uniform dis
tribution such that ||w||oo < | - The time history of the state variables from this 
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simulation appears in Figure 1. Clearly, as the C\ system matr ix is the identify ma
trix, ||z||oo remains less than one in this simulation, thereby confirming the efficacy 
of the controller. 

8. CONCLUSIONS 

A state-space approach was taken and the concepts of viability theory and controlled 
invariance were used to produce a method for the construction of near optimal control 
laws for multirate systems when full s tate information is available for feedback. The 
algorithm which was constructed explicitly in this paper is limited in applicability 
to two-rate systems, in which all the controls and all the states appear only at rates 
of T and 2T . But, as previously discussed, the extension of this algorithm to the 
general multirate system is straightforward . The resulting opt imum control laws 
are static and contain R different piecewise linear elements, where R is the least 
common multiple of all the sampling rates, which are sequentially applied to the 
multirate system . This construction method is at tractive due to the desirable static 
nature of the resulting control laws . Thus, it can potentially serve as an alternative 
to the well-known input-output synthesis methods . 

(Received April 8, 1998.) 
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