TWO DIMENSIONAL PROBABILITIES WITH A GIVEN CONDITIONAL STRUCTURE

JOSEF ŠTĚPÁN¹ AND DANIEL HLUBINKA

A properly measurable set $\mathcal{P} \subset \mathbb{X} \times M_1(\mathbb{Y})$ (where \mathbb{X}, \mathbb{Y} are Polish spaces and $M_1(\mathbb{Y})$ is the space of Borel probability measures on \mathbb{Y}) is considered. Given a probability distribution $\lambda \in M_1(\mathbb{X})$ the paper treats the problem of the existence of $\mathbb{X} \times \mathbb{Y}$ -valued random vector (ξ, η) for which $\mathcal{L}(\xi) = \lambda$ and $\mathcal{L}(\eta|\xi = x) \in \mathcal{P}_x$ λ -almost surely that possesses moreover some other properties such as " $\mathcal{L}(\xi, \eta)$ has the maximal possible support" or " $\mathcal{L}(\eta|\xi = x)$'s are extremal measures in \mathcal{P}_x 's". The paper continues the research started in [7].

1. INTRODUCTION

To clarify the purpose of the paper consider the following model for a transport that starts randomly at a locality $x \in \mathbb{X}$ and reaches a random locality $y \in \mathbb{Y}$: If (ξ, η) denotes the $(\mathbb{X} \times \mathbb{Y})$ -valued random vector which value $(\xi(\omega), \eta(\omega)) = (x, y)$ designates the particular transport from x to y, we ask the probability distribution of the (ξ, η) to respect in the first place that

(i) the conditional distribution of terminals y given a departure point x should be subjected to a restriction $\mathcal{L}(\eta|\xi = x) \in \mathcal{P}_x$ almost surely, where \mathcal{P}_x is a set of (admissible) probability distributions for the transport that originates at the x, while the departure distribution is given by a fixed probability distribution λ .

Moreover, we may venture to ask $\mathcal{L}(\xi,\eta)$ to follow some additional rules on the top of (i):

- (ii) For each $x \in \mathbb{X}$ there is a prescribed terminal region $A_x \subset \mathbb{Y}$ and the transport should made as many localities $y \in A_x$ as possible accessible from the starting point x i.e., we ask for a transport (ξ, η) such that with the probability one the conditional distribution $\mathcal{L}(\eta|\xi=x)$ is supported by the set A_x and it possesses the maximal possible support.
- (iii) If $F(x,\mu)$ is the payoff we receive for the transport that originates at an $x \in \mathbb{X}$ using a target probability distribution $\mu \in \mathcal{P}_x$ we ask for a transport (ξ,η)

¹The paper was prepared with the support of Grant Agency of Charles University under contract 3051-10/716.

that provides the maximal payoff with the probability one, i.e. $\mathcal{L}(\eta|\xi = x) = \arg \max\{F(x,\mu), \mu \in \mathcal{P}_x\}$ almost surely.

- (iv) If \mathcal{P}_x 's are convex sets of probability distributions we wish to design a simple (discrete) transport (ξ, η) such that $\mathcal{L}(\eta|\xi = x)$ is an extremal distribution in \mathcal{P}_x almost surely, or, on the contrary,
- (v) having a measure m on the target space \mathbb{Y} we prefer an m-continuous solution (ξ, η) , i.e. such that $\mathcal{L}(\eta|\xi = x)$ is a distribution absolutely continuous with respect to m almost surely.

If we interpret the \mathcal{P}_x 's in (i) as the sections of a Borel set \mathcal{P} in $\mathbb{X} \times M_1(\mathbb{Y})$ we are able to prove (Theorem 1) the existence of a transport (ξ, η) that respects (i) whatever probability distribution λ supported by $\operatorname{pr}_{\mathbb{X}}(\mathcal{P})$ we may prescribe for the random variable ξ . If we interpret the A_x 's in (ii) as the values of a multifunction $A : \mathbb{X} \to 2^{\mathbb{Y}}$ which graph is a Borel set in $\mathbb{X} \times \mathbb{Y}$, Theorems 2 and 3 propose sufficient conditions for the existence of a transport that respects both (i) and (ii). The Corollaries 2,3 and 4 deal with a possibility to construct a transport (ξ, η) that satisfies the rules (i,iii), (i,iv) and (i,v), respectively.

A typical example of a set \mathcal{P} we have on mind is a set $\mathcal{P} \subset \mathbb{X}$ each of which sections \mathcal{P}_x 's is defined as a moment problem. The Corollary 1 treats the situation.

The techniques used in our proofs depend heavily on the results coming from the theory of the analytic sets, on its cross-section theorems in the first place. We refer to [3] for the elements of the theory. The paper introduces also a concept of an universally measurable (closed valued) multifunction to generalize that of a lower semicontinuous multifunction (see [1]). A characterization of the universal measurability, given by our Lemma 1 may be of some interest by itself.

Generally, the paper is a contribution to the research on a possibility to construct a probability distribution with given moments, marginals and a conditional structure, see [2] for the latest developments. Actually, the paper continues and in a way completes the research started in [7]. Most importantly, the present paper clarifies the problem met in [7] when trying to construct the transports with the properties (i) and (ii) and introduces further nontrivial examples of the \mathcal{P} -sets the theory may be applied to (Corollaries 2 and 4).

2. DEFINITIONS AND RESULTS

Fix first metric spaces X and Y and denote by $\mathcal{F}(X), \mathcal{G}(X), \mathcal{B}(X), \mathcal{A}(X)$, and $\mathcal{U}(X)$ all closed, open, Borel, analytic, and universally measurable sets in X. Recall that a set $A \subset X$ is analytic if there exists a Polish space Z and continuous map $\phi : \mathbb{Z} \to X$ such that $A = \phi(\mathbb{Z})$, that

$$\begin{split} \mathcal{B}(\mathbb{X}) \subset \mathcal{A}(\mathbb{X}) \subset \mathcal{U}(\mathbb{X}) & \text{ and } \\ \mathcal{B}(\mathbb{X} \times \mathbb{Y}) = \mathcal{B}(\mathbb{X}) \otimes \mathcal{B}(\mathbb{Y}) \subset \mathcal{U}(\mathbb{X}) \otimes \mathcal{U}(\mathbb{Y}) \subset \mathcal{U}(\mathbb{X} \times \mathbb{Y}) \end{split}$$

and also recall that

$$\mathcal{U}(\mathbb{X}) = \{ U \subset \mathbb{X} : \forall \mu \in M_1(\mathbb{X}) \exists B_1 \subset U \subset B_2, B_i \in \mathcal{B}(\mathbb{X}), \mu(B_2 \setminus B_1) = 0 \},\$$

where we have denoted the space of all Borel probability measures on \mathbb{X} by $M_1(\mathbb{X})$. Let us agree that having a $\mu \in M_1(\mathbb{X})$, we denote by μ also its uniquely determined extension from $\mathcal{B}(\mathbb{X})$ to $\mathcal{U}(\mathbb{X})$. Moreover, using the notation λ^* for outer measures, we denote

$$M_1^*(B) = \{\lambda \in M_1(\mathbb{X}) : \lambda^*(B) = 1\}$$
 for a $B \subset \mathbb{X}$.

Whenever speaking about a topology on $M_1(X)$ we mean its standard weak topology that makes the space metric and Polish if the space X has the property.

Agree that any map $A : \mathbb{X} \to 2^{\mathbb{Y}}$ will be referred to as a multifunction from \mathbb{X} to \mathbb{Y} , we shall write $A : \mathbb{X} \rightrightarrows \mathbb{Y}$ in this case and denote

$$Graph(A) := \{ (x, y) \in \mathbb{X} \times \mathbb{Y} : y \in A_x \},\$$

where $A_x \subset \mathbb{Y}$ is the value of A at a point $x \in \mathbb{X}$.

Define $A: \mathbb{X} \rightrightarrows \mathbb{Y}$ to be U-measurable and strongly U-measurable if

$$\{ x \in \mathbb{X} : A_x \cap G \neq \emptyset \} \in \mathcal{U}(\mathbb{X}), \ \forall G \in \mathcal{G}(\mathbb{Y}) \text{ and} \\ \{ x \in \mathbb{X} : A_x \cap B \neq \emptyset \} \in \mathcal{U}(\mathbb{X}), \ \forall B \in \mathcal{B}(\mathbb{Y}), \text{ respectively}$$

Observe that if we fix $V \in \mathcal{G}(\mathbb{Y})$ and $Z \subset \mathbb{X}$, $Z \notin \mathcal{U}(\mathbb{X})$, put $A_x = V$ for $x \notin Z$, $A_x = \overline{V}$ for $x \in Z$, we have exhibited an example of a multifunction $A = (A_x, x \in \mathbb{X})$ that is U-measurable but not strongly U-measurable.

A multifunction $F : \mathbb{X} \rightrightarrows \mathbb{Y}$ will be called a closed valued multifunction (CVM) if $F_x \in \mathcal{F}(\mathbb{Y})$ for all $x \in \mathbb{X}$ and a lower semicontinuous multifunction if it is closed valued and $\{x \in \mathbb{X} : F_x \cap G \neq \emptyset\} \in \mathcal{G}(\mathbb{X})$ for all $G \in \mathcal{G}(\mathbb{Y})$. We refer to Lemma 1 for a necessary and sufficient condition for a CVM F to be (strongly) U-measurable, and observe that a multifunction $A : \mathbb{X} \rightrightarrows \mathbb{Y}$ is U-measurable iff the CVM $A_C := \{\overline{A_x}, x \in \mathbb{X}\}$ has the property. Thus

$$\operatorname{Graph}(A) \in \mathcal{A}(\mathbb{X} \times \mathbb{Y}) \Rightarrow \operatorname{Graph}(A_C) \in \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(\mathbb{Y})$$
(1)

according to Lemma 1 (iv) and (i). Especially, we observe that

$$\operatorname{Graph}(A) \in \mathcal{A}(\mathbb{X} \times \mathbb{Y}), A_x \in \mathcal{F}(\mathbb{Y}) \text{ for } x \in \mathbb{X} \Rightarrow \operatorname{Graph}(A) \in \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(\mathbb{Y})$$
(2)

Putting $S_{\mu} = \operatorname{supp}(\mu)$ for $\mu \in M_1(\mathbb{Y})$ where \mathbb{Y} is a separable metric space we get an example of CVM $S = (S_{\mu}, \mu \in M_1(\mathbb{Y}))$ from $M_1(\mathbb{Y})$ to \mathbb{Y} that is obviously lower semicontinuous. Recall that for a finite Borel measure μ on \mathbb{Y} we define

$$supp(\mu) := \bigcap \{F, F \in \mathcal{F}(\mathbb{Y}), \mu(F) = \mu(\mathbb{Y})\} \\ = \{y \in \mathbb{Y} : \mu(G) > 0, \forall G \in \mathcal{G}(\mathbb{Y}), y \in G\}.$$

For the rest of the paper we shall assume the fixed spaces X and Y to be Polish.

Our results concern subsets \mathcal{P} in $\mathbb{X} \times M_1(\mathbb{Y})$ such that

$$\mathcal{P} \in \mathcal{A}(\mathbb{X} \times M_1(\mathbb{Y})) \cup \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(M_1(\mathbb{Y}))$$

mostly. To such a set we may attach naturally a set Output $\mathcal{P} \subset \mathbb{X} \times \mathbb{Y}$ defined by²

Output
$$\mathcal{P}$$
 := { $(x, y) \in \mathbb{X} \times \mathbb{Y} : \exists \mu \in \mathcal{P}_x, y \in \operatorname{supp}(\mu)$ }, i.e
(Output $\mathcal{P})_x$ = $\bigcup \{\operatorname{supp}(\mu), \mu \in \mathcal{P}_x\}, x \in \mathbb{X}.$

See Lemma 2 for a result that claims a topological stability of the $\mathcal{P} \to \text{Output } \mathcal{P}$ operation.

To illustrate this, consider a multifunction $A : \mathbb{X} \rightrightarrows \mathbb{Y}$ with $A_x \in \mathcal{U}(\mathbb{Y})$ and put $\mathcal{P}_A := \{(x, \mu) \in \mathbb{X} \times M_1(\mathbb{Y}) : \mu(A_x) = 1\}$. It is easy to verify that Output $\mathcal{P}_A = A_C$. Hence Lemma 4 (ii), (iii) together with Lemma 2 (ii), (iii) state that

$$Graph(A) \in \mathcal{A}(\mathbb{X} \times \mathbb{Y}) \implies \mathcal{P}_{A} \in \mathcal{A}(\mathbb{X} \times M_{1}(\mathbb{Y}))$$

$$\Rightarrow Output \mathcal{P}_{A} \in \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(\mathbb{Y})$$

$$Graph(A) \in \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(\mathbb{Y}) \implies \mathcal{P}_{A} \in \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(M_{1}(\mathbb{Y}))$$

$$\Rightarrow Output \mathcal{P}_{A} \in \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(\mathbb{Y}).$$
(3)

Frequently we need $\mathcal{P} \subset \mathbb{X} \times M_1(\mathbb{Y})$ such that $((\text{Output } \mathcal{P})_x, x \in \mathbb{X})$ is a closed valued multifunction $\mathbb{X} \rightrightarrows \mathbb{Y}$. We can achieve that assuming a weak form of convexity for all the sections \mathcal{P}_x 's (see [7] and our Lemma 3). We shall say that a $\mathcal{P} \subset \mathbb{X} \times M_1(\mathbb{Y})$ satisfies CS-condition if

$$\forall \ \left(x \in \mathbb{X}, (\mu_n, n \in \mathbb{N}) \subset \mathcal{P}_x\right) \exists \ \left(\alpha_n > 0, \sum_{1}^{\infty} \alpha_n = 1 : \sum_{1}^{\infty} \alpha_n \mu_n \in \mathcal{P}_x\right).$$

A typical example of a $\mathcal{P} \subset \mathbb{X} \times M_1(\mathbb{Y})$ our results may be applied to is a set \mathcal{P} each of its sections is defined by a moment problem:

$$\mathcal{P}_{x} := \left\{ \mu \in M_{1}(\mathbb{Y}) : \int_{\mathbb{Y}} f_{i}(x, y) \mu(\mathrm{d}y) = c_{i}(x), i \in I \right\}, \ x \in \mathbb{X},$$
(4)

where $I \neq \emptyset$ is an index set and for $i \in I$ $f_i : \mathbb{X} \times \mathbb{Y} \to [0, +\infty], c_i : \mathbb{X} \to [0, +\infty]$ are Borel measurable functions. (5)

Remark that if I is at most countable set then such a \mathcal{P} belongs to $\mathcal{B}(\mathbb{X} \times M_1(\mathbb{Y}))$ by Lemma 4(i). If f_i 's are bounded continuous, c_i 's continuous then regardless the cardinality of the set $I, \mathcal{P} \in \mathcal{F}(\mathbb{X} \times M_1(\mathbb{Y}))$. Either situation provides a \mathcal{P} for which the CS-condition holds.

Recall that a map $H : \mathbb{X} \to \mathbb{Y}$ is called universally measurable if it is a map that is measurable with respect to the σ -algebras $\mathcal{U}(\mathbb{X})$ and $\mathcal{U}(\mathbb{Y})$ which is as to say that it is measurable w.r.t. the σ -algebras $\mathcal{U}(\mathbb{X})$ and $\mathcal{B}(\mathbb{Y})$ according to Lemma 8.4.6. in [3]. A universally measurable map $x \to P^x$ from \mathbb{X} into $M_1(\mathbb{Y})$ will be called here a universally measurable Markov kernel (UMK). Note that $x \to P^x$ is a UMK if

²We denote by A_x the section of $A \subset \mathbb{X} \times \mathbb{Y}$ at a point $x \in \mathbb{X}$

and only if $x \to \mathsf{P}^{x}(B)$ is a universally measurable $(\overset{\text{u.m.}}{\to})$ function for all $B \in \mathcal{B}(\mathbb{Y})$. Indeed since

$$x \stackrel{\text{u.m.}}{\to} \mathsf{P}^x \Rightarrow x \stackrel{\text{u.m.}}{\to} \mathsf{P}^x(B), \forall B \in \mathcal{B}(\mathbb{Y}) \Rightarrow x \stackrel{\text{u.m.}}{\to} \mathsf{P}^x(f), \forall f \in \mathcal{C}_{\mathrm{b}}(\mathbb{Y}) \Rightarrow x \stackrel{\text{u.m.}}{\to} \mathsf{P}^x,$$

where the first implication follows by the well known fact that $\mu \to \mu(B)$ are for all $B \in \mathcal{B}(\mathbb{Y})$ $(\mathcal{B}(M_1), \mathcal{B})$ measurable, the second implication can be verified by approximating $f \in C_b$ by Borel step functions and the third follows by separability of $M_1(\mathbb{Y})$ that implies $\mathcal{B}(M_1(\mathbb{Y})) = \sigma\{\mu : |\mu(f) - \mu_0(f)| < \varepsilon; \varepsilon > 0, \mu_0 \in M_1(\mathbb{Y}), f \in C_b\}$. Hence, for a $\lambda \in M_1(\mathbb{X})$ and a UMK $x \to P^x$ we define correctly a probability measure $P^{\lambda} \in M_1(\mathbb{X} \times \mathbb{Y})$ by

$$\mathsf{P}^{\lambda}(A \times B) = \int_{A} \mathsf{P}^{x}(B) \,\lambda(\mathrm{d}x) \text{ where } A \times B \in \mathcal{B}(\mathbb{X}) \otimes \mathcal{B}(\mathbb{Y})$$

Remark 1. Let $f: \mathbb{X} \times \mathbb{Y} \to [0, +\infty]$ be a universally measurable function. Then the sections $f(x, \cdot), x \in \mathbb{X}$ and $x \to \int_{\mathbb{Y}} f(x, y) \mathsf{P}^{x}(\mathrm{d}y)$ are universally measurable functions in the sense $\mathbb{Y} \to [0, \infty]$ and $\mathbb{X} \to [0, \infty]$, respectively. Moreover, if $\lambda \in M_{1}(\mathbb{X})$ then

$$\int_{\mathbb{X}\times\mathbb{Y}} f \,\mathrm{d}\mathsf{P}^{\lambda} = \int_{\mathbb{X}} \int_{\mathbb{Y}} f(x, y) \mathsf{P}^{x}(\mathrm{d}y) \,\lambda(\mathrm{d}x) \tag{6}$$

especially, $\mathsf{P}^{\lambda}(U) = \int_{\mathbb{X}} \mathsf{P}^{x}(U_{x}) \lambda(\mathrm{d}x), \ U \in \mathcal{U}(\mathbb{X} \times \mathbb{Y})$ defines the extension of P^{λ} from $\mathcal{B}(\mathbb{X} \times \mathbb{Y})$ to $\mathcal{U}(\mathbb{X} \times \mathbb{Y})$.

The universal measurability of the sections $f(x, \cdot)$ is an obvious statement. To verify the rest assume first that f is Borel measurable. Then the map $H_f: x \to \int_{\mathbb{Y}} f(x, y) \mathsf{P}^x(\mathrm{d} y)$ is received by substituting $x \to (x, \mathsf{P}^x)$ from \mathbb{X} into $\mathbb{X} \times M_1(\mathbb{Y})$ to $(x, \mu) \to \int_{\mathbb{Y}} f(x, y) \mu(\mathrm{d} y)$ from $\mathbb{X} \times M_1(\mathbb{Y})$ into $[0, \infty]$. The former of the maps is easily seen to be measurable w.r.t. the σ -algebras $\mathcal{U}(\mathbb{X})$ and $\mathcal{B}(\mathbb{X} \times M_1(\mathbb{Y}))$ because $x \to \mathsf{P}^x$ is a UMK, while the latter one is a Borel measurable map by Lemma 4 (i) in Section 3. Hence the map H_f is universally measurable which implies, putting $f = I_C$ that $\mathsf{P}^{\lambda}(C) = \int_{\mathbb{X}} \mathsf{P}^x(C_x) \lambda(\mathrm{d} x)$ for $C \in \mathcal{B}(\mathbb{X} \times \mathbb{Y})$. A standard procedure extends the latter definition of P^{λ} to the equality (6). For a general f and $\lambda \in M_1(\mathbb{X})$ there are Borel measurable functions $f_1 \leq f \leq f_2$ such that $f_1 = f_2[\lambda]$ -almost surely. Then $H_{f_1} \leq H_f \leq H_{f_2}$ on \mathbb{X} , $H_{f_1} = H_{f_2}[\lambda]$ -almost surely according to (6) applied to f_1 and f_2 . Hence, the H_f is universally measurable and

$$\int_{\mathbb{X}\times\mathbb{Y}} f \mathrm{d}\mathsf{P}^{\lambda} = \int_{\mathbb{X}\times\mathbb{Y}} f_{1} \mathrm{d}\mathsf{P}^{\lambda} = \int_{\mathbb{X}} \int_{\mathbb{Y}} f_{1}(x,y) \mathsf{P}^{x}(\mathrm{d}y) \,\lambda(\mathrm{d}x) = \int_{\mathbb{X}} \int_{\mathbb{Y}} f(x,y) \mathsf{P}^{x}(\mathrm{d}y) \,\lambda(\mathrm{d}x)$$

according to the first part of our argument.

Let us agree that whenever we shall speak about an $(\mathbb{X} \times \mathbb{Y})$ -valued vector (ξ, η) we mean a map defined on a probability space $(\Omega, \mathcal{E}, \mathsf{P})$ that is measurable with respect to the σ -algebras \mathcal{E} and $\mathcal{U}(\mathbb{X} \times \mathbb{Y})$. This definition makes the random variables ξ and η to be measurable w.r.t. the σ -algebras $\mathcal{U}(\mathbb{X})$ and $\mathcal{U}(\mathbb{Y})$, respectively and it presents no loss of generality (see Lemma 8.4.6. in [3], again). Recall that if we have an $(X \times Y)$ -valued random vector (ξ, η) , then a UMK $x \to P^x$ from X into $M_1(Y)$ is called a regular conditional distribution of η given the values of ξ if

$$\mathsf{P}[\xi \in A, \eta \in B] = \int_{A} \mathsf{P}^{x}(B)\lambda(\mathrm{d}x), \ A \in \mathcal{B}(\mathbb{X}), B \in \mathcal{B}(\mathbb{Y}), \text{ where } \lambda = \mathcal{L}(\xi).$$
(7)

It is a well known fact that a regular conditional distribution of η given the values of ξ exists and it is determined uniquely almost surely w.r.t. $\mathcal{L}(\xi)$ provided that X and Y are Polish spaces (see [8], p.126). We shall denote as usual $P^x = \mathcal{L}(\eta | \xi = x)$ for any regular conditional distribution $x \to P^x$ of η given the values of ξ .

Obviously we may paraphrase Remark 1 as

Remark 2. If (ξ, η) is an $(\mathbb{X} \times \mathbb{Y})$ -valued random vector such that

$$\mathcal{L}(\xi) = \lambda \text{ and } \mathcal{L}(\eta | \xi = x) = \mathsf{P}^x \lambda \text{-almost surely}$$
(8)

holds for a $\lambda \in M_1(\mathbb{X})$ and a UMK $x \to \mathsf{P}^x$ then

$$\mathcal{L}(\xi,\eta) = \mathsf{P}^{\lambda} \text{ and } \mathsf{E}[f(\xi,\eta)|\xi=x] = \int_{\mathbb{Y}} f(x,y)\mathsf{P}^{x}(\mathrm{d}y) \ \lambda\text{-almost surely}$$

holds for any universally measurable function $f \in L_1(\mathsf{P}^{\lambda})$.

A reverse statement to Remark 2 is provided by

Remark 3. Given a UMK $x \to P^x$ and a $\lambda \in M_1(\mathbb{X})$ there is an $(\mathbb{X} \times \mathbb{Y})$ -valued random vector (ξ, η) such that (8) holds.

To construct a vector (ξ, η) possessing the properties (8) put $(\Omega, \mathcal{F}, \mathsf{P}) := (\mathbb{X} \times \mathbb{Y}, \mathcal{U}(\mathbb{X} \times \mathbb{Y}), \mathsf{P}^{\lambda})$ and $\xi := \mathrm{pr}_{\mathbb{X}}, \eta := \mathrm{pr}_{\mathbb{Y}}$, where $\mathrm{pr}_{\mathbb{X}} : \mathbb{X} \times \mathbb{Y} \to \mathbb{X}$ denotes the canonical projection of $\mathbb{X} \times \mathbb{Y}$ onto \mathbb{X} .

More generally, given a $\mathcal{P} \subset \mathbb{X} \times M_1(\mathbb{Y})$ and $\lambda \in M_1(\mathbb{X})$ our results concern mainly the existence of an $(\mathbb{X} \times \mathbb{Y})$ -valued random vector (ξ, η) such that

$$\mathcal{L}(\xi) = \lambda \text{ and } \mathcal{L}(\eta | \xi = x) \in \mathcal{P}_x \text{ almost surely w.r.t. } \lambda.$$
 (9)

A random vector (ξ, η) with properties (9) shall be called a (\mathcal{P}, λ) -vector. Observe that the random vector (ξ, η) the existence of which is stated by Remark 3 is in fact (\mathcal{P}, λ) -vector with $\mathcal{P} = \text{Graph}(x \to P^x)$. A simple argument verifies that $\mathcal{P} \in \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(M_1(\mathbb{Y}))$ in this case as a consequence of the universal measurability of $x \to P^x$.

Remark 4. If $A : \mathbb{X} \rightrightarrows \mathbb{Y}$ is a multifunction with $\operatorname{Graph}(A) \in \mathcal{U}(\mathbb{X} \times \mathbb{Y})$ and $\lambda \in M_1(\mathbb{X})$ then

- (i) (ξ, η) is a (\mathcal{P}_A, λ) -vector.
- (ii) $P[(\xi, \eta) \in Graph(A)|\xi = x] = 1$ λ -almost surely.

(iii) $\mathsf{P}[(\xi,\eta) \in \operatorname{Graph}(A)] = 1$

are equivalent statements because $P[(\xi, \eta) \in Graph(A)|\xi = x] = P^x(A_x)$ according to Remark 2.

Finally, we shall say that a (\mathcal{P}, λ) -vector is maximally supported if

$$\operatorname{supp} \left(\mathcal{L}(\eta | \xi = x) \right) \supset \operatorname{supp} \left(\mathcal{L}(\eta' | \xi' = x) \right) \lambda \text{-a.s. for any } (\mathcal{P}, \lambda) \text{-vector } (\xi', \eta').$$

Note that if a (\mathcal{P}, λ) -vector is maximally supported then according to Lemma 5 in Section 3 supp $(\mathcal{L}(\xi, \eta)) \supset$ supp $(\mathcal{L}(\xi', \eta'))$ for any (\mathcal{P}, λ) -vector (ξ', η') and that the implication can not be reversed according the counterexample that follows the proof of the lemma.

Our main results are

Theorem 1. Consider $Q \subset \mathbb{X} \times M_1(\mathbb{Y})$, a multifunction $A : \mathbb{X} \rightrightarrows \mathbb{Y}$ and $\lambda \in M_1^*(D(Q, A))$, where $D(Q, A) := \{x \in \mathbb{X} : \exists \mu \in Q_x, \mu^*(A_x) = 1\}$. Then either $Q \in \mathcal{A}(\mathbb{X} \times M_1(\mathbb{Y}))$, Graph $(A) \in \mathcal{A}(\mathbb{X} \times \mathbb{Y})$

or $\mathcal{Q} \in \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(M_1(\mathbb{Y})), \operatorname{Graph}(A) \in \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(\mathbb{Y})$

implies that there is a $(\mathcal{Q} \cap \mathcal{P}_A, \lambda)$ -vector (ξ, η) .

Observe that according to Remark 4 the theorem states exactly that there is a (Q, λ) -vector (ξ, η) such that $P[(\xi, \eta) \in Graph(A)] = 1$.

Theorem 2. Assume that $\mathcal{P} \in \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(M_1(\mathbb{Y}))$ satisfies the CS-condition and is such that Output $\mathcal{P} \in \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(\mathbb{Y})$. Then for each $\lambda \in M_1^*(\mathrm{pr}_{\mathbb{X}}\mathcal{P})$ there exists a (\mathcal{P}, λ) -vector (ξ, η) such that

$$\operatorname{supp}(\mathcal{L}(\eta|\xi=x)) = (\operatorname{Output}\mathcal{P})_x \ \lambda \text{-almost surely}.$$
(10)

Remark that a (\mathcal{P}, λ) -vector (ξ, η) that possesses the property (10) is maximally supported. We do not know whether the implications $\mathcal{P} \in \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(M_1(\mathbb{Y})) \Rightarrow$ Output $\mathcal{P} \in \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(\mathbb{Y})$ is true or not. Observe (3) for the positive answer for a very simple choice of \mathcal{P} .

Theorem 3. Assume that $\mathcal{R} \subset \mathbb{X} \times M_1(\mathbb{Y})$ and a multifunction $A : \mathbb{X} \rightrightarrows \mathbb{Y}$ are such that

$$\begin{aligned} \operatorname{Graph}(A) &\in \mathcal{A}(\mathbb{X} \times \mathbb{Y}) \cap \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(\mathbb{Y}), \\ \mathcal{R} &\in \mathcal{A}(\mathbb{X} \times M_1(\mathbb{Y})) \cap \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(M_1(\mathbb{Y})) \text{ and satisfies the CS-condition.} \end{aligned}$$
(11)

Then for each $\lambda \in M_1^*(D(\mathcal{R}, A)) := M_1^*\{x \in \mathbb{X} : \exists \mu \in \mathcal{R}_x, \mu(A_x) = 1\}$ there exists a maximally supported $(\mathcal{R} \cap \mathcal{P}_A, \lambda)$ -vector (ξ, η) .

Observe that Theorem 3 may be applied to \mathcal{R} and A such that both \mathcal{R} and Graph(A) are simply Borel sets and that, in this situation, provides a generalization to the second part of Theorem 1 in [7].

3. PROOFS

Lemma 1. Let $F : \mathbb{X} \rightrightarrows \mathbb{Y}$ be a CVM, and $A : \mathbb{X} \rightrightarrows \mathbb{Y}$ a multifunction. Then

- (i) F U-measurable
- (ii) $\operatorname{Graph}(F) \in \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(\mathbb{Y})$
- (iii) F strongly U-measurable,

are equivalent statements. Moreover

(iv) Graph(A) $\in \mathcal{A}(\mathbb{X} \times \mathbb{Y}) \cup \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(\mathbb{Y}) \Rightarrow A$ is strongly U-measurable.

(v) F lower semicontinuous \Rightarrow Graph $(F) \in \mathcal{B}(\mathbb{X} \times \mathbb{Y})$.

Proof. It is sufficient to verify $(i) \Rightarrow (ii)$, (iv), (v). $(i) \Rightarrow (ii)$: To verify this we simply write

$$\mathbb{X} \times \mathbb{Y} \setminus \mathrm{Graph}(F) = \{(x, y) : y \notin F_x\} = \bigcup_{G \in \mathcal{V}} \{x : F_x \cap G = \emptyset\} \times G \in \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(\mathbb{Y})$$
(12)

where \mathcal{V} is a countable topological base in \mathbb{Y} .

(iv): Let $B \in \mathcal{B}(\mathbb{Y})$. Then $\{x : A_x \cap B \neq \emptyset\} = \operatorname{pr}_{\mathbb{X}}[\operatorname{Graph}(A) \cap (\mathbb{X} \times B)] \in \mathcal{U}(\mathbb{X})$ by 8.4.4. and 8.4.6. in [3] because $\operatorname{Graph}(A) \cap (\mathbb{X} \times B) \in \mathcal{A}(\mathbb{X} \times \mathbb{Y}) \cup \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(\mathbb{Y})$ (v): It follows by (12) because $\{x : F_x \cap G = \emptyset\} = \mathbb{X} \setminus \{x : F_x \cap G \neq \emptyset\} \in \mathcal{F}(\mathbb{X})$ for $G \in \mathcal{G}(\mathbb{Y})$ as F is lower semicontinuous.

Lemma 2. (see also Lemma in [7] for the implication (i) below) (i) $\mathcal{P} \in \mathcal{A}(\mathbb{X} \times M_1(\mathbb{Y})) \Rightarrow \text{Output } \mathcal{P} \in \mathcal{A}(\mathbb{X} \times \mathbb{Y})$ (ii) $\mathcal{P} \in \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(M_1(\mathbb{Y})) \Rightarrow \text{Output } \mathcal{P} \in \mathcal{U}(\mathbb{X} \times \mathbb{Y})$ (iii) $\mathcal{P} \in \mathcal{A}(\mathbb{X} \times M_1(\mathbb{Y}))$, (Output $\mathcal{P})_x \in \mathcal{F}(\mathbb{Y})$ for all $x \in \mathbb{X} \Rightarrow \text{Output } \mathcal{P} \in \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(\mathbb{Y})$.

Proof. (iii) follows by (iv) and by [(iii) \Rightarrow (ii)] in Lemma 1 as $x \rightarrow (\text{Output } \mathcal{P})_x$ represents a closed valued multifunction $\mathbb{X} \rightrightarrows \mathbb{Y}$. We shall prove (i) and (ii): Put $D := \{(x, y, \mu) \in \mathbb{X} \times \mathbb{Y} \times M_1(\mathbb{Y}) : (x, \mu) \in \mathcal{P}, y \in \text{supp}(\mu)\}$, observe that Output $\mathcal{P} = \text{pr}_{\mathbb{X} \times \mathbb{Y}}(D)$, and $D = (\mathcal{P} \times \mathbb{Y}) \cap (\mathbb{X} \times \text{Graph}(S))$, where $S : M_1(\mathbb{Y}) \rightrightarrows \mathbb{Y}$ is the closed valued correspondence defined by $S_\mu = \text{supp}(\mu)$. Because S is easily seen to be lower semicontinuous it follows by (v) in Lemma 1 that

$$\mathcal{P} \in \mathcal{A}(\mathbb{X} \times M_1(\mathbb{Y})) \Rightarrow D \in \mathcal{A}(\mathbb{X} \times \mathbb{Y} \times M_1(\mathbb{Y})) \Rightarrow \mathrm{pr}_{\mathbb{X} \times \mathbb{Y}}(D) \in \mathcal{A}(\mathbb{X} \times \mathbb{Y})$$

and

$$\mathcal{P} \in \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(M_1(\mathbb{Y})) \Rightarrow D \in \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(\mathbb{Y} \times M_1(\mathbb{Y})) \Rightarrow \operatorname{pr}_{\mathbb{X} \times \mathbb{Y}}(D) \in \mathcal{U}(\mathbb{X} \times \mathbb{Y})$$

(again by 8.4.4. and 8.4.6. in [3]).

Lemma 3. Let $\mathcal{P} \subset \mathbb{X} \times M_1(\mathbb{Y})$ satisfies the CS-condition. Then

$$\forall x \in \operatorname{pr}_{\mathbb{X}} \mathcal{P} \exists \mu_x \in \mathcal{P}_x \text{ such that } \operatorname{supp}(\mu_x) = (\operatorname{Output} \mathcal{P})_x$$

and therefore $x \to (\operatorname{Output} \mathcal{P})_x$ is a closed valued multifunction $\mathbb{X} \rightrightarrows \mathbb{Y}$.

To verify the statement it is sufficient to read carefully the first part of the proof of Theorem 2 in [7]. We shall do it for the sake of completeness of our presentation.

Proof. Let $x \in \operatorname{pr}_{\mathbb{X}} \mathcal{P}$ and $\{\mu_1, \mu_2, \ldots\}$ a dense set in \mathcal{P}_x . By the CS-condition we have $\mu_x = \sum_{1}^{\infty} \alpha_n \mu_n \in \mathcal{P}_x$ for some $\alpha_n > 0$, $\sum_{1}^{\infty} \alpha_n = 1$. Obviously $\operatorname{supp}(\mu_x) \subset$ $(\operatorname{Output} \mathcal{P})_x$, to verify the reverse inclusion choose $y \in (\operatorname{Output} \mathcal{P})_x$ and $V_y \in$ $\mathcal{G}(\mathbb{Y})$ its arbitrary neighbourhood. There is a $\nu \in \mathcal{P}_x$ such that $y \in \operatorname{supp}(\nu)$. If $\mu_{n_k} \to \nu$ weakly then for an arbitrary open neighbourhood V_y of $y \limsup \mu_{n_k}(V_y) \geq$ $\limsup \nu(V_y) > 0$. Thus, $\mu_{n_k}(V_y) > 0$ for a $k \in \mathbb{N}$, hence $\mu_x(V_y) \geq \sum \alpha_{n_k} \mu_{n_k}(V_y) >$ 0. It follows that $y \in \operatorname{supp}(\mu_x)$.

Lemma 4. Let $f : \mathbb{X} \times \mathbb{Y} \to [0, \infty]$ be a $(\mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(\mathbb{Y}), \mathcal{B}(\mathbb{R}^+)$ measurable function and $A : \mathbb{X} \rightrightarrows \mathbb{Y}$ a multifunction. Then

(i) $(x, \mu) \to \int_{\mathbb{X}} f(x, y)\mu(\mathrm{d}y)$ is a $\mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(M_1(\mathbb{Y}))$ -measurable map from $\mathbb{X} \times M_1(\mathbb{Y})$ into $[0, \infty]$. Moreover, the Borel measurability of f implies that the map is Borel measurable.

(ii) If Graph(A) $\in \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(\mathbb{Y})$ then $\mathcal{P}_A \in \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(M_1(\mathbb{Y}))$.

(iii) If $\operatorname{Graph}(A) \in \mathcal{A}(\mathbb{X} \times \mathbb{Y})$ then $\mathcal{P}_A \in \mathcal{A}(\mathbb{X} \times M_1(\mathbb{Y}))$.

(iv) If $\operatorname{Graph}(A) \in \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(\mathbb{Y})$ then³

$$\mathcal{P}_{A,S} := \{(x,\mu) \in \mathbb{X} \times M_1(\mathbb{Y}) : \mu(A_x) = 1, \operatorname{supp}(\mu|A_x) = A_x\}$$

is a set in $\mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(M_1(\mathbb{Y}))$.

Observe that $A_x \in \mathcal{B}(\mathbb{Y})$ and $A_x \in \mathcal{U}(\mathbb{Y})$ if $\operatorname{Graph}(A) \in \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(\mathbb{Y})$ and $\operatorname{Graph}(A) \in \mathcal{A}(\mathbb{X} \times \mathbb{Y})$, respectively. Hence the sets \mathcal{P}_A , $\mathcal{P}_{A,S}$ are defined correctly. Observe also that we miss an analogue of (iv) when $\operatorname{Graph}(A) \in \mathcal{A}(\mathbb{X} \times \mathbb{Y})$.

Proof. (i) Assume first that $f = I_{U \times B}$ where $U \in \mathcal{U}(\mathbb{X})$, $B \in \mathcal{B}(\mathbb{Y})$. Then $\int_{\mathbb{Y}} f(x, y) \mu(dy) = \mu(B) I_U(x)$ for $x \in \mathbb{X}$ and (i) follows easily observing that $\mu \to \mu(B)$ is a Borel measurable map $M_1(\mathbb{Y}) \to \mathbb{R}$. Theorem I.2.20 in [5] now extends the validity of (i) to f's that are bounded and $\mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(\mathbb{Y})$ -measurable, which in fact verifies (i) generally. The "moreover part" of (i) may be proved in a similar way. (ii) is an immediate consequence of (i) putting $f(x, y) = I_{A_x}(y)$.

(iii) Because Graph(A) is universally measurable in $\mathbb{X} \times \mathbb{Y}$ it follows that

$$\mu(A_x) = (\varepsilon_x \otimes \mu)(\operatorname{Graph}(A)) \text{ for } x \in \mathbb{X},$$

³As usual if $\mu \in M_1(\mathbb{Y})$ and $A \in \mathcal{U}(\mathbb{Y})$, $(\mu|A)$ denotes the restriction of μ to the Borel σ -algebra $\mathcal{B}(A)$, hence $\operatorname{supp}(\mu|A) \in \mathcal{F}(A)$ is the set defined equivalently by $\operatorname{supp}(\mu|A) = \{y \in A : \mu(G \cap A) > 0 \forall G \in \mathcal{G}(\mathbb{Y}), y \in G\}.$

where ε_x denotes the probability measure that degenerates at x, hence

$$\mathcal{P}_A = \{(x, \mu) : (\varepsilon_x \otimes \mu) (\mathrm{Graph}(A)) = 1\}.$$

Thus, \mathcal{P}_A is seen to be inverse image of $M_1^*(\operatorname{Graph}(A))$ with respect to the continuous map $(x, \mu) \to (\varepsilon_x \otimes \mu)$ that maps $\mathbb{X} \times M_1(\mathbb{Y})$ into $M_1(\mathbb{X} \times \mathbb{Y})$. Because $M_1^*(\operatorname{Graph}(A))$ is an analytic set in $M_1(\mathbb{X} \times \mathbb{Y})$ by Theorem 7, p. 385 in [6]⁴, (iii) follows directly by 8.2.6. in [3].

(iv) According to (iii) we have to prove that $\mathcal{P}_S := \{(x, \mu) : \operatorname{supp}(\mu | A_x) = A_x\}$ is a set in $\mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(M_1(\mathbb{Y}))$. To see that we write \mathcal{P}_S as the intersection of the sets

$$\left[\left(\{x: G \cap A_x \neq \emptyset\} \times M_1(\mathbb{Y}) \cap \{(x,\mu): \mu(G \cap A_x) > 0\}\right) \cup \left(\{x: G \cap A_x = \emptyset\} \times M_1(\mathbb{Y})\right)\right]$$

where the G's are running through a countable topological base in \mathbb{Y} . To verify the above equality observe that

$$\operatorname{supp}(\mu|A_x) = A_x \quad \text{iff} \quad [G \cap A_x \neq \emptyset, G \in \mathcal{V} \Rightarrow \mu(G \cap A_x) > 0], \ x \in \mathbb{X}.$$

To complete the proof apply (i) to see that

$$\{(x,\mu):\mu(G\cap A_x)>0\}\in\mathcal{U}(\mathbb{X})\otimes\mathcal{B}(M_1(\mathbb{Y}))$$

and (iv) in Lemma 1 to see that $\{x : G \cap A_x \neq \emptyset\}$ and $\{x : G \cap A_x = \emptyset\}$ are sets in $\mathcal{U}(\mathbb{X})$.

Lemma 5. Let (ξ, η) be a maximally supported (\mathcal{P}, λ) -vector for a $\mathcal{P} \subset \mathbb{X} \times M_1(\mathbb{Y})$ and $\lambda \in M_1(\mathbb{X})$. Then

 $\operatorname{supp}(\mathcal{L}(\xi,\eta)) \supset \operatorname{supp}(\mathcal{L}(\xi',\eta'))$ for any (\mathcal{P},λ) -vector (ξ',η') .

Proof. Denote $\mathsf{P}^x = \mathcal{L}(\eta|\xi = x)$ and $\mathsf{Q}^x = \mathcal{L}(\eta'|\xi' = x)$. It follows by Remark 1 in Section 2 that $\int_{\mathbb{X}} \mathsf{P}^x[(\operatorname{supp}\mathsf{P}^{\lambda})_x]\lambda(\mathrm{d}x) = \mathsf{P}^{\lambda}[\operatorname{supp}\mathsf{P}^{\lambda}] = 1$. Hence the sections $(\operatorname{supp}\mathsf{P}^{\lambda})_x \in \mathcal{F}(\mathbb{Y})$ are such that $\mathsf{P}^x[(\operatorname{supp}\mathsf{P}^{\lambda})_x] = 1$ almost surely w.r.t. λ and therefore $(\operatorname{supp}\mathsf{P}^{\lambda})_x \supset \operatorname{supp}(\mathsf{P}^x)$. Observe that the latter inclusion and Remark 1 imply that

$$\begin{aligned} \mathsf{Q}^{\lambda}(\mathrm{supp}\mathsf{P}^{\lambda}) &= \int_{\mathbb{X}} \mathsf{Q}^{x} \big[(\mathrm{supp}\mathsf{P}^{\lambda})_{x} \big] \lambda(\mathrm{d}x) \geq \int_{\mathbb{X}} \mathsf{Q}^{x} \big[\mathrm{supp}\mathsf{P}^{x} \big] \lambda(\mathrm{d}x) \\ &\geq \int_{\mathbb{X}} \mathsf{Q}^{x} \big[\mathrm{supp}\mathsf{Q}^{x} \big] \lambda(\mathrm{d}x) = 1 \end{aligned}$$

because $\operatorname{supp} P^x \supset \operatorname{supp} Q^x$ a.s [λ]. Thus $\operatorname{supp} P^{\lambda} \supset \operatorname{supp} Q^{\lambda}$ which, according to Remark 2, concludes the proof.

⁴The theorem states exactly that $M_1(\operatorname{Graph}(A)) \in \mathcal{A}(\mathbb{X} \times M_1(\mathbb{Y}))$, but $M_1^*(\operatorname{Graph}(A))$ is easily seen to be the image of the former set w.r.t. the continuous map $\lambda \to 1_{\operatorname{Graph}(A)} \circ \lambda$ where $1_{\operatorname{Graph}(A)} : \operatorname{Graph}(A) \to \mathbb{X} \times \mathbb{Y}$ is the identity map. Hence $M_1^*(\operatorname{Graph}(A)) \in \mathcal{A}(\mathbb{X} \times M_1(\mathbb{Y}))$.

It might be of some interest to note that the reverse implication to that of presented by Lemma 5 is not true: put $Q^x = \varepsilon_x$ for $x \in [0, 1]$ and $P^x = \varepsilon_x$ for $x \in [0, 1)$, $P^1 = \varepsilon_0$ and $\lambda = \frac{1}{2}(m + \varepsilon_1)$ where m is Lebesgue measure on [0, 1]. Obviously, we have $\sup (Q^{\lambda}) = \operatorname{Diag}([0, 1]^2), \operatorname{supp}(P^{\lambda}) = \operatorname{Diag}([0, 1]^2) \cup \{(1, 0)\}$

hence

$$\operatorname{supp}(\mathsf{Q}^{\lambda}) \subset \operatorname{supp}(\mathsf{P}^{\lambda}), \ \operatorname{supp}(\mathsf{P}^{1}) = 0 \text{ and } \operatorname{supp}(Q^{1}) = \{1\}.$$

Putting $\mathcal{P} = \text{Graph}(x \to \mathsf{P}^x) \cup \text{Graph}(x \to \mathsf{Q}^x)$, $\mathcal{L}(\eta | \xi = x) = \mathsf{P}^x$, $\mathcal{L}(\eta' | \xi' = x) = \mathsf{Q}^x$, $\mathcal{L}(\xi) = \mathcal{L}(\xi') = \lambda$ we observe that the (ξ, η) is a (\mathcal{P}, λ) -vector which distribution has the maximal support but it is not maximally supported.

We are prepared to complete our proofs.

Proof of Theorem 1. Put $\mathcal{P} := \mathcal{Q} \cap \mathcal{P}_A$. It follows by Lemma 4 (iii) and (ii) that either $\mathcal{P} \in \mathcal{A}(\mathbb{X} \times M_1(\mathbb{Y}))$ or $\mathcal{P} \in \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(M_1(\mathbb{Y}))$ which in both cases implies that $D(\mathcal{Q}, A) = \operatorname{pr}_{\mathbb{X}} \mathcal{P} \in \mathcal{U}(\mathbb{X})$ (8.4.1., 8.2.6. and 8.4.4. in [3]). The cross section theorem (either 8.5.3.(b) or 8.5.4.(b) in [3]) verifies that there is a map $x \to \mathbb{P}^x$ from $D(\mathcal{Q}, A)$ into $M_1(\mathbb{Y})$ which is measurable w.r.t. the σ -algebras $\mathcal{U}(\mathbb{X}) \cap D(\mathcal{Q}, A)$ and $\mathcal{B}(M_1(\mathbb{Y}))$ such that $\mathbb{P}^x \in \mathcal{P}_x$ holds on $D(\mathcal{Q}, A)$, i.e. λ -almost surely. The map $x \to \mathbb{P}^x$ can be obviously extended (e.g. by any constant) to an universally measurable Markov kernel $x \to \mathbb{P}^x$ from \mathbb{X} into $M_1(\mathbb{Y})$ such that (8) holds. This of course means that the (ξ, η) is an $(\mathcal{Q} \cap \mathcal{P}_A, \lambda)$ -vector.

Proof of Theorem 2. Put $\mathcal{Q} := \mathcal{P} \cap \mathcal{P}_S$, where $\mathcal{P}_S := \{(x, \mu) \in \mathbb{X} \times M_1(\mathbb{Y}) :$ supp $(\mu) = (\text{Output } \mathcal{P})_x\}$. Because $(\text{Output } \mathcal{P})_x \in \mathcal{F}(\mathbb{Y})$ for each $x \in \mathbb{X}$ according to Lemma 3, we may apply Lemma 4 (iv) with $A = \{(\text{Output } \mathcal{P})_x, x \in \mathbb{X}\}$ to verify that $\mathcal{P}_S \in \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(M_1(\mathbb{Y}))$. Hence \mathcal{Q} belongs to the σ -algebra also and Theorem 1, applied to the \mathcal{Q} and to the CVM A with $\text{Graph}(A) = \mathbb{X} \times \mathbb{Y}$, implies that there is a (\mathcal{Q}, λ) -vector (ξ, η) because $\text{pr}_{\mathbb{X}}\mathcal{Q} = \text{pr}_{\mathbb{X}}\mathcal{P}$ according to Lemma 3 again. Hence, the (ξ, η) is a (\mathcal{P}, λ) -vector such that (10) holds. \Box

Proof of Theorem 3. We plan to apply Theorem 2 to $\mathcal{P} = \mathcal{R} \cap \mathcal{P}_A$, where \mathcal{P}_A and hence also \mathcal{P} belong to $\mathcal{A}(\mathbb{X} \times M_1(\mathbb{Y})) \cap \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(M_1(\mathbb{Y}))$ according to Lemma 4 (ii) and (iii). It is obvious that \mathcal{P} satisfies the CS-condition and therefore Output \mathcal{P} is in $\mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(\mathbb{Y})$ according to Lemma 3 and Lemma 2 (iii). Because $D(\mathcal{R}, A) = \operatorname{pr}_{\mathbb{X}} \mathcal{P}$, it follows by Theorem 2 that there is a (\mathcal{P}, λ) -vector (ξ, η) such that (10) holds. It follows directly from the definition of the set Output \mathcal{P} that the (ξ, η) is a maximally supported $(\mathcal{R} \cap \mathcal{P}_A, \lambda)$ -vector.

4. COROLLARIES

Using Theorem 1 and 3 we are able to generalize Corollary 1 in [7], namely to remove the requirement on the local compactness of the space \mathbb{Y} .

Corollary 1. Assume that $f_i(x, y), c_i(x)$ satisfy (5) for $i \in I$, I being an at most countable set. Consider $A \in \mathcal{A}(\mathbb{X} \times \mathbb{Y}) \cup \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(\mathbb{Y})$ and put

$$D(f,c,A) := \left\{ x \in \mathbb{X} : \exists \mu \in M_1(\mathbb{Y}), \mu(A_x) = 1, \int_{\mathbb{Y}} f_i(x,y) \, \mu(\mathrm{d}y) = c_i(x), i \in I \right\}.$$

Then to each $\lambda \in M_1^*(D(f, c, A))$ such that $c_i \in L_1(\lambda)$ for $i \in I$ there exists an $(\mathbb{X} \times \mathbb{Y})$ -valued random vector (ξ, η) for which

$$\mathcal{L}(\xi) = \lambda, \mathsf{P}[(\xi, \eta) \in A] = 1, \mathsf{E}[f_i(\xi, \eta)] < \infty, \mathsf{E}[f_i(\xi, \eta)|\xi] = c_i(\xi), i \in I$$
(13)

holds.

If moreover $A \in \mathcal{A}(\mathbb{X} \times \mathbb{Y}) \cap \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(\mathbb{Y})$ then a random vector (ξ, η) with the properties (13) may be chosen such that $\operatorname{supp}(\mathcal{L}(\xi, \eta)) \supset \operatorname{supp}(\mathcal{L}(\xi', \eta'))$ for any other random vector (ξ', η') that satisfies (13).

Proof. Put $Q = \{(x, \mu) \in \mathbb{X} \times M_1(\mathbb{Y}) : \int_{\mathbb{Y}} f_i(x, y) \mu(dy) = c_i(x), i \in I\}$ and consider the multifunction $B : \mathbb{X} \rightrightarrows \mathbb{Y}$ with $\operatorname{Graph}(B) = A$. Then, using the notation introduced in Theorem 1, we have D(f, c, A) = D(Q, B) and $Q \in \mathcal{B}(\mathbb{X} \times M_1(\mathbb{Y}))$ according to Lemma 4 (i). Observe also, that for a random vector (ξ, η) , the properties (13) state equivalently that the (ξ, η) is a $(Q \cap \mathcal{P}_B, \lambda)$ -vector. The equivalence is an easy consequence of Remark 2 and 4 in Section 2 using the integrability of c_i 's with respect to λ . Because the set Q satisfies obviously the CS-condition, Theorem 1 and Theorem 3 verify the statements of our Corollary.

Remark that for a finite index set I

$$D(f,c,A) = \{x \in \mathbb{X} : (x) \in \operatorname{co}(\mathbf{f}(x,A_x))\}, \ \mathbf{c} = (c_i, i \in I), \mathbf{f} = (f_i, i \in I),$$

where co denotes the convex hull (see [4], for example).

The theory we have presented is designed mostly with the purpose to prove the existence of a (\mathcal{P}, λ) -vector with the maximal support of its probability distribution. The rest of our corollaries suggests some other possible applications.

Corollary 2. Consider a set $\mathcal{P} \in \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(M_1(\mathbb{Y}))$ and an upper bounded function $F : \mathbb{X} \times M_1(\mathbb{Y}) \to \mathbb{R}$ that is $\mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(M_1(\mathbb{Y}))$ -measurable. Denote

$$S_F(x) := \sup\{F(x,\mu), \mu \in \mathcal{P}_x\} \text{ for } x \in \mathbb{X} \text{ (i.e. } S_F(x) = -\infty \text{ for } x \notin \operatorname{pr}_{\mathbb{X}}(\mathcal{P})) \\ D(\mathcal{P},F) := \{x \in \mathbb{X} : S_F(x) = F(x,\mu) \text{ for some } \mu \in \mathcal{P}_x\}.$$

Consider moreover a measure $\lambda \in M_1^*(D(\mathcal{P}, F))$. Then there exists a (\mathcal{P}, λ) -vector (ξ, η) such that

$$F(x, \mathcal{L}(\eta|\xi = x)) = S_F(x) \text{ holds } \lambda \text{-almost surely.}$$
(14)

Proof. Obviously, the random vector (ξ, η) which existence is stated is equivalently defined as a (Q, λ) -vector, where

Two Dimensional Probabilities with a Given Conditional Structure

$$\mathcal{Q} := \mathcal{P} \cap \mathcal{S}_F$$
, where $\mathcal{S}_F := \{(x, \mu) : F(x, \mu) = S_F(x)\}.$

Because $\operatorname{pr}_{\mathbb{X}}\mathcal{Q} = D(\mathcal{P}, F)$, we could use Theorem 1 (with $A : \mathbb{X} \rightrightarrows \mathbb{Y}$, such that $\operatorname{Graph}(A) = \mathbb{X} \times \mathbb{Y}$) to prove the existence of a (\mathcal{Q}, λ) -vector (ξ, η) if \mathcal{S}_F would be a set in $\mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(M_1(\mathbb{Y}))$. To verify this, it is sufficient to show that the function $S_F : \mathbb{X} \to [-\infty, +\infty)$ is universally measurable: Fix $a \in \mathbb{R}$ and observe that

$$\{x: S_F(x) > a\} = \{x: \exists \mu \in \mathcal{P}_x, F(x,\mu) > a\} = \operatorname{pr}_{\mathbb{X}}(\mathcal{P} \cap [F > a]),$$

where $[F > a] = \{(x, \mu) : F(x, \mu) > a\}$. Thus $\{x : S_F(x) > a\}$ is the projection of a set in $\mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(M_1(\mathbb{Y}))$ and therefore a universally measurable set in \mathbb{X} according to 8.4.4. in [3].

An obvious choice for the function $F(x, \mu)$ is given by

$$F(x,\mu) := \int_{\mathbb{W}} f(x,y) \, \mu(\mathrm{d} y), \, x \in \mathbb{X}, \ \mu \in M_1(\mathbb{Y}),$$

where $f: \mathbb{X} \times \mathbb{Y} \to \mathbb{R}$ is an upper bounded $\mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(\mathbb{Y})$ -measurable function. A more sophisticated choice of the F allows to enrich the result given by Theorem 3 in [7]: For a $\mathcal{P} \subset \mathbb{X} \times M_1(\mathbb{Y})$ such that all its sections \mathcal{P}_x are convex sets we denote $\mathcal{P}^e := \{(x, \mu) \in \mathcal{P} : \mu \in \exp_{\mathbb{X}}\}$ where $\exp_{\mathbb{X}}$ denotes as usual the set of all extremal measures in \mathcal{P}_x (might be an empty set). Theorem 4 in [7] states the existence of a (\mathcal{P}^e, λ) -vector (ξ, η) (i.e. $\mathcal{L}(\eta | \xi = x)$ is an extremal measure in \mathcal{P}_x λ -almost surely), provided that the \mathcal{P} is a closed set in $\mathbb{X} \times M_1(\mathbb{Y})$ and $\lambda \in M_1^*(\operatorname{pr}_{\mathbb{X}}(\mathcal{P}))$.

Corollary 3. Let $\mathcal{P} \in \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(M_1(\mathbb{Y}))$ is a set such that \mathcal{P}_x is a compact convex set in $M_1(\mathbb{Y})$ for all $x \in \mathbb{X}$ and λ a measure in $M_1^*(\operatorname{pr}_{\mathbb{X}}(\mathcal{P}))$. Then there exists a (\mathcal{P}, λ) -vector (ξ, η) such that $\mathcal{L}(\eta | \xi = x) \in \operatorname{ex} \mathcal{P}_x \lambda$ -almost surely.

Proof. It is a well known fact that there exists a bounded continuous strictly convex function $A: M_1(\mathbb{Y}) \to \mathbb{R}$. For its construction we may refer to [8] (p.40) or simply suggest to put $A(\mu) := \sum_{n=1}^{\infty} 2^{-n} \left(\int_{\mathbb{Y}} f_n d\mu \right)^2, \mu \in M_1(\mathbb{Y})$, where $0 \le f_n \le 1$ are continuous functions defined on \mathbb{Y} such that $\int_{\mathbb{Y}} f_n d\mu = \int_{\mathbb{Y}} f_n d\nu$, $n \in \mathbb{N}$ implies that $\mu = \nu$ for $\mu, \nu \in M_1(\mathbb{Y})$. Applying Corollary 2 to the continuous bounded function

$$F: \mathbb{X} \times M_1(\mathbb{Y}) \to \mathbb{R}$$
 defined by $F(x, \mu) = A(\mu)$ for $(x, \mu) \in \mathbb{X} \times M_1(\mathbb{Y})$,

observing that $D(\mathcal{P}, F) = \operatorname{pr}_{\mathbb{X}}(\mathcal{P})$ in this case $(F(x, \cdot))$'s are continuous on compacts \mathcal{P}_x 's) we prove the existence of a (\mathcal{P}, λ) -vector (ξ, η) that possesses the property (14). It means that $A(\mathcal{L}(\eta|\xi = x)) = \max\{A(\mu) : \mu \in \mathcal{P}_x\}$ λ -almost surely, hence $\mathcal{L}(\eta|\xi = x) \in \exp_x \lambda$ -almost surely because A is a strictly convex function. \Box

Observe that Corollary 3 may be applied to a set \mathcal{P} defined by

$$\mathcal{P} = \left\{ (x,\mu) \in \mathbb{X} \times M_1(\mathbb{Y}) : \int_{\mathbb{Y}} f_i(x,y) \mu(\mathrm{d}y) = c_i(x), i \in \mathbb{N} \right\},$$

where \mathbb{Y} is a compact metric space and $f_i: \mathbb{X} \times \mathbb{Y} \to [0, \infty), c_i: \mathbb{X} \to [0, \infty]$ are Borel measurable such that $f_i(x, \cdot)$ is a bounded continuous for each $x \in \mathbb{X}$.

We shall close our presentation by a simple observation on the existence of (\mathcal{P}, λ) -vectors (ξ, η) with the $\mathcal{L}(\eta|\xi = x)$'s that are absolutely continuous with respect to a σ -finite Borel measure on the space \mathbb{Y} .

Corollary 4. Let \mathcal{P} is a set in $\mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(M_1(\mathbb{Y}))$ and $m \neq \sigma$ -finite Borel measure on \mathbb{Y} . Denote

$$D(\mathcal{P}, m) := \{ x \in \mathbb{X} : \exists \mu \in \mathcal{P}_x, \mu \ll m \}$$

and consider $\lambda \in M_1^*(D(\mathcal{P}, m))$. Then there exists a (\mathcal{P}, λ) -vector (ξ, η) such that

$$\mathcal{L}(\eta|\xi = x) \ll m \;[\lambda] \text{ a.s. or equivalently } \mathcal{L}(\xi, \eta) \ll \lambda \otimes m.$$
 (15)

If $\mathcal{P} \in \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(M_1(\mathbb{Y})) \cap \mathcal{A}(\mathbb{X} \times M_1(\mathbb{Y}))$ satisfies moreover the CS-condition then there is a (\mathcal{P}, λ) -vector such that (15) holds and such that

 $\operatorname{supp}(\mathcal{L}(\xi,\eta)) \supset \operatorname{supp}(\mathcal{L}(\xi',\eta')) \forall (\mathcal{P},\lambda)$ -vector (ξ',η') with the property (15).

Proof. We shall use Theorem 1 and Theorem 3 with $\mathcal{Q} = \mathcal{P} \cap \mathcal{A}_m$ and $\mathcal{R} = \mathcal{P} \cap \mathcal{A}_m$, respectively and also with $A: \mathbb{X} \rightrightarrows \mathbb{Y}$ such that $\operatorname{Graph}(A) = \mathbb{X} \times \mathbb{Y}$, denoting $\mathcal{A}_m := \{(x,\mu) \in \mathbb{X} \times M_1(\mathbb{Y}) : \mu \ll m\}$. Observe that $D(\mathcal{P} \cap \mathcal{A}_m, A) = D(\mathcal{P}, m) = \operatorname{pr}_{\mathbb{X}}(\mathcal{P} \cap \mathcal{A}_m)$ in this case. We state that \mathcal{A}_m is a Borel set in $\mathbb{X} \times M_1(\mathbb{Y})$: Observe first that $Z = \{f \in L_1(m) : f \geq 0 \ m$ -almost everywhere, $\int_{\mathbb{Y}} f \, dm = 1\}$ is a closed, hence a Borel set in $L_1(m)$ that is a Polish space in its standard norm topology. Putting $H(f) = m_f$, where $f \in L_1(m)$ and $dm_f = f \, dm$, it follows easily that $H: Z \to M_1(\mathbb{Y})$ is a continuous injective map such that $\mathcal{A}_m = \mathbb{X} \times H(Z)$. Hence, $\mathcal{A}_m \in \mathcal{B}(\mathbb{X} \times M_1(\mathbb{Y}))$ according to 8.3.7. in [3].

Thus, $\mathcal{P} \cap \mathcal{A}_m$ is a set that satisfies the measurability requirement of Theorem 1 if $\mathcal{P} \in \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(M_1(\mathbb{Y}))$ and that of Theorem 3 if $\mathcal{P} \in \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(M_1(\mathbb{Y})) \cap \mathcal{A}(\mathbb{X} \times M_1(\mathbb{Y}))$. Moreover, the set $\mathcal{P} \cap \mathcal{A}_m$ obviously satisfies the CS-condition if the set \mathcal{P} does. Hence, for a \mathcal{P} in $\mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(M_1(\mathbb{Y}))$ there exists a $(\mathcal{P} \cap \mathcal{A}_m, \lambda)$ -vector (ξ, η) according to Theorem 1 and for $\mathcal{P} \in \mathcal{U}(\mathbb{X}) \otimes \mathcal{B}(M_1(\mathbb{Y})) \cap \mathcal{A}(\mathbb{X} \times M_1(\mathbb{Y}))$ there exists a maximally supported $(\mathcal{P} \cap \mathcal{A}_m, \lambda)$ -vector (ξ, η) according to Theorem 3 which concludes the proof because

$$(\xi,\eta)$$
 is an (\mathcal{A}_m,λ) -vector iff $\mathcal{L}(\xi,\eta) \ll \lambda \otimes m$

according to Remark 1 in Section 2.

(Received August 5, 1997.)

REFERENCES

^[1] J.-P. Aubin and H. Frankowska: Set Valued Analysis. Birkhäuser, Boston 1990.

^[2] V. Beneš and J. Stěpán (eds.): Distributions with Given Marginals and Moment Problems. Kluwer, Dordrecht 1997.

- [3] D.L. Cohn: Measure Theory. Birkhäuser, Boston 1980.
- [4] J.H.B. Kempermann: The general moment problem, a geometric approach. Ann. Math. Statist. 39 (1968), 93-122.
- [5] P.A. Meyer: Probability and Potentials. Blaisdell, Waltham 1966.
- [6] L. Schwarz: Radon Measures on Arbitrary Topological Spaces and Cylindrical Measures. Oxford University Press, Oxford 1973.
- [7] J. Štěpán: How to construct two dimensional random vector with given marginal structure. In: Distributions with Given Marginals and Moment Problems (V. Beneš and J. Štěpán, eds.), Kluwer, Dordrecht 1997, pp. 161–171,
- [8] G. Winkler: Choquet Order and Simplices. (Lectures Notes in Mathematics 1145.) Springer-Verlag, Berlin 1985.

Prof. RNDr. Josef Štěpán, DrSc. and Mgr. Daniel Hlubinka, Ph.D., Department of Probability and Statistics, Faculty of Mathematics and Physics – Charles University, Sokolovská 83, 18600 Praha 8. Czech Republic.

e-mails: stepan@karlin.mff.cuni.cz, hlubinka@karlin.mff.cuni.cz