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TWO DIMENSIONAL PROBABILITIES
WITH A GIVEN CONDITIONAL STRUCTURE

= o1
JOSEF STEPAN' AND DANIEL HLUBINKA

A properly measurable set P C X x M;(Y) (where X,Y are Polish spaces and M;(Y) is
the space of Borel probability measures on Y) is considered. Given a probability distribution
A € M1 (X) the paper treats the problem of the existence of X x Y-valued random vector
(&,7m) for which £(¢) = X and L(n|é = z) € P, A-almost surely that possesses moreover
some other properties such as “L(, 7) has the maximal possible support” or “L(n|¢ = z)’s
are extremal measures in P;’s”. The paper continues the research started in [7).

1. INTRODUCTION

To clarify the purpose of the paper consider the following model for a transport
that starts randomly at a locality £ € X and reaches a random locality y € Y: If
(€,n) denotes the (X x Y)-valued random vector which value (¢(w), n(w)) = (z,y)
designates the particular transport from z to y, we ask the probability distribution
of the (€, 7) to respect in the first place that

(1) the conditional distribution of terminals y given a departure point z should be
subjected to a restriction £(n]|¢ = z) € P, almost surely, where P, is a set of
(admissible) probability distributions for the transport that originates at the z,
while the departure distribution is given by a fixed probability distribution .

Moreover, we may venture to ask £(£,n) to follow some additional rules on the top
of (i):

(i1) For each z € X there is a prescribed terminal region A, C Y and the transport
should made as many localities y € A; as possible accessible from the starting
point z i.e., we ask for a transport (£, n) such that with the probability one the
conditional distribution £(n]€ = z) is supported by the set A, and it possesses
the maximal possible support.

(1) If F(z, p) is the payoff we receive for the transport that originates at an z € X
using a target probability distribution u € P, we ask for a transport (€,7)

1 The paper was prepared with the support of Grant Agency of Charles University under contract
3051-10/716.
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that provides the maximal payoff with the probability one, i.e. L(n|¢é = z) =
arg max{F(z, ), # € Pz} almost surely.

(iv) If P,’s are convex sets of probability distributions we wish to design a simple
(discrete) transport (€, 7) such that £(n|é = z) is an extremal distribution in
P, almost surely, or, on the contrary,

(v) having a measure m on the target space Y we prefer an m-continuous solution
(&,7), i.e. such that L(n|é = z) is a distribution absolutely continuous with
respect to m almost surely.

If we interpret the P;’s in (i) as the sections of a Borel set P in X x M;(Y) we
are able to prove (Theorem 1) the existence of a transport (£,7) that respects (i)
whatever probability distribution A supported by prgx(P) we may prescribe for the
random variable €. If we interpret the A;’s in (ii) as the values of a multifunction
A : X — 2Y which graph is a Borel set in X x Y, Theorems 2 and 3 propose
sufficient conditions for the existence of a transport that respects both (i) and (ii).
The Corollaries 2,3 and 4 deal with a possibility to construct a transport (£, 7) that
satisfies the rules (i,ii1), (i,iv) and (i,v), respectively.

A typical example of a set P we have on mind is a set P C X each of which
sections P;’s is defined as a moment problem. The Corollary 1 treats the situation.

The techniques used in our proofs depend heavily on the results coming from
the theory of the analytic sets, on its cross-section theorems in the first place. We
refer to [3] for the elements of the theory. The paper introduces also a concept
of an universally measurable (closed valued) multifunction to generalize that of a
lower semicontinuous multifunction (see [1]). A characterization of the universal
measurability, given by our Lemma 1 may be of some interest by itself.

Generally, the paper is a contribution to the research on a possibility to construct
a probability distribution with given moments, marginals and a conditional struc-
ture, see [2] for the latest developments. Actually, the paper continues and in a way
completes the research started in [7]. Most importantly, the present paper clarifies
the problem met in [7] when trying to construct the transports with the properties
(1) and (ii) and introduces further nontrivial examples of the P-sets the theory may
be applied to (Corollaries 2 and 4).

2. DEFINITIONS AND RESULTS

Fix first metric spaces X and Y and denote by F(X),G(X), B(X), A(X), and U(X)
all closed, open, Borel, analytic, and universally measurable sets in X. Recall that a

set A C X is analytic if there exists a Polish space Z and continuous map ¢ : Z — X
such that A = ¢(Z), that

B(X) Cc AX)cuU(X) and
B(X x Y)=B(X)®B(Y) cUX)QU(Y) CUX x Y)

and also recall that

UX)={UCX: VpeM(X)3IB, CU C By, B; € B(X),u(B;\ B1) = 0},
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where we have denoted the space of all Borel probability measures on X by M;(X).
Let us agree that having a 1 € M,(X), we denote by yu also its uniquely determined
extension from B(X) to Y (X). Moreover, using the notation A* for outer measures,
we denote

M} (B) = {d € Mi(X): A*(B) =1} fora BCX.

Whenever speaking about a topology on M;(X) we mean its standard weak topology
that makes the space metric and Polish if the space X has the property.
Agree that any map A : X — 2Y will be referred to as a multifunction from X to

Y, we shall write A : X =3 Y in this case and denote
Graph(A) := {(z,y) e Xx Y:y € A;},
where A; C Y is the value of A at a point z € X.
Define A : X 3 Y to be U-measurable and strongly U-measurable if

{zeX:4:NG # 0} eU(X), VG € G(Y) and
{z €X:A:NB#0} eU(X), VB € B(Y), respectively.

Observe that if we fix V € G(Y) and Z C X, Z ¢ U(X), put A, =V for z ¢ Z,
A, =V for z € Z, we have exhibited an example of a multifunction A = (A, z € X)
that is U-measurable but not strongly U-measurable.

A multifunction F : X 3 Y will be called a closed valued multifunction (CVM)
if Fz € F(Y) for all z € X and a lower semicontinuous multifunction if it is closed
valued and {z € X : F; NG # 0} € G(X) for all G € G(Y). We refer to Lemma 1
for a necessary and sufficient condition for a CVM F to be (strongly) U-measurable,
and observe that a multifunction A : X =3 Y is U-measurable iff the CVM A¢ =
{A;, z € X} has the property. Thus

Graph(4) € A(X x Y) = Graph(Ac) € U(X) ® B(Y) (1)
according to Lemma 1 (iv) and (i). Especially, we observe that
Graph(A) € A(X x Y),A; € F(Y) for z € X = Graph(4) e U(X) @ B(Y) (2)

Putting S, = supp(u) for 4 € M;(Y) where Y is a separable metric space we get
an example of CVM S = (S, p € M; (Y)) from M;(Y) to Y that is obviously lower
semicontinuous. Recall that for a finite Borel measure u on Y we define

supp(p) = [|{F,F € F(Y),u(F) = p(Y)}
= {yeY:u(G)>0, VG eG(Y),yeGq).

For the rest of the paper we shall assume the fixed spaces X and Y to be Polish.
Our results concern subsets P in X x M;(Y) such that

P € A(X x My (Y)) UU(X) ® B(M1(Y))
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mostly. To such a set we may attach naturally a set Qutput? C X x Y defined by?

OutputP := {(z,y) €XxY:3p€ P, y€supp(p)}, ie.
(OutputP); = | J{supp(n),# € P}, z €X.

See Lemma 2 for a result that claims a topological stability of the P — Output P
operation.

To illustrate this, consider a multifunction A : X =3 Y with A, € #(Y) and put
Pa:={(z,u) € Xx M1(Y) : p(A;) = 1}. It is easy to verify that Output P4, = Ac.
Hence Lemma 4 (ii), (iii) together with Lemma 2 (ii), (iii) state that

Graph(A4) € A(X xY) = Py € AX x M(Y))
= Output P4 € U(X) ® B(Y)
)
Graph(A4) e U(X)Q B(Y) = P4 € U(X)® B(M(Y))
= Output P4 € U(X) @ B(Y).

Frequently we need P C X x M;(Y) such that ((Output?P),,z € X) is a closed
valued multifunction X =2 Y. We can achieve that assuming a weak form of convexity
for all the sections P;’s (see [7] and our Lemma 3). We shall say that a P C
X x M;(Y) satisfies CS-condition if

V(z€X, (un,neN)CP;) 3 (an >0,Zan: 1 :Zanuné'Pz).
1 1

A typical example of a P C X x M;(Y) our results may be applied to is a set P
each of its sections is defined by a moment problem:

Py = {# € My(Y): /Yfi(l',y)#(dy) =ci(z),1 € I} , ¢ €X, (4)

where I # 0 is an index set and for ¢ € I )
fi :XxY —[0,400], ¢; : X — [0,+00] are Borel measurable functions.

Remark that if I is at most countable set then such a P belongs to B(X x M;(Y))
by Lemma 4(i). If f;’s are bounded continuous, ¢;’s continuous then regardless the
cardinality of the set I, P € F(X x M;(Y)). Either situation provides a P for which
the CS-condition holds.

Recall that a map H : X — Y is called universally measurable if it is a map that
is measurable with respect to the o-algebras U (X) and U(Y) which is as to say that
it is measurable w.r.t. the o-algebras ¢/(X) and B(Y) according to Lemma 8.4.6. in
[3]. A universally measurable map z — P* from X into M;(Y) will be called here
a universally measurable Markov kernel (UMK). Note that z — P* is a UMK if

2We denote by Az the sectionof A C X x Y at a point z € X
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and only if z — P*(B) is a universally measurable ("3") function for all B € B(Y).
Indeed since

"5 PT = 2 "B P*(B),VB € B(Y) = z "= P?(f),V f € Cp(Y) = z 5 P?,

where the first implication follows by the well known fact that p — u(B) are for
all B € B(Y) (B(M,), B) measurable, the second implication can be verified by
approximating f € Cy, by Borel step functions and the third follows by separability
of My(Y) that implies B(M1(Y)) = o{p : |u(f) — po(f)| < €;€ > 0, po € My(Y), f €
Cp}. Hence, for a A € M(X) and a UMK z — P we define correctly a probability
measure P* € M (X x Y) by

PM(A x B) = /A PZ(B) A(dz) where A x B € B(X)® B(Y).

Remark 1. Let f: X x Y — [0,400] be a universally measurable function. Then
the sections f(z,’),z€X and z — J5 f(z,y)P*(dy) are universally measurable
functions in the sense Y — [0,00] and X — [0, 00], respectively. Moreover, if A €

M, (X) then
/x L /X /Y £(z,5)P* (dy) A(dz) (6)

especially, PA(U) = J5xP?(Uz) Mdz), U € U(X x Y) defines the extension of P* from
B(X x Y) toU(X x Y).

The universal measurability of the sections f(z,-) is an obvious statement. To
verify the rest assume first that f is Borel measurable. Then the map Hy : £ —
[y f(z,y)P?(dy) is received by substituting z — (z, P*) from X into X x M;(Y) to
(z,p) = [§f(z,y) n(dy) from X x M;(Y) into [0,00]). The former of the maps is
easily seen to be measurable w.r.t. the o-algebras &(X) and B(X x M;(Y)) because
¢ — P? is a UMK, while the latter one is a Borel measurable map by Lemma 4 (i)
in Section 3. Hence the map Hj is universally measurable which implies, putting
f = I¢ that PX(C) = [ P®(C;:)A(dz) for C € B(X x Y). A standard procedure
extends the latter definition of P? to the equality (6). For a general f and A € M;(X)
there are Borel measurable functions f; < f < fo such that f; = fa [A]-almost surely.
Then Hy, < Hy < Hy, on X, Hy, = Hj, [A]-almost surely according to (6) applied
to fi and f. Hence, the H; is universally measurable and

fdP* = frdP? = / / fi(z,y)P*(dy) A(dz) = / / f(z,y)P*(dy) A(dz)

XxY XxY

according to the first part of our argument.

Let us agree that whenever we shall speak about an (X x Y)-valued vector (€, 7) we
mean a map defined on a probability space (2, £, P) that is measurable with respect
to the o-algebras £ and U(X x Y). This definition makes the random variables £
and 7 to be measurable w.r.t. the o-algebras #(X) and U(Y), respectively and it
presents no loss of generality (see Lemma 8.4.6. in [3], again). Recall that if we have
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an (X x Y)-valued random vector (&,7m), then a UMK z — PZ from X into M;(Y) is
called a regular conditional distribution of n given the values of & if

Plce A,neB]= /A P=(B)A(dz), A € B(X), B € B(Y), where A = £(£).  (7)

It is a well known fact that a regular conditional distribution of 7 given the values
of € exists and it is determined uniquely almost surely w.r.t. £(§) provided that X
and Y are Polish spaces (see [8], p.126). We shall denote as usual P* = L(n|¢ = z)
for any regular conditional distribution £ — PZ of 7 given the values of §.

Obviously we may paraphrase Remark 1 as

Remark 2. If (§,7) is an (X x Y)-valued random vector such that
L(€) = A and L(n|¢ = ) = P* A-almost surely (8)
holds for a A € M;(X) and a UMK z — PZ then

L(€,n) = P* and E[f(&,n)|¢ =2] = /yf(z,y)P’(dy) A-almost surely

holds for any universally measurable function f € Li(P*).

A reverse statement to Remark 2 is provided by

Remark 3. Given a UMK z — P® and a A € M;(X) there is an (X x Y)-valued
random vector (€, 7) such that (8) holds.

To construct a vector (§,7) possessing the properties (8) put (Q, F,P) := (X x
Y,U(X x Y),P*) and £ := prg, 1 := pry, where prg : X x Y — X denotes the
canonical projection of X x ¥ onto X.

More generally, given a P C X x M;(Y) and A € M;(X) our results concern
mainly the existence of an (X x Y)-valued random vector (£, ) such that

L(¢€) = X and L(n|¢ = £) € P, almost surely w.r.t. A. 9)

A random vector (£,7) with properties (9) shall be called a (P, A)-vector. Observe
that the random vector (£,7) the existence of which is stated by Remark 3 is in
fact (P, A)-vector with P = Graph(z — P*®). A simple argument verifies that
P € U(X) ® B(M(Y)) in this case as a consequence of the universal measurability
of ¢ — P*.

Remark 4. If A : X 33 Y is a multifunction with Graph(A4) € U(X x Y) and
A € M(X) then

(1) (&, m) is a (P4, A)-vector.

(i) P[(¢,n) € Graph(A)|£ = ] = 1 A-almost surely.
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(iii) P[(¢,n) € Graph(4)] =1

are equivalent statements because P[(£,7) € Graph(A)|§ = z] = P*(A;) according
to Remark 2.

Finally, we shall say that a (P, A)-vector is maximally supported if
supp (L(n|é = z)) D supp(L(n'|¢’ = z))A-as. for any (P, X)-vector (¢', 7).

Note that if a (P, A)-vector is maximally supported then according to Lemma 5 in
Section 3 supp(L(€,7n)) D supp(L(€',n’)) for any (P, A)-vector (€/,7') and that the
implication can not be reversed according the counterexample that follows the proof
of the lemma.

Our main results are

Theorem 1. Consider @ C X x M;(Y), a multifunction A : X =3 Y and A €
M; (D(Q, A)), where D(Q, A) :={z € X:3p € Q,p*(Az) = 1}. Then
either Q € A(X x M(Y)), Graph(A) € A(X x Y)

or Q € U(X) ® B(M,(Y)), Graph(A) € U(X) ® B(Y)
implies that there is a (Q NP4, A)-vector (¢, 7).

Observe that according to Remark 4 the theorem states exactly that there is a
(Q, N)-vector (€, 7) such that P[(§, ) € Graph(4)] = 1.

Theorem 2. Assume that P € U(X) ® B(M:(Y)) satisfies the CS-condition and
is such that Output P € U(X) ® B(Y). Then for each A € M} (prgP) there exists a
(P, A)-vector (€,n) such that

supp (L(nl¢ = z)) = (Output P), A-almost surely. (10)

Remark that a (P, A)-vector (§,7n) that possesses the property (10) is maximally
supported. We do not know whether the implications P € U(X) ® B(M;(Y)) =
Output P € U(X) ® B(Y) is true or not. Observe (3) for the positive answer for a
very simple choice of P.

Theorem 3. Assume that R C X x M(Y) and a multifunction A : X =3 Y are
such that
Graph(4) € A(X x Y) nU(X) ® B(Y), (11)
R € A(X x My(Y)) NU(X) ® B(M;(Y)) and satisfies the CS-condition.

Then for each A € M (D(R, A)) := M{{z € X:3p € Rs, p(Az) = 1} there exists
a maximally supported (R NP4, A)-vector (£, 7).

Observe that Theorem 3 may be applied to R and A such that both R and
Graph(A) are simply Borel sets and that, in this situation, provides a generalization
to the second part of Theorem 1 in [7].
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3. PROOFS

Lemma 1. Let F: X3 Y beaCVM, and A : X 3 Y a multifunction. Then
(1) F U-measurable

(if) Graph(F) € U(X) ® B(Y)

(iii) F strongly U-measurable,

are equivalent statements.
Moreover

(iv) Graph(A) € A(X x Y)UU(X)® B(Y) = A is strongly U-measurable.
(v) F lower semicontinuous = Graph(F) € B(X x Y).

Proof. It is sufficient to verify (i)=(ii), (iv), (v).
(i)=(ii): To verify this we simply write

Xx¥\Graph(F) = {(z,y) :y & Fx} = | {z : FzNG = 0} xG € U(X)®B(Y) (12)
Gev

where V is a countable topological base in Y.

(iv): Let B € B(Y). Then {z : A; N B # 0} = prg[Graph(4) N (X x B)] € U(X) by
8.4.4. and 8.4.6. in [3] because Graph(A) N (X x B) € A(X x Y)UU(X) ® B(Y)

(v): It follows by (12) because {z : F; NG =0} = X\ {z : F; NG # 0} € F(X) for
G € G(Y) as F is lower semicontinuous. o

Lemma 2. (see also Lemma in [7] for the implication (i) below)

(i) P € A(X x M(Y)) = Output P € A(X x Y)

(ii) P € U(X) ® B(M;(Y)) = Output P € U(X x Y)

(iii) P € A(Xx M1(Y)), (Output P), € F(Y) for all z€X = Output P €U (X)B(Y).

Proof. (iii) follows by (iv) and by [(iii)=>(ii)] in Lemma 1 as £ — (Output P),
represents a closed valued multifunction X =3 Y.
We shall prove (i) and (ii): Put D := {(z,y,p) € X x Y x M1(Y) : (z,p4) € P,y €
supp(u)}, observe that Output P = prg,y(D), and D = (P x Y) N (X x Graph(S5)),
where S : M;(Y) =3 Y is the closed valued correspondence defined by S, = supp(y).
Because S is easily seen to be lower semicontinuous it follows by (v) in Lemma 1
that

P e A(X x My(Y)) = D € A(X x Y x M;(Y)) = prg,g(D) € AX x Y)
and
P e U(X) ® B(M1(Y)) = D e U(X)® B(Y x M1(Y)) = prg,y(D) EUX x Y)

(again by 8.4.4. and 8.4.6. in [3]). o
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Lemma 3. Let P C X x M;(Y) satisfies the CS-condition. Then
Yz € prgP 3y, € P, such that supp(pz) = (Output P)s

and therefore £ — (Output P), is a closed valued multifunction X 3 Y.

To verify the statement it is sufficient to read carefully the first part of the pr.oof
of Theorem 2 in [7]. We shall do it for the sake of completeness of our presentation.

Proof. Let z € prgP and {u, y2,...} a dense set in P,. By the CS-condition
we have py = 31° anptn € P for some ap > 0, 323° @n = 1. Obviously supp(pz) C
(Output P),, to verify the reverse inclusion choose y € (Output?P), and Vy €
G(Y) its arbitrary neighbourhood. There is a v € P, such that y € supp(v). If
fin, — v weakly then for an arbitrary open neighbourhood V of y limsup pn, (Vy) >
limsup v(Vy) > 0. Thus, pin,(Vy) > 0 for a k € N, hence pz(Vy) > 3 ony pin, (Vy) >
0. It follows that y € supp(pz). O

Lemma 4. Let f:XxY — [0,00] be a (U(X)®B(Y), B(R*) measurable function
and A : X 3 Y a multifunction. Then

(i) (z, ) = [5 f(z, y)p(dy) is a U(X) @ B(M;(Y))-measurable map from X x My (Y)
into [0, 00]. Moreover, the Borel measurability of f implies that the map is Borel
measurable.

(i) If Graph(A) € U(X) ® B(Y) then P4 € U(X) ® B(My(Y)).

(iii) If Graph(A) € A(X x Y) then P4 € A(X x M(Y)).

(iv) If Graph(A) € U(X) ® B(Y) then®

Pas = {(z,p) € X x M(Y) : p(A;) = 1,supp(p|A;) = A}
isaset in U(X)® B(MI(Y))'

Observe that A, € B(Y) and A; € U(Y) if Graph(A4) € U(X) ® B(Y) and
Graph(A4) € A(X x Y), respectively. Hence the sets P4, P4, s are defined correctly.
Observe also that we miss an analogue of (iv) when Graph(A4) € A(X x Y).

Proof. (i) Assume first that f = Iyxp where U € U(X), B € B(Y). Then
Jg f(z,y) u(dy) = p(B)Iy(z) for z € X and (i) follows easily observing that p —
p(B) is a Borel measurable map M1(Y) — R. Theorem 1.2.20 in [5] now extends the
validity of (i) to f’s that are bounded and U(X) ® B(Y)-measurable, which in fact
verifies (1) generally. The “moreover part” of (i) may be proved in a similar way.
(i) is an immediate consequence of (i) putting f(z,y) = Ia_(y)-

(ii1) Because Graph(A) is universally measurable in X x Y it follows that

1(Az) = (ez ® 1)(Graph(A)) for z € X,
3As usualif p € M1(Y) and A € U(Y), (1]A) denotes the restriction of u to the Borel g-algebra

B(A), hence supp(u|A) € F(A) is the set defined equivalently by supp(u|4) = {y € A : u(GNA) >
ovG e g(Y), y €G).
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where €, denotes the probability measure that degenerates at x, hence
Pa=A{(z,p): (e ®/J)(Graph(A)) =1}.

Thus, P4 is seen to be inverse image of M; (Graph(A)) with respect to the con-
tinuous map (z,p) — (é; ® p) that maps X x M(Y) into M,;(X x Y). Because
M7 (Graph(A)) is an analytic set in M;(X x Y) by Theorem 7, p. 385 in [6]*, (iii)
follows directly by 8.2.6. in [3].

(iv) According to (iii) we have to prove that Ps := {(z, ) : supp(p|Az) = Az} is a
set in U(X) ® B(M1(Y)). To see that we write Ps as the intersection of the sets

[({:c LGN A, # 0} My (Y)N{(z, 1) : 1(GNA:) > 01U ({2 : GnA, = ﬂ}le(Y))]

where the G’s are running through a countable topological base in Y. To verify the
above equality observe that

supp(p|dz) = A; iff [GNA; #0,GeV=>u(GNA;)>0], zeX
To complete the proof apply (i) to see that
{(z, ) : 1(G N Ap) > 0} € UK) ® B(My(Y))
Zrzdx)(iv) in Lemma 1 to see that {z : GN A, # 0} and {z : GN A; = 0} are sets in
. O

Lemma 5. Let (¢, 7) be a maximally supported (P, A)-vector for a P C X x M;(Y)
and A € M;(X). Then

supp (L(€, 1)) D supp(L(¢',n)) for any (P, A)-vector (£', 7).

Proof. Denote P* = L(n|¢ = z) and Q% = L(7'|¢' = z). It follows by Remark 1
in Section 2 that [ P#[(suppP*),|\(dz) = P*[suppP?] = 1. Hence the sections
(suppP*); € F(Y) are such that P* [(suppP*)z] = 1 almost surely w.r.t. X and
therefore (suppP?), > supp(P¥). Observe that the latter inclusion and Remark 1
imply that

Q*(supp P*)

/ Q*[(suppP*);] A(dz) > f Q” [suppP*] A(dz)
X X

/ Q* [supr’])\(d:c) =1
X

v

because suppP® D suppQ” a.s [A]. Thus suppP* D suppQ* which, according to
Remark 2, concludes the proof. 0

4The theorem states exactly that M; (Graph(A)) € .A(x x M, (Y)), but M} (Graph(A)) is
easily seen to be the image of the former set w.r.t. the continuous map A — 1Graph(4) © A where

1Graph(A) * Graph(A) — X x Y is the identity map. Hence M} (Gra.ph(A)) € A(X x M, (Y))
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It might be of some interest to note that the reverse implication to that of pre-
sented by Lemma 5 is not true: put Q% = ¢, for x € [0, 1} and P* = ¢, for z € [0, 1),
P! = ¢ and A = }(m + €,) where m is Lebesgue measure on [0, 1]. Obviously, we

" upp(@*) = Diag((0, 11%), supp(P*) = Diag([0, 11?) U {(1,0))

supp(Q*) C supp(P*), supp(P') =0 and supp(Q') = {1}.

Putting P = Graph(z — P*)UGraph(z — Q%), L(n|¢ = z) = P*, L(7|¢' = z) = Q7,
L(€) = L(&') = X we observe that the (§,7) is a (P, A)-vector which distribution has
the maximal support but it is not maximally supported.

hence

We are prepared to complete our proofs.

Proof of Theorem 1. Put P := QN7Py. It follows by Lemma 4 (iii) and (ii)
that either P € A(Xx M1(Y)) or P € U(X)®B(M1(Y)) which in both cases implies
that D(Q, A) = prgP € U(X) (8.4.1., 8.2.6. and 8.4.4. in [3]). The cross section
theorem (either 8.5.3.(b) or 8.5.4.(b) in [3]) verifies that there is a map z — P~
from D(Q, A) into M;(Y) which is measurable w.r.t. the o-algebras U(X)ND(Q, A)
and B(M(Y)) such that P® € P, holds on D(Q, A), i.e. A-almost surely. The
map ¢ — P¥ can be obviously extended (e.g. by any constant) to an universally
measurable Markov kernel £ — P* from X into M;(Y) and according to Remark (3)
in Section 2 there exists a (X x Y)-valued vector (£,n) such that (8) holds. This of
course means that the (§,7) is an (Q NP4, A)-vector. 0

Proof of Theorem 2. Put Q := PN7Ps, where Ps := {(z, ) € Xx M (Y):
supp(p) = (Output P);}. Because (OutputP), € F(Y) for each z € X according
to Lemma 3, we may apply Lemma 4 (iv) with A = {(Output P),,z € X} to verify
that Pg € U(X)@B(Ml(Y)). Hence Q belongs to the o-algebra also and Theorem 1,
applied to the Q@ and to the CVM A with Graph(A4) = X x Y, implies that there is a
(9, A)-vector (£,n) because prg@ = prgP according to Lemma 3 again. Hence, the
(€,m) is a (P, A)-vector such that (10) holds. o

Proof of Theorem 3. We plan to apply Theorem 2 to P = R NP4, where
P4 and hence also P belong to A(X x M1(Y)) NU(X) ® B(M,(Y)) according to
Lemma 4 (ii) and (iii). It is obvious that P satisfies the CS-condition and therefore
Output P is in U(X) ® B(Y) according to Lemma 3 and Lemma 2 (iii). Because
D(R, A) = prgP, it follows by Theorem 2 that there is a (P, A)-vector (€,7n) such
that (10) holds. It follows directly from the definition of the set Output P that the
(€,7) is a maximally supported (R NP4, A)-vector. u]

4. COROLLARIES

Using Theorem 1 and 3 we are able to generalize Corollary 1 in [7], namely to remove
the requirement on the local compactness of the space Y.
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Corollary 1. Assume that fi(z,y), ci(z) satisfy (5) for i € I, I being an at most
countable set. Consider A € A(X x Y) UU(X)® B(Y) and put

D(f,c, A) := {z €X:3pue M(Y),u(d;:) = 1,/Yf,~(:c,y) u(dy) = ci(x),i € I} .

Then to each A € M} (D(f,¢c, A)) such that ¢; € Ly(A) for i € I there exists an
(X x Y)-valued random vector (£, 7n) for which

L(€) = A, P[(€,n) € A] = LE[fi(§, m)] < o0, E[fi(€§, m)¢] = cs(§),i€ T (13)

holds.

If moreover A € A(X x Y) NU(X) @ B(Y) then a random vector (£, 7) with the
properties (13) may be chosen such that supp(L(€,n)) D supp(L(¢’,7’)) for any
other random vector (£’,7’) that satisfies (13).

Proof. Put @ = {(z, ) € X x My(Y): [ fi(z,y) u(dy) = ci(z),i € I} and con-
sider the multifunction B : X =3 Y with Graph(B) = A. Then, using the notation
introduced in Theorem 1, we have D(f, ¢, A) = D(Q, B) and Q € B(X x M;(Y)) ac-
cording to Lemma 4 (i). Observe also, that for a random vector (¢, ), the properties
(13) state equivalently that the (€,n) is a (Q NPp, A)-vector. The equivalence is an
easy consequence of Remark 2 and 4 in Section 2 using the integrability of ¢;’s with
respect to A. Because the set Q satisfies obviously the CS-condition, Theorem 1 and
Theorem 3 verify the statements of our Corollary. o

Remark that for a finite index set I
D(f,c,A) = {x € X:(z) € co(f(z,Az))}, c=(ci,i € I),f = (fi,i € I),

where co denotes the convex hull (see [4], for example).

The theory we have presented is designed mostly with the purpose to prove the
existence of a (P, A)-vector with the maximal support of its probability distribution.
The rest of our corollaries suggests some other possible applications.

Corollary 2. Consider a set P € U(X)®B(M1(Y)) and an upper bounded function
F :X x M;(Y) — R that is #(X) ® B(M;(Y))-measurable. Denote

Sr(z) := sup{F(z,p),p € P;} for z € X (i.e. Sr(z) = —oo for z & prg(P))
D(P,F) :={z € X: Sp(z) = F(z, p) for some p € P }.

Consider moreover a measure A € M; (D(P, F)). Then there exists a (P, A)-vector
(&€, n) such that

F(z,L(n|¢ = z)) = Sr(z) holds A-almost surely. (14)

Proof. Obviously, the random vector (£,7) which existence is stated is equiva-
lently defined as a (Q, A)-vector, where
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Q := P NSF, where Sp := {(z,p) : F(z,p) = Sr(z)}.

Because prg@ = D(P, F), we could use Theorem 1 (with A : X =3 Y, such that
Graph(A) = X x Y) to prove the existence of a (Q, A)-vector (§,7) if Sp would be
a set in U(X) ® B(M(Y)). To verify this, it is sufficient to show that the function
Sr : X — [—00, +00) is universally measurable: Fix a € R and observe that

{z:Sp(z)>a}={z:3p €Ps, F(x,p) > a} = prg(PN[F > a]),

where [F > a] = {(z, 1) : F(z,p) > a}. Thus {z : Sp(z) > a} is the projection of a
set in U(X) ® B(M1(Y)) and therefore a universally measurable set in X according
to 8.4.4. in [3]. O

An obvious choice for the function F(z, p) is given by

F(z,p) = g f(z,v) n(dy), z € X, p € M (Y),

where f : XxY — R is an upper bounded U/ (X)® B(Y)-measurable function. A more
sophisticated choice of the F' allows to enrich the result given by Theorem 3 in [7]:
For a P C X x M;(Y) such that all its sections P, are convex sets we denote
P .= {(z,p) € P : u € exPx} where exP, denotes as usual the set of all extremal
measures in P (might be an empty set). Theorem 4 in [7] states the existence of a
(P, X)-vector (€,n) (i.e. L(n|€ = z) is an extremal measure in P, A-almost surely),
provided that the P is a closed set in X x M;(Y) and A € M7 (prg(P)).

Corollary 3. Let P € U(X)®B(M;(Y)) is a set such that P, is a compact convex
set in M;(Y) for all z € X and A a measure in My (prg(P)). Then there exists a
(P, A)-vector (€,7n) such that L(n]¢ = z) € exP; A-almost surely.

Proof. It is a well known fact that there exists a bounded continuous strictly
convex function A : M;(Y) — R. For its construction we may refer to [8] (p.40) or
simply suggest to put A(p) ==Y nr, 27" (fv j‘,,d,u)2 4 € Mi(Y), where 0< f, <1
are continuous functions defined on Y such that f[g fadp = Jg fadv, n € N implies
that p = v for p,v € M1(Y). Applying Corollary 2 to the continuous bounded

function
F :X'x M;(Y) — R defined by F(z,u) = A(p) for (z, ) € X x M1(Y),

observing that D(P, F) = prg(P) in this case (F(z,-)’s are continuous on compacts
P.’s) we prove the existence of a (P, A)-vector (£,7) that possesses the property
(14). It means that A(L(n|€ = z)) = max{A(p) : p € P} A-almost surely, hence
L(n)¢ = z) € exP, A-almost surely because A is a strictly convex function. O

Observe that Corollary 3 may be applied to a set P defined by

P={(@n) eXx M(¥): | e @) = cfo)si e v},
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where Y is a compact metric space and f; : Xx Y — [0,00),¢; : X — [0, 00] are Borel
measurable such that fi(z,-) is a bounded continuous for each z € X.

We shall close our presentation by a simple observation on the existence of (P, A)-
vectors (£, n) with the £(n|¢ = z)’s that are absolutely continuous with respect to a
o-finite Borel measure on the space Y.

Corollary 4. Let P is a set in U(X) ® B(M1(Y)) and m a o-finite Borel measure
on Y. Denote

DP,m):={ze€X:3p € Psp K m}
and consider A € M; (D(P,m)). Then there exists a (P, X)-vector (£,7) such that
L(n|é = £) € m [A] a.s. or equivalently £(€,7) < A ® m. (15)

If P e UX)®B(M(Y)) NA(X x M;(Y)) satisfies moreover the CS-condition then
there is a (P, A)-vector such that (15) holds and such that

supp(L(€,n)) D supp(L(€',n")) ¥ (P, A)-vector (€',n') with the property (15).

Proof. We shall use Theorem 1 and Theorem 3 with @ = PN A,, and R =
PNAm, respectively and also with A : X =3 Y such that Graph(A) = Xx Y, denoting
Am = {(z,p) € X x Mi(Y) : p € m}. Observe that D(P N Am, A) = D(P,m) =
prg(P N An) in this case. We state that A, is a Borel set in X x M;(Y): Observe
first that Z = {f € Li(m) : f > 0 m-almost everywhere, fyfdm = 1} is a closed,
hence a Borel set in L;(m) that is a Polish space in its standard norm topology.
Putting H(f) = my, where f € Li(m) and dmy = fdm, it follows easily that
H : Z — My(Y) is a continuous injective map such that A, = X x H(Z). Hence,
Am € B(X x M;(Y)) according to 8.3.7. in [3].

Thus, P N A,, is a set that satisfies the measurability requirement of Theorem 1
if P € U(X)® B(M1(Y)) and that of Theorem 3 if P € U(X) ® B(M1(Y)) N A(X x
MI(Y)). Moreover, the set P N A,, obviously satisfies the CS-condition if the set P
does. Hence, for a P in U(X) ® B(M1(Y)) there exists a (P N Am, A)-vector (£,1)
according to Theorem 1 and for P € U(X) ® B(M1(Y)) NA(X x M1(Y)) there exists
a maximally supported (P N An,,A)-vector (€,7) according to Theorem 3 which
concludes the proof because

(&,n) is an (A, A)-vector iff L(€,7) K A®@ m

according to Remark 1 in Section 2. O

(Received August 5, 1997.)
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