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AND IGOR VAJDA 

For data generated by stationary Markov chains there are considered estimates of chain 
parameters minimizing ^-divergences between theoretical and empirical distributions of 
states. Consistency and asymptotic normality are established and the asymptotic covari-
ance matrices are evaluated. Testing of hypotheses about the stationary distributions 
based on (^-divergences between the estimated and empirical distributions is considered as 
well. Asymptotic distributions of (^-divergence test statistics are found, enabling to specify 
asymptotically o>level tests. 

1 . I N T R O D U C T I O N 

Methods of statistical inference established for stationary independent data are of­
ten applied to dependent data. The effect of dependence on the Pearson goodness 
of fit tests using the Pearson statistics has been studied by Moore [11] and Glesser 
and Moore [6, 7]. Tavare and Altham [15] evaluated for stationary Markov obser­
vations, under simple hypotheses about the state space distributions, asymptotic 
distribution of the corresponding Pearson statistic X 2 . Moore [11] evaluated the 
asymptotic distribution of the maximum likelihood and minimum chi-square esti­
mators of parameters of discrete distributions defined by a quantization in the state 
space of some stationary stochastic processes. Glesser and Moore [6, 7] evaluated 
for "positively dependent" observations, and for maximum likelihood estimators 
of parameters, asymptotic distribution of Pearson X2 in the case where the hy­
potheses about the state space distribution are composite. They also mentioned 
possible extensions of their results to the Pearson-type statistic obtained as special 
(^-divergences (the so-called power divergences) between the estimated and empir­
ical distributions. These divergences have been previously studied in the case of 
independence observations by Cressie and Read [4] (cf. also Read and Cressie [13], 
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Salicru et al [14] and Menendez et al [9]). In Menendez et al [10], we applied the 
^-divergences in testing simple hypotheses about stationary irreducible aperiodic 
Markov chains. In this manner we extended the results of Tavare and Altham to 
an infinite variety of (^-divergence goodness-of-fit test statistics. We also proposed 
a method for choice a best (^-divergence test statistic and numerically illustrated it 
by an example. 

In this paper we study simple as well as composite hypotheses about irreducible 
aperiodic Markov observations. For arbitrary regular convex functions <\> and </)* we 
evaluate asymptotic distributions of the minimum <j>*-divergence estimator, and of 
the (^-divergence statistic employing the minimum ^"-divergence estimator if the 
hypothesis is composite. This paper thus significantly extends the previous results 
of Menendez et al [10], and precises and in some sense also extends the ideas of 
Glesser and Moore [6, 7]. 

2. BASIC CONCEPTS AND EXAMPLES 

We consider a stationary irreducible aperiodic Markov chain X = (Xo, X\,...) with 
the state space { l , . . . , m } . By P = (pij)mj=\ we denote the matrix of transition 
probabilities of this chain and by p = ( p i , . . . , p m ) a stationary distribution, i.e. 
solution of the equation p = pP. Thus the Markov chains under consideration are 
described by pairs (p, P). 

Assumption 1. P is from the class P of all irreducible aperiodic stochastic ma­
trices with one ergodic class. 

The aperiodicity and ergodicity imply the existence and unicity of the solution 
of equation p = pP. The irreducibility means that the solution p belongs to the set 

n m = {(pi, .- . ,Pm) 'Pi > 0, pi + ••• + pm = 1} 

which is an open subset of a hyperplane in Rm. 

Assumption 2. On an open subset 0 C Rs, there is given a continuous invertible 
mapping 

0»p(0) = (pi(e)i...lPm(0))eIim 

with a continuous inverse p y-+ 0(p) € 0 . 

Under this Assumption, p(0) and 0(p) are one-to-one mappings between 0 and 
an open subset II C IIm. 

Assumption 3. The stationary distribution p belongs to II considered in Assump­
tion 2. 

The set II represents a basic hypothesis about the distribution p, 0 is a parameter 
space of distributions belonging to II, and 0(p) G 0 is a parameter corresponding to 

pen. 
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For every parameter 0 £ 0 we denote by P$ the set of all matrices P £ P such 
that their stationary distribution p coincides with p(0). If p(0) is uniform then P$ 
is the class of all doubly stochastic m x m matrices. 

Example 1. Let s = m - l , 0 = {0 = ( 0 i , . . . , 0 m - i )£(O, l ) m " 1 : 0i + - • -+0m- i < 1} 
and p(0) = ( 0 i , . . . , 0m_i, 1 — _>_]i_L"i 0»). Then II = IIm and the parameters 0(p) of 
distributions p £ IIm are their first m —1 coordinates p i , . . . , p m - i - In the particular 
case of m = 2 we obtain 0 = (0,1) and II2 = {(0,1 - 0) : 0 £ (0,1)}. Here P is the 
set of all matrices 

p _ f l - P ^ \ for 0 < / 3 , 7 < 1 and/? + 7 < 2 , 

with the stationary distributions p = (pi,P2) = (0,1 — 0) given by the formula 

Therefore PQ is the set of all matrices 

(lIeH iJjS.) for 0</?<min|l,i^}, ^ i . 

This means that for every fixed 0 < (3 < 1 these matrices belong to Pg for all 
0 < 0 < JTQ- In particular, P i is the set of all matrices 

( V Л ) *-•<"<>• 

Example 2. Lets = m - 1 and 0 = {0 = (0_,. . . , 0 m - i ) : 0{ £ (0,1), 1 < i < m - 1 } , 
and let p(0) = (pi (0) , . . . ,pm(0)) be given for every 0 £ 0 by 

Here II is an (m — l)-dimensional variety in IIm and 0 (p i , . . . ,pm) = (P2/P1, • • • 
• • • jPm/Pm-i)- One of the matrices contained in P$ is P(0) = (p,j) with pm i i = 1 
and 

Piti = 1 - 0i, Pi,t+i = 0i, for 1 < i < m - 1. 

Under Assumptions 1-3 and the basic hypothesis II, the true stationary distri­
bution of chain states is some po = (poi, • • • ,Pom) £ n . This means that the true 
chain parameter is 0n = 0(po) from 0 . 
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Assumption 4. The true chain distribution is specified by an arbitrary initial 
distribution P(0Q) and by a transition matrix P(0Q) G Pe0. 

A basic statistical problem is how to estimate in a consistent and asymptoti­
cally normal way the unknown true parameter 0Q G 0 by using the data Sn = 
(Xiy..., Xn) about the states of the chain, i. e. how to find a measurable mapping 

0n=0n(Sn) (1) 

taking on values in 0 such that 

@n —* OQ in probability 
(2) 

nl'2(0n-0Q) - N(0,Vo) inlaw, 

and how to evaluate the s x s matrix Vo (note that all convergences in this paper 
are considered for n •—> oo). 

Another important statistical problem is how to test a hypothesis about 6Q by 
using the data Sn- The hypothesis may be represented by a subset 0o C 0 or, 
equivalently, by IIo = {p(0) : 0 G ©o} C II. The alternative is 0 i = 0 — 0o or 
III = II — IIo. The problem is to find a measurable test statistic and a measurable 
critical region in the target space of this statistics, 

Tn — Tn(Sn) and KH)a for 0 < a < 1, (3) 

such that the tests (Tn, Kn,a) are asymptotically of a-size in the sense 

Pr {Tn G Knia\P(0o)} — a for all 00 G 0O . (4) 

Preferences between various tests satisfying (4) are usually based on the power func­
tions 

irn(0) = Fr {Tn £ Kn,a\P(0)} for 0 G 0 . . (5) 

Most preferred are those with a maximum test power where the "test power" means 
an asymptotic or nonasymptotic variant of the power function (5). 

Both these problems, of estimation and testing, are solved in this paper. The 
solution is based on relative frequencies observed in the data Sn, 

v *=i fc=i / 
(6) 

i.e., it in fact uses the ordered version of Sn and ignores the information about 
transitions contained in the original statistics Sn. This means a considerable loss of 
efficiency on the one hand, but also a considerable relative simplicity on the other 
hand. 

By the strong law of large numbers, pn = (pni , • • -,Pnm) may be assumed to 
belong to the same open set IIm as P(QQ). We show that there exist an estimator (1) 
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satisfying (2) and a test (3) satisfying (4), both based on the (^-divergences 

of stationary distributions p(6) with the observed frequencies pn. 

The (^-divergences of probability distributions specified by convex functions 
<j)\ (0,oo) i—• R have been used in the statistics by many authors, see the references 
in Liese and Vajda [8] and Read and Cressie [13]. Properties of (^-divergences were 
systematically studied in Liese and Vajda [8], where we refer for the details. 

Our estimator 0n = Oh minimizes the ^-divergence (7) over 0 , i .e . 

6n = argmin D^(pn, p(0)). (8) 

For the particular function <t>+(t) = t\nt, Oh is the partial maximum likelihood 
estimator (partial MLE), where "partial" means that it is using only the partial 
information contained in the ordered version of Sn- If the data are independent 
then it becomes to be the standard MLE. In the model of Example 1 with p(0) = 0 
for all 0 G 0 , we obtain 0\ = pn for any <f>. 

Our test statistics T„ = Tn are defined for arbitrary convex <f>, 0*, with 
<f> twice continuously differentiate in an open neighbourhood of 1, <f)(l) = 0 and 
<f>"(l) ± 0, by 

Tn = 2 n . n i ) - 1 D*(Pn, Pifa*'))). (9) 

Here, obviously, ffn is defined by (8) with <j> replaced by <f>*. Sometimes it is 
convenient to employ this estimator in the version with the minimization in (8) 
restricted to the null space ©o. Then, if the hypothesis is simple, i.e. Oo = {#o}> 
(9) reduces to 

Tn = 2n<t>"(\)-1 D* (pn, p(0o)). (10) 

For example, if <f>(t) = (t — l ) 2 then (10) is the Pearson statistic 

V-CÍ Í „/a \ \ _ „ V^ (P"» ~ P»(go)) 
X (Pn,p(0o)) = n ̂  -j^-r  

i = l 
Pi( o) 

and (9) the Pearson statistic with Oh plugged-in for the unknown #o-

Various particular cases of the mentioned (^-divergence estimators and (^-divergence 
tests have been extensively used in the literature dealing with discrete independent 
observations, in particular with testing hypotheses concerning such observations, 
cf. Read and Cressie [13], Salicru et al [14], Morales et al [12], and further ref­
erences therein. Versions important from our point of view, applicable to positive 
recurrent Markov chains, have been considered by Tavare and Altham [15]. These 
authors solved among others the testing problem under consideration for the simple 
hypothesis IIQ = {po} by using the Pearson test statistic Tn = X2(pn,po). Using 



270 M.L.MENÉNDEZ, D. MORALES, L. PARDO AND I. VAJDA 

known facts about asymptotic distributions of irreducible aperiodic Markov chains, 
they found that for every model under consideration and every ff0E9, the statistic 
Tn = X2(pn, p(00)) satisfies the asymptotic relation 

m 

Tn-^^PiZf inlaw, (11) 
» = i 

where Zi are independent _V(0,1) and pi are the eigenvalues of the matrix DQ1C10 

for D0 = diagp(0o), (i. e. da = Pi(90) and dij = 0 for i ̂  j ) , 

fio = D0 C0 + CІDo -D0- p{ oy p( 0 ) , C0 = (I - P( 0) + l ť p(00)) - ì 

(here, obviously, I is the identity m x m matrix, i.e. I = diagl where 1 is the row 
vector of m units). 

In the present paper we are interested in the validity of (11) for more general 
test statistics (9) and (10). A generalization of (11) will lead us to the family of 
asymptotically a-level tests 

T = {(Tn, Kn}Q = Ka = (QQ(Pu... ,/?m), oo)) : <t> E $} , (12) 

where Tn are the statistics (9) or (10) and the critical region Kn,a = KQ is the 
interval (QQ,oo) for the (1 — a)-quantile QQ(p\,... ,/?m) of the random variable 
YlT^iPiZf- In the sequel, the tests (Tn)KQ) figuring in (12) will be explicitly 
indexed by the elements <f> of the class $ of convex functions considered there. 

3. TESTING SIMPLE HYPOTHESES 

In Menendez et al [10] we studied the simple hypothesis, i.e. the case 0o = {#o}-
We obtained the following extension of the Tavare and Altham [15] version of (11). 
This extension also exploits the possibility of simpler evaluation of parameters pi 
figuring in (11) for reversible chains. Remind that a chain P under consideration is 
said to be reversible if the probability of inverse transition Qij (i.e. the conditional 
probability that the previous state was j given that the present state is i, formally 
PjPji/pi) coincides with the probability of ordinary transition py, i.e. if for every 
1 < i, j < m 

PjPji =PiPij 

or, equivalently, DP = PXD. 

Theorem 1. (Menendez et al [10]) Let Assumptions 1-4 hold. Then relation (11) 
takes place for all statistics (10). If the chain P(00) is reversible then the parameters 
pi in (11) are given by the formula 

Pi = . _y for 1 < i < m - 1, pm = 0, (13) 

where A i , . . . , Am_i are the non-unit eigenvalues of P(00). 
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This result was obtained in [10] by proving that for every <j) under consideration 
the statistic (10) is expansible as follows 

Tn=X2(pn,p(0o))(l + op(l)), (14) 

and by a subsequent application of the mentioned special result of Tavare and Altham 
[15]. Let us briefly mention some consequences useful in the sequel. 

Corollary 1. If P has identical rows (i.e. P = l ' p where p = ( p i , . . . ,pm) is a 
stochastic vector) then it is reversible and all its nonunit eigenvalues are zero. Thus 
Theorem 1 implies that if the data X\,..., Xn are independent then all statistics 
(10) are asymptotically x2-distributed with m — 1 degrees of freedom (in symbols, 
Xm-i)- More generally, if P — (1 — n)I + 7rl'p where 0 < 7r < 1 then the nonunit 
eigenvalues of P are all equal to 1 — IT. Therefore all statistics (10) tend in law to 
x2.-i(--*)/*. 

Remark 1. Using Theorem 1 one can argue that (12) with the statistics Tn defined 
by (10) is a family of asymptotically a-level tests. This is true however only if the 
matrix P(9o) € Pe0 is known, i.e. only if the eigenvalues p i , . . . , p m needed to 
specify the critical value QQ are available. If this assumption is not satisfied then 
one can use the relative frequencies 

- _ Hn=2I(iJ)(Xk-u^k) 
Pnij~ ZUWt-i) 

as consistent estimates of elements Pij(0o) of the matrix P(0o) (cf. Billingsley [1]). 
Since the eigenvalues p i , . . . , pm are continuous functions of elements of the matrix 
F, the eigenvalues p n i , . . . , p n m obtained by replacing Pij(0o) by pni;- are consistent 
estimates of the unknown values p i , . . . , pm. This together with Theorem 1 implies 
the following fact. 

Corollary 2. All tests in the family (12) with Tn given by (10) and Qn > a = 
Qa(Pni)- • • j Pnm) are asymptotically a-level tests of the simple hypothesis {0O} 
under consideration. 

Corollary 2 provides a variety of tests. In Menendez et al [10] we considered a 
class of 0a-divergence tests, using the 0a-statistics for functions 

M) = f ' l for a ^ O - a j U - (15) 

leading to the Hellinger-type divergences 

Y^m ri^r)*-a 1 
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The limits 
m ^ 

Di(p,p) = £ p , l n £ 
. = i Pi 

and 
m 

Pi Do(p,p) = Y ] p . In ^ 
h Pi 

of these divergences for a | 1 and a j 0 are the (^-divergences for functions <j)\(t) = 
t\nt and <j>o(t) = —In/. From (10) one obtains in this manner the statistics 

T1
a = ^ T y f E ^ , P ^ o ) 1 - a - l j for a ^ 0 , 1 , (16a) 

m ^ 

T„1 = 2 n E p m l n - ^ T , (16b) 
1 = 1 

PІ( OУ 

PІ( O) 
Tn° = 2 n ^ p , ( 0 o ) l n ^ ^ - . (16c) 

»=i P n i 

We see that T n and T n are the likelihood ratio statistics, sometimes called G2 and 
modified G2. T2 and T " 1 are the Pearson X 2 and Neyman modified X2, and T n 

is a Freeman-Tukey statistic. Thus the class of statistics (16) for —6 < a < 6 seems 
to be rich and interesting enough to be able to represent all convex functions in 
the statistical experimentation under consideration. A similar restriction has been 
recommended by Drost et al [5] on the basis of power considerations in the case of 
independent observations. 

In [10] we also suggested Monte Carlo approximations to the test powers and 
sizes 

7rn(0, a) = 7rn(0, <j>a) = Pr(Tn

a > Qn)Q\P(0)) (17) 

for a from a reasonable interval around 0, by the relative frequencies 7rn>M(^,a) of 
the event Tn > QntQ in M independent realizations. We proposed a method of 
choice of a leading to a best test statistic T n , based on these approximations. 

In the following two sections we extend Theorem 1 to composite hypotheses 
0o C 0 . The statistics of our interest will be for example the members of family 
(9) obtained from (16) by replacing the true probabilities Pi(0o) by their estimates 
Pi(0n ), in particular by the estimates obtained for <£* = <j>a+ given by (15). To this 
end we need at the first place appropriate results concerning estimators On , <t> £ $• 
Therefore we start in the next section with the estimation problem. 

4. ESTIMATION 

In this section we consider the minimum ^-divergence estimators 0n = On defined 
by (8). If <j)(t) = t\nt then 0n is the MLE discussed above. Let us introduce the 
following regularity conditions. 



Inference About Stationary Distributions of Markov Chains Based on Divergences ... 273 

(Al) p(9) is continuously differentiate in the neighbourhood of 90 and 

(p(9) - p(9o)y = Jo(0 - 90y + o(\\0 - 0o\\) for 6 -> 0Q, 

where JQ = J(0o) is the Jacobian defined by 

w = Gšг å)'m-
(A2) A0AQ is positive definite for 

A) = diag (pi(0o)-1 / 2 , • • • ,Pm(6o)-X/2) jo-

Hereafter we consider the matrix 

Bo = diagp(0or1/2fto diagp(0o)-1/2, 

where Cl0, defined at the end of Section 2, is the asymptotic covariance matrix of 
the asymptotically normal zero mean random vector 

V ^ ( F n l - P l ( ^ o ) , . . - , P n m ~ Pm(90)) 

(for the asymptotic normality see Billingsley [1] or (2.2) in Tavare and Altham [15]), 
and diag p(90)~

1/2 denotes the same diagonal matrix as in the formula for Ao above. 
Put for brevity 

Ao = Ao(A0A0)-
1, So = A0Al = A0(A

t
0A0)-

lAt
0. 

The following theorem summarizes the properties of minimum ^-divergence esti­
mators of parameters of stationary distributions of Markov chains. It extends similar 
results for the maximum likelihood and other estimators with independent obser­
vations in Birch [2], Bishop, Fienberg and Holland [3], Read and Cressie [13] and 
Morales et al [12]. 

Theorem 2. Let </> satisfy the assumptions considered in (9) and let (Al), (A2) 
hold. Then the minimum (^-divergence estimator 0n satisfies the following asymp­
totic relations: 

9n -+0O a . s , (18) 

0n = 90 + (pn - p(90)) diag p(0 o ) - 1 / 2Ao(l + op(l)), (19) 

n1/2(9n -9o)-^N (0, A05o Ao) in law, (20) 

p(9n) = p(9o) + (Pn - P(90)) diag p(0 o ) - 1 / 2 £o diag p(90)
1/2(l + op(l)), (21) 

n1/2(p(9n) - p(90)) - N (o, diag p(90)
1/2X0B0X0 diag p(0o)1 / 2) in law. (22) 
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P r o o f . (I) By the strong law of large numbers holding for the chains under 
consideration (cf. Billingsley [1]) pn —> p(0o) a. s., so that also D<f>(pn,p(0o)) —• 0 
a. s. Further, by the definition of 0n, 

0 < D+{pn,p(dn)) < D+(pn,p(0o)) 

which implies D(f>(pn,p(0n)) —* 0 a. s. Hence, by Proposition 9.49 in Liese and Vajda 

[8], 
m 

^2\Pni-Pi(6n)\ ->0 a.S. 
t = l 

But 

\pi(0O) -Pi(0n)\ < \Pi(0o) ~Pni\ + \Pni-Pi(0n)\ 

so that the above convergences imply 

m 
y%2\Pi(0o)-Pi(0n)\-+0 a.s., 
i = l 

or briefly p(9n) —• p(0o) a.s. By the assumed continuity of the mapping p i—• 0(p), 
this is equivalent to (18). 

(II) Let us consider in the neighbourhood of 0o the function 

*(p,0) = VD<l>(p,p(0)) = rP(p,6)J(0) 

where tp(p, 0) = (V'i(p, 0), • • •, i>m(p, 0)) has the components 

^•e)=K-^k)-w/{^))- p=(p Pm)en-
By taking into account the asymptotic normality of nll2(pn — p(0o)) one obtains 
from the Taylor theorem 

m / Q T / _ A \ \ 
- l / 2 \ Ф(p n ,? n ) - ЩP( 0 ) , n) = £ (дЩg' n)) (Pni ~Pi( o)) + 0P(П-V 

•=- ^ 1P=P(«o) 
- u ) -

,=i \ uv% )' P=p(e0) 

But ðФ(p 

dpi 

so that 

Vp, (öo)^ 
v(pnX)-*Wo)A) = -^(i)E^f(p--P'(^))+°p(""1/2) 

= - * " ( - ) (Pn - p(9o)) diagp(^0)- 1 / 2Ao + op(n~^2). 

It follows from the definition of 0n that ^l(pn, 0n) = 0. Therefore 

*(p(0o), ' » ) = *"(-) (Pn - p(^o))diag p(0o)-1/2Ao + o^1'2). 
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On the other hand, we obtain in a similar way as above 

MP(0O)A) - MP(9O),00) = A - ) V w ( g 0 ) , ( ^ ~ g 0 ) ' ( - + op(l)), 

i.e. 

tf(p(*o)> On) ~ 1>Wo), 0o) = *"(-) (On - 00) A0diag p(0o)-1 / 2( l + op(l)). 

Multiplying both sides by J(6n) we obtain 

*(p(*o), On) - tf (p(*o)> 0o)J(0n) = <f>"(l)(en - ^oModiag P(0o)"1/2 J(0n) (1 + op(l)). 

Since U(0) = 0 for all 9 under consideration and ip(p(0o)1&o) = —^'(1)1, it 
holds ip(p(0o))0o)J(0n) = 0. This together with (18) implies that the last formula 
is equivalent to 

* ( p ( 0 o ) A ) = A l ) ( ^ - ^ o ) A o d i a g p ( 0 o ) - 1 / 2 I ( 0 o ) ( l + oP(l)) 

= <f>"(l)(0n-6o)AoAo(l + op(l)). 

From here and the former formula for ty(p(60), 0n). we obtain 

(9n - 0o)AoAo = (pn - p(0o))dmg p(e0)-^
2A0(l + op(l)). 

Since Al
0A0 is positive definite by (A2), this implies (19). 

(Ill) The convergence (20) follows directly from the definitions of Q0) -Bo and Ao 
and from (19). Further, by employing the Taylor theorem as in (II) and using (19) 
and (20), one obtains (21). The convergence in (22) follows directly from (21) and 
from the definition of Q0, Bo and Ho- D 

Remark 2. The matrix Q0, and consequently the matrices Bo, Ao and So figuring 
in Theorem 2, are known only if P(00) £ P$Q is specified. If this is not the case 
and the values of these matrices are needed to obtain confidence intervals or critical 
regions of statistical tests, then we can estimate the matrices B0i A0 and £o consis­
tently by replacing the unknown elements Pij(0o) of P(00) in Q0 by their estimates 
Pnij as in Remark 1 of the previous section. 

Example 4. Let us consider the binary version of the model of Example 2 with 
• £ 6 = 10,1), 

™ = ( V o ) 6 P -" *>=(-£?•!??)• 
We shall estimate a true parameter 0O £ (0,1). We get 
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mr - êм-џтwi-1'1)' 
Do = diщp( 0) = ---L- ( J l 

A0 = J( o)<D-^ = - ^ ^ ( - l ^ ' \ 

Л°Л° =

 0(l + 0)
2' 

Д0 = (AЏoГ^K^Mì + Oo)}1'2^2^), 

l'2 ( V2 - i ч 

Ľo = Ao(A\AoYxĄ = ЛoA0 = f ^ I " ^ /}- I , 

c f '-/-i.+x' ł(«-( ì î)- ,( ł- 1*î)+--b-(l5) 
1 / Øg + fo + 1 -Ø,2 

0 

~ 1 + 0o V -*o 1 + 2^o 

Qo = DoOo + OoDo - Do - P(0o)'p(0o) = ^ ^ f f ( _ ! Y 

and 

5 0 _ o0 fi0D0 ______ ^_^/2 i J . 

The asymptotic variance of n 1 / 2 (0 n — 0o) is A0BoAo = 0o(l — 00). The asymptotic 
variance-covariance matrix of nj!2(p(0n) — p(0o)) is 

- 1 / 2 - - - -1 /2 _ 0O(1-0Q) j 1 - 1 \ 

D0 So/io-oDo - ( 1 + <?o)3 ^ _ ! j J • 

The asymptotic variance-covariance matrix of nll2(pn — P(0Q)) is QQ- which coincides 
1/2 1/2 

in this example with DQ' __o_3*o_-o---V • ^he minimum ^-divergence estimator is 

0n - argmin D(p(pnjp(9)) - argmin —— I <j)(l + 9)pni + 0(j) [ —r—pn2 ) f • 

o<*<i o<a<i l + V { \ V J ) 
For the class of functions <j)a defined in (15), we have 

0n - argmin (l + e ^ ^ + O 1 - ^ } = ^ if 0 < £ - - < 1, 
°<d<1 Pnl Pnl 

which coincides with the estimator obtained by the method of moments. Thus we 
did not obtain a new estimator but, on the other hand, this result indicates that the 
minimum ^-divergence estimators are in general not bad. 



Inference About Stationary Distributions of Markov Chains Based on Divergences ... 2 7 7 

5. TESTING COMPOSITE HYPOTHESES 

In this section we consider statistical tests of composite hypothesis 0O C 6 intro­
duced in Section 1 using the divergence statistics (9). The assumptions (Al) and 
(A2) of Section 3 are supposed to be fulfilled. Moreover, both convex functions <j) 
and <f)* figuring in (9) are supposed to verify the assumptions imposed on </> in (9). 
The regularity assumptions concerning 0* allow to extend the properties established 
in Theorem 2 of Section 4 to the estimator 0n = 0n

 ) figuring in (9). 

We consider the matrices QQ introduced in Section 2 and Ao and 
E0 = Ao(Ai

QAo)~1Ato introduced in Section 4 and we put for brevity 

W+ = d iagp(0o) 1 / 2Sodiagp(e o)- 1 / 2 , 

W. = diagp(eo)"1 / 2Sodiagp(0o)1 / 2 , 

and 
Fo = dmgp(9o)-1/2[I-W+}n0[I- W-] d iagp(0 o)- 1 / 2 . 

Theorem 3. Under the above considered assumptions all statistics (9) satisfy the 
asymptotic relation 

m 

Tn-+Y;PiZi i T l l a W> ( 2 3 ) 
t = l 

where Zi are independent iV(0,1) and p. are the eigenvalues of the matrix Lo-

P r o o f . By (21), 

p(0n) = p(0O) + (Pn - p(0o))W. + op(n-1'2). 

Therefore 
Pn-P(0n) = (pn-P(9o))(I-W-) + Op(n

1'2). 

It follows from here and from the relation 

n1/2(pn - P(0o)) -> 1V(0, fi0) in law (cf. Section 3) 

that 
n1/2(pn - p(0n)) — -V(0, (I - W-yn0(I - W-)) in law. 

Since (I — W-)% = I — VV+, it follows from here 

n1/2(pn - P(^n))diag p(6o)~1/2 - -V(0, L0) in law. 

Further, it follows from there 

(Pn -P(9n)) d i a g p ( ^ ) - 1 / 2 = (p„ - p ( ^ ) ) d i a g p ( 5 0 ) - 1 l 2 + op(n-1 l2) 

so that also 

n1/2(pn - p(M)diag p(0n)~
1/2 -> N(0, Lo) in law. 
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Finally, since Un = nll2(pn - p(0n)) diag p(0n)~
1/2 satisfies the relation UnUn = 

X2(pn,p(0n)) where X2(pn,p(0n)) is defined in accordance with Section 2, the last 
relation implies 

m 
X2(pn,p(0n))-^^piZ2 inlaw 

»=i 

for pi and Zi considered in Theorem 3. The desired relation (23) follows from here 
and from the fact that under (18) it holds pni/pi(On) = 1 + op(l) so that, for the 
statistics (9), (14) can be extended into the form 

Tn=X2(pn,p(0n))(l + op(l)). D 

Remark 3. Theorem 3 leads to the family of asymptotically a-level tests (12) for 
the eigenvalues pi,...pm figuring in (23). These eigenvalues depend not only on 
the unknown chain transition matrix P(Oo) = (Pij(0o)), but also on the unknown 
stationary distribution p(0o). Replacing the matrix by the consistent estimate Pn = 
(pnij) defined in Remark 1 (cf. also Remark 2) and p(0o) by the consistent estimate 
pn defined by (6), we obtain an estimate Ln of the matrix Lo- Similarly as in Remark 
1, we can argue that the eigenvalues /? n i , . . . , /?nm of Ln are consistent estimates of 
the eigenvalues figuring in (23) and in the formula 

Qa = Qa(Pl,- -,Pm) 

for critical values of the tests (12). Therefore the empirical (1 — a)-quantile 

Qna = Qa(pnl>. • • , Pnm) (24) 

tends in probability to Qa. 

Corollary 3. All tests in the family (12) with Tn given in (9) and Qna given by 
(24) are asymptotically a-level for the composite hypothesis Go under consideration. 

We demonstrate practical applicability of Theorem 3 and Corollary 3 by two 
examples, which at the same time illustrate practical advantages as well as disad­
vantages of the testing method proposed in this section. 

Example 5. Let us consider a composite hypothesis ©o = (a, b) C (0,1) in the 
model of Example 4. It follows from the results of Example 4 that 

'-w+ = rk{l i.)- <-w- = v-w*)' 
and 

r _ / 0 0 \ 
J0 - \ 0 0 ) 
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with both eigenvalues p\ = p2 = 0. By employing the results of Example 4 we 
see that the statement of Theorem 3 is in this case true. Further, the (1 — a)~ 
quantile Qa(p\) = 0 and all tests of Corollary 3 are asymptotically 0-level. Hence 
the statement of Corollary 3 is true too. Of course the practical significance of the 
tests (12) is in this case doubtful as their powers tend exponentially to zero. 

Example 6. Let us consider the ternary version of the model of Example 2, with 
o = (/3,j)ee = (o,\)2, 

i - / ? p o 
P(/3,j) = | i - T o T | eP?,y 

1 o o 

and with the stationary distribution p(P,j) = (\,f3,/3j)/(\ + (3 + fij). Let the 
composite hypothesis be 

0O = {(/?, 7 ) G (0, l ) 2 : 7 - /?, 1/2 < P < 1} 

and consider a true parameter 0Q = (A), Po) with 0 < /?o < 1. Here, of the eigenvalues 
pi, p2 and ps of the matrix LQ, only p\ = p(Po) is nonzero. The values of p(/?o) are 
given for various /?o in Table 1. 

T a b l e 1. The nonzero eigenvalue of Lo for the transition matrix P(/?o,/?o). 

ßo 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 

P(ßo) 11.78 3.2 1.37 0.7 0.38 0.2 0.09 0.03 0.008 

Therefore, under the chain transition matrix P(/?o,/?o) given above, the asymptotic 
distribution of all statistics (9) is p(Po)x\- Consequently 

Qa(pup2,Ps) = p(Po)x\(l - a) , 

where x2(a) denotes the a-quantile of the random variable x\- Let us denote by p n i , 
Pn2 and pn3 the eigenvalues of the estimate Pn of P(Po,Po) considered in Corollary 
3. Then 

Qna = Qa(Pnl,Pn2,Pn3) 

under the hypothesis tends to p(Po)x\(l - ot) with 1/2 < /?o < 1. By using 
the maximal value p(Po) = 0.38 from Table 1, we obtain a family of tests T -= 
{(7^,0.38x1(1 — oc)) : <t> G $} which are asymptotically a-level for the composite 
hypotheses under consideration. 

(Received June 17, 1998.) 
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